
Citation: Nikulins, A.; Sudars, K.;

Edelmers, E.; Namatevs, I.; Ozols, K.;

Komasilovs, V.; Zacepins, A.; Kviesis,

A.; Reinhardt, A. Deep Learning for

Wind and Solar Energy Forecasting in

Hydrogen Production. Energies 2024,

17, 1053. https://doi.org/10.3390/

en17051053

Academic Editors: Piotr Powroźnik
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Abstract: This research delineates a pivotal advancement in the domain of sustainable energy systems,
with a focused emphasis on the integration of renewable energy sources—predominantly wind and
solar power—into the hydrogen production paradigm. At the core of this scientific endeavor is
the formulation and implementation of a deep-learning-based framework for short-term localized
weather forecasting, specifically designed to enhance the efficiency of hydrogen production derived
from renewable energy sources. The study presents a comprehensive evaluation of the efficacy
of fully connected neural networks (FCNs) and convolutional neural networks (CNNs) within
the realm of deep learning, aimed at refining the accuracy of renewable energy forecasts. These
methodologies have demonstrated remarkable proficiency in navigating the inherent complexities and
variabilities associated with renewable energy systems, thereby significantly improving the reliability
and precision of predictions pertaining to energy output. The cornerstone of this investigation is the
deployment of an artificial intelligence (AI)-driven weather forecasting system, which meticulously
analyzes data procured from 25 distinct weather monitoring stations across Latvia. This system
is specifically tailored to deliver short-term (1 h ahead) forecasts, employing a comprehensive
sensor fusion approach to accurately predicting wind and solar power outputs. A major finding
of this research is the achievement of a mean squared error (MSE) of 1.36 in the forecasting model,
underscoring the potential of this approach in optimizing renewable energy utilization for hydrogen
production. Furthermore, the paper elucidates the construction of the forecasting model, revealing
that the integration of sensor fusion significantly enhances the model’s predictive capabilities by
leveraging data from multiple sources to generate a more accurate and robust forecast. The entire
codebase developed during this research endeavor has been made available on an open access
GIT server.

Keywords: sustainable energy systems; renewable energy sources; hydrogen production; deep
learning; weather forecasting; fully connected neural networks; convolutional neural networks;
energy management; wind power; solar power

1. Introduction

The imperative of transitioning to sustainable energy systems, given escalating en-
vironmental concerns and diminishing fossil fuel reserves, has led to a heightened focus
on renewable energy sources, particularly in the context of hydrogen production. This
shift is emphasized by several studies and reports that have explored the dynamics and
implications of this transition.
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The World Energy Transitions Outlook 2023 report highlights that renewable energy,
clean hydrogen, and sustainable biomass, along with electrification and energy efficiency,
are critical drivers of this transition. The report highlights the necessity of a rapid and
systemic transformation of the energy system away from its current reliance on fossil fuels,
emphasizing that achieving the 1.5 ◦C climate target is made feasible by using a range of
policies and technical strategies, which include a significant scale-up of renewables in the
power sector, coupled with major efficiency upgrades and a shift to direct renewable use
across all end use sectors [1].

Further, the research presented in Nature Energy delves into the social and economic
aspects of the energy transition, examining the impact of transitioning from fossil fuels
to renewable energy sources like solar and wind on communities and job markets [2]. It
particularly focuses on the implications for regions and communities historically depen-
dent on coal and other fossil fuels, assessing how the transition affects local economies
and employment.

1.1. State of the Art

In the domain of hydrogen production, studies have shown the integration of green
hydrogen into renewable energy systems, particularly for residential and electric vehicle
(EV) applications [3]. This integration is aimed at addressing the challenges of intermittency
in solar and wind power, showcasing adaptability to remote areas. The research also
highlights the economic and environmental sustainability of such systems, emphasizing
their role in enhancing energy accessibility and stability.

At the heart of this integration is the need for precise and reliable forecasting of wind
and solar energy outputs [4,5]. Currently, deep learning techniques have surfaced as trans-
formative tools, revolutionizing the approach to energy forecasting [6,7]. These advanced
computational methods offer unprecedented capabilities in handling the complexity and
variability inherent in renewable energy systems, thereby significantly enhancing forecasts’
accuracy and reliability [8].

Recent strides in the field have seen the emergence of sophisticated multivariate
forecasting models. These models, as stated in the works of Sørensen et al. [9], employ state-
of-the-art techniques in multivariate analysis to predict wind and solar power production.
The emphasis on probabilistic forecasting within these models marks a significant evolution
in the field of electrical engineering, allowing for more nuanced and informed decision-
making processes in energy management. Concurrently, time-series methodologies have
gained prominence for their efficacy in improving the forecasting precision, as evidenced by
the comprehensive analysis presented by Ghofrani and Alolayan [10]. These methods offer
a granular view of prediction techniques, paving the way for more accurate and actionable
insights into wind and solar power generation trends.

In the broader landscape of sustainable energy research and development, the applica-
tion of deep learning techniques to forecasting for solar energy represents a monumental
stride forward. This area of study, as expounded upon in the pivotal research by Alkhayat
et al. [11], not only identifies the existing gaps in solar energy forecasting but also under-
scores the immense potential that artificial intelligence holds in refining the accuracy of
these predictions. Such advancements are critical in navigating the challenges posed by the
inherent variability and unpredictability of solar energy, thereby enhancing the reliability
and efficiency of solar power systems.

The significance of this research is further amplified by the initiatives of major govern-
mental bodies, such as the U.S. Department of Energy. Their sponsorship of projects aimed
at advancing wind and solar power forecasts, as detailed in the comprehensive studies
of Orwig et al., reiterates the critical importance of accurate variable generation forecast-
ing [12]. This is not only vital for the optimization of the power system but also for ensuring
the stability and resilience of the energy grid in the face of fluctuating renewable energy
sources. Additionally, the exploration of deep learning architectures in wind time-series
forecasting, as demonstrated by Manero et al., marks a significant advancement in the
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field [13]. The application of sophisticated algorithms like recurrent neural networks and
convolutional networks has opened up new avenues in accurately predicting wind patterns,
a factor crucial for the efficient harnessing of wind energy. This aspect of renewable energy
research is pivotal in addressing challenges such as wind power curtailment and enhancing
the overall utilization of wind resources.

The role of hydrogen production technology, particularly when powered by wind
energy, as illustrated in the research by Li et al., stands out as a key solution in the renewable
energy domain [14]. This technology not only augments the efficiency of wind energy
utilization but also presents a sustainable method for integrating renewable sources into
the energy grid. The ability to convert wind energy into hydrogen effectively mitigates the
issues related to an intermittent energy supply, thus reinforcing the role of hydrogen as a
versatile and clean energy carrier.

The scope of deep learning applications in the realm of sustainable energy extends
far beyond the conventional domains of wind and solar energy forecasting, encompassing
innovative areas such as bio-hydrogen production technology. This expansion reflects
a concerted effort within the scientific community to harness the full potential of artifi-
cial intelligence in revolutionizing various facets of renewable energy production and
management. Different studies exemplify this trend, showcasing how deep learning can
facilitate the automation and optimization of bio-hydrogen production processes [15,16].
This technological advancement is not merely an incremental improvement; it represents
more efficient and sustainable hydrogen production methods, leveraging the power of
artificial intelligence (AI) to enhance the process control and production rates. In paral-
lel, the field of computer vision, an integral part of deep learning, has made significant
inroads in the energy sector. As elucidated in the studies by Bosma and Nazari, computer
vision techniques are being employed to refine the forecasting of regional energy outputs,
particularly in the context of renewable energy sources [17]. This approach underscores
the multifaceted nature of deep learning applications, extending beyond numerical data
analysis to include visual data interpretation, thereby broadening the horizon for more
accurate and comprehensive energy forecasting models. Moreover, the application of deep
learning transcends the technicalities of energy production, venturing into the intricate
dynamics of energy markets. The research by Dumas et al. highlights the use of proba-
bilistic forecast-driven strategies, enabled by deep learning models, in the capacity firming
market [18]. This approach exemplifies how AI can contribute to more informed and
risk-aware decision-making in energy trading and management. By generating quantile
forecasts of renewable energy generation, these models provide crucial insights into the
uncertainties inherent in renewable energy markets, facilitating more robust and resilient
energy trading strategies.

Complementing these engineering advancements, the field of renewable energy fore-
casting has witnessed a surge in the application of machine learning and deep learning
techniques. Benti et al. provide a comprehensive review of the current state and future
prospects in this domain [19]. Their analysis sheds light on the transformative impact of
these technologies on predicting renewable energy outputs, which is integral to planning
and optimizing energy systems. The potential of machine learning and deep learning in
this context represents a substantial enhancement of how energy forecasting is approached,
offering more accurate, reliable, and dynamic predictions. Further enhancing the predictive
capabilities in renewable energy forecasting, attention mechanisms, as explored by Brahma
et al., have been identified as a promising frontier in improving the accuracy of wind speed
and solar irradiance models [20]. These mechanisms, part of the broader suite of advanced
deep learning techniques, bring a nuanced understanding of the temporal and spatial
dependencies in weather patterns, which are crucial for precise energy forecasting. The
introduction of such sophisticated methodologies signifies a leap forward in our ability to
predict and harness renewable energy, directly contributing to the efficiency and reliability
of renewable energy systems.
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Collectively, these developments in turbine optimization, energy forecasting, and
advanced predictive models represent a rapidly evolving field, where interdisciplinary
approaches are converging to address the multifaceted challenges of sustainable energy
generation. This broader and more comprehensive perspective not only highlights techno-
logical innovations but also emphasizes the interconnected nature of these advancements
in contributing to a sustainable and climate-resilient future. The synergy between engineer-
ing advancements, predictive analytics, and environmental foresight is setting the stage
for a new era of renewable energy, characterized by efficiency, sustainability, and a deep
commitment to combating climate change.

Another important factor in terms of forecasting is data privacy, which is crucial to the
development of deep-learning-based wind and solar energy forecasting models. The use of
federated-learning-based methods has been proposed as a novel approach to addressing
privacy concerns in the context of wind power forecasting [21,22]. This decentralized
collaborative modeling method allows the training of a single model on data from multiple
wind farms without compromising the privacy or security of the data. Similarly, in the field
of solar energy forecasting, there is recognition of the importance of addressing privacy
concerns, as evidenced by the identification of the key research gaps in deep-learning-based
solar energy forecasting methods.

Furthermore, the application of deep learning methods to power load and renewable
energy forecasting in smart microgrids has been the subject of extensive research, highlight-
ing the significance of privacy-preserving techniques in this domain [23]. Additionally, the
availability of solar and wind generation data from on-site sources has been acknowledged
as beneficial to the development of data-driven forecasting models, emphasizing the impor-
tance of ensuring the privacy and security of such data [8]. The potential for geographically
distributed time-series data to enhance the forecasting skills for wind and solar energy has
been recognized, underscoring the need for privacy-preserving mechanisms in handling
such data [24]. Additionally, the robustness of privacy-preserving distributed learning
methods for renewable energy forecasting has been demonstrated, further emphasizing the
importance of protecting privacy in this context [25].

In summary, these references highlight the critical role of data privacy in the de-
velopment of deep-learning-based wind and solar energy forecasting models. The use
of federated-learning-based approaches, privacy-preserving distributed learning meth-
ods, and the identification of research gaps in the context of solar energy forecasting all
underscore the significance of addressing privacy concerns in this domain.

1.2. Objectives of This Work

The novelty of this research is underscored by its focus on the development of a deep
learning (DL) system designed specifically for forecasting short-term weather conditions
(1 h ahead) at a highly localized level. This represents a significant advancement in
meteorological modeling, particularly in its application to regions with solar or wind
energy installations. The current weather prediction models typically do not provide such
immediate and localized forecasting capabilities, making this approach a novel contribution
to the field. Moreover, the operational costs of hydrogen production facilities are drawing
attention to more precise predictions of available solar and wind energy. Therefore, in
this publication, fully connected neural network (FCN) and convolutional neural network
(CNN) forecasting systems are considered. The implementation of such systems aims to
enhance the efficiency of load balancing in smart power grids, facilitating the feasibility
of storing surplus energy in the form of hydrogen. To explore this deep-learning-based
approach, a specific use case is explored, and the AI deep learning model is trained on
open access data from 25 weather monitoring stations located in the Republic of Latvia
(Latvia). The concept of the smart power grid load-balancing system and the results of the
available renewable energy forecasting system are reported further in the publication.
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The variety of sensors used in the training of deep learning models can be expanded
by incorporating additional sensors, such as sky-viewing sensors. This area of investigation
requires additional research [26].

The usage of fully connected neural network and convolutional neural network models
enhances the efficiency of renewable energy source (RES) utilization. The 1 h ahead
weather forecasting system functions primarily as a real-time monitoring tool and relies
on a precise sensor network for data collection, as can be seen in Figure 1. Surplus energy
from renewable sources, such as wind, presents an optimal opportunity for hydrogen
production through electrolysis, where excess electricity facilitates the conversion of water
into hydrogen and oxygen, thereby storing renewable energy in a form that is transportable
and usable across various sectors. Advanced weather forecasting plays a critical role in
managing wind energy production, enabling more precise prediction of wind patterns
and thus optimizing the scheduling of hydrogen production during periods of anticipated
energy surplus, enhancing both the efficiency and sustainability of renewable energy
systems. This approach promises to revolutionize sustainable hydrogen production by
harnessing renewable energy more efficiently.
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2. Materials and Methods

The methodology is structured into distinct subsections for clearer exposition and
detailed articulation of this research’s key components:

2.1. Communication Protocol

Figure 2 shows the required protocol for integrating parameter monitoring with the
RES production module control. This illustration outlines how all the modules have to be
interconnected to implement a cohesive smart energy system.
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In our research, the ZeroMQ communication system is employed for the data transfer
from sensors to the server, capitalizing on its Python library compatibility given that the AI
system operates within a Python environment. Utilizing the Transmission Control Protocol
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(TCP), ZeroMQ serves as the backbone for server–client interactions, facilitating efficient,
cross-platform data transmission between operating systems like Windows and Linux
(alternative solutions: MQTT messaging or the OPC UA standard). The system is designed
to be lightweight and scalable, capable of supporting a variety of messaging patterns and
handling large data volumes without the risk of loss or congestion [27].

A Python code snippet exemplifying the minimal steps to establish a ZeroMQ connec-
tion between the server and client is included in the documentation on implementation
guidance (Algorithm 1).

Algorithm 1: Server and client Python scripts

The script for the server side The script for the client side

import zmq
# create a ZeroMQ context
context = zmq.Context()
# set up a server socket
server_socket = context.socket(zmq.REP)
server_socket.bind(f”tcp://*:5555”)
# receive the message on the server
message = server_socket.recv()
print (message)
# send a reply from the server to the client
server_socket.send(b”Hello, client!”)

import zmq
# insert your computer ip
serverIP = “192.0.2.X”
# create a ZeroMQ context
context = zmq.Context()
# set up a client socket
client_socket = context.socket(zmq.REQ)
client_socket.connect(f”tcp://{serverIP}:5555”)
# send a message from the client to the server
client_socket.send(b”Hello, server!”)
# receive the replay on the client
reply = client_socket.recv()
print (reply)

Once the data have been appropriately pre-processed to meet the neural network
input requirements, they are directly fed into the specified neural network model. A link to
the GIT site is available in the data availability statement at the end of this manuscript.

2.2. Data

Weather condition monitoring is an ongoing endeavor. For the purposes of training
and testing the neural networks, the data are sourced from the Latvian Open Data Portal [28]
uploaded by the Latvian Environment, Geology and Meteorology Centre [29]. It is essential
that the neural network be localized and fine-tuned to align with the unique climatic and
environmental characteristics of the region in which it will operate.

Global training of the neural network allows the model to recognize generic weather
patterns and relationships that are universally applicable. Subsequent fine-tuning for the
local area enables the model to adapt to region-specific nuances. In our development, we
used historical data [29] from twenty-five weather monitoring stations located in Latvia, as
shown in Figure 3.

The dataset contains 4211 hourly measurement instances for each weather station,
starting from 00:00 11 January 2023. Every measurement instance stores 10 parameters,
giving 250 parameters total for each time instance (Table 1).

In our study, we selectively focused on the wind speed data parameter, specifically
designated as WNS10, for the training and refinement of our deep learning models. The
sourced data originate from the Madona weather station. For solar energy scenarios, a
comparable dataset needs to be downloaded from the weather stations.

In the case of real-time monitoring, an example code snippet for data scraping is
provided as Algorithm 2.
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Table 1. The parameters collected from each station.

Parameter Code Description

HPRAB Precipitation amount, hourly sum, mm
HWDMX Wind direction, hourly maximum speed, 0–360 degrees
HWSMX Wind speed, hourly maximum, m/s
PRSS Atmospheric pressure at station level, actual QFE, hPa
RLH Relative humidity, actual, %
SNOWA Snow depth, actual, cm
TDRY Air temperature actual, Celsius degrees
VSBA Visibility meteorological, actual, m
WNDD10 Wind direction, actual, 0–360 degrees
WNS10 Wind speed, actual, m/s

Algorithm 2: Example of Python code for real-time data scraping to extract specific parameters
(e.g., wind power) from a meteorological station in Latvia

import urllib.request
url = “https://data.gov.lv/dati/api/3/action/datastore_search?resource_id=17460efb-ae99-
4d1d-8144-1068f184b05f&limit=5%E2%80%9D
with urllib.request.urlopen(url) as response:
html = response.read()
print(html)

2.3. AI Module

To develop an AI-based weather forecasting system, various methodologies are possi-
ble. In the paper, we employed fully connected neural network (FCN) and 1D convolutional
neural network (CNN) architectures to tackle the problem. These selected models offer
distinct advantages in capturing complex patterns and relationships in the data.

To train the deep learning models, we used the data described before. We split the
dataset, consisting of 4211 time instances, into a training set and a test (or validation) set
at a ratio of 70:30 and we used a 24 h time window and data from 25 monitoring stations
simultaneously to forecast 1 parameter (wind speed) 1 h ahead at specific location. We
used 1 random station (Madona) from 25. Thus, the system has a 6000 × 1 input vector
(24 h × 10 parameters × 25 stations) and 1 output value.

For training the deep learning model, a sequence-to-sequence approach was utilized,
wherein the model predicts the next value in the sequence. This eliminates the need for
specific data labeling or an annotated dataset.

https://data.gov.lv/dati/api/3/action/datastore_search?resource_id=17460efb-ae99-4d1d-8144-1068f184b05f&limit=5%E2%80%9D
https://data.gov.lv/dati/api/3/action/datastore_search?resource_id=17460efb-ae99-4d1d-8144-1068f184b05f&limit=5%E2%80%9D
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2.3.1. AI Module Based on an FCN

In this research, an FCN is utilized for predicting the available RES energy. In our study,
while the hyperparameters, such as layer sizes, remain subjects for further optimization,
it was observed that specific deep neural networks (DNNs) configured for the 6000 × 1
input dimension have not yet been explicitly identified in the current literature. The details
governing this neural network can be seen in Table 2.

Table 2. Data dimensionality at each layer in the employed fully connected neural network architecture.

Layer (Type) Output Shape Param Count

Input [−1, 1, 6000] 0
Linear-1 [−1, 1, 500] 3,000,500
Linear-2 [−1, 1, 500] 250,500
Linear-3 [−1, 1, 500] 250,500
Linear-4 [−1, 1, 500] 250,500
Linear-5 [−1, 1, 1] 501

The AI model for hydrogen production incorporates 3,752,501 trainable parame-
ters, with no non-trainable parameters, indicating a fully adaptable architecture for the
training process.

2.3.2. AI Module Based on a CNN

Additionally, within this research, we employed a 1D convolutional neural network
model to forecast the required parameters. The 1D CNN architecture is particularly well
suited to time-series data, where a fixed time window is considered. It excels in capturing
local patterns and dependencies, discerning them across various signal areas. This makes
it highly appropriate for tasks involving data processing with time series, such as time-
series forecasting, speech recognition, and signal processing. Weather data are inherently
sequential, consisting of parameters like temperature, humidity, wind speed, and pressure
recorded over time in a given local area. The specifics of the utilized CNN are given in
Table 3.

Table 3. Data dimensionality at each layer in the employed convolutional neural network architecture.

Layer (Type) Output Shape Param Count

Input [−1, 1, 6000] 0

Conv1d-1 [−1, 500, 1999] 3000

MaxPool1d-2 [−1, 500, 999] 0

Conv1d-3 [−1, 500, 332] 1,250,500

MaxPool1d-4 [−1, 500, 166] 0

Conv1d-5 [−1, 500, 81] 1,250,500

MaxPool1d-6 [−1, 500, 40] 0

Conv1d-7 [−1, 500, 18] 1,250,500

MaxPool1d-8 [−1, 500, 17] 0

Conv1d-9 [−1, 500, 7] 1,250,500

MaxPool1d-10 [−1, 500, 6] 0

Flatten-11 [−1, 3000] 0

Linear-12 [−1, 500] 1,500,500

Linear-13 [−1, 1] 501
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The AI model for hydrogen production incorporates 6,506,001 trainable parame-
ters, with no non-trainable parameters, indicating a fully adaptable architecture for the
training process.

3. Results

AI Module
The observed forecasting performance makes our CNN/FCN approaches suitable for

controlling H2 electrolysis according to the available renewable power. The interface to the
actual electrolyzer plant can be realized by means of ZeroMQ, as proposed in Section 2.1.
In terms of the data format, predictions using a set of different forecasting horizons can be
made in order to allow for fine-grained electrolyzer control as well as allowing for sufficient
advance notice when a plant has to be shut down completely. A sample data structure for
controlling hydrogen electrolysis is given in Table 4.

Table 4. Example of a control message to the hydrogen production operators.

T = 0 s; 25 kW; +0 kW −0 kW; 100% certain
T = 600 s; 21 kW; +1 kW −1 kW; 95% certain
T = 1200 s; 18 kW; +3 kW −1 kW; 92% certain
T = 1800 s; 11 kW; +1 kW −1 kW; 84% certain
T = 2700 s; 2 kW; +0 kW −2 kW; 60% certain
T = 3600 s; 22 kW; +2 kW −1 kW; 90% certain

The FCN and CNN models were evaluated using wind speed data, leading to the
results specified subsequently. The performance metrics and insights drawn from this
evaluation serve to validate the model’s efficacy and reliability in wind speed prediction
tasks. In Figure 4, the progressive convergence of the AI-predicted values toward the actual
values is evident, as measured using the mean squared error (MSE) or L2 loss.
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Figure 4. Comparative analysis of training and test L2 losses over epochs for the CNN-based (A) and
FCN-based (B) AI prediction systems.

The network is optimized using the adaptive moment estimation optimizer (Adam
optimizer) with a learning rate of 0.00001 throughout the experiment. The training and
test sets were described before in the paper. The source code of the experiments is publicly
available on the official Git server. The link to the Git site is available in the data availability
statement at the end of this manuscript.

The FCN model yields a mean squared error (MSE) or L2 loss of 1.61 for wind speed
estimation on the training set and 1.77 on the validation set. In comparison, the CNN model
yields an L2 loss of 1.10 on the training set and 1.36 on the validation set (after 14 epochs).
The dataset for wind speed from the used station in the experiments has a mean value of
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2.25 [m/s] and a standard deviation of 1.3. A comparable performance will be anticipated
for the other parameter predictions.

4. Discussion

In the manuscript, we present a deep-learning-based prediction system engineered
to enhance hydrogen (H2) production control. This system is pivotal in the context of
renewable energy management, particularly for its integration with the smart energy grid
concept. The core of our research involves an exploration of two deep neural network archi-
tectures: fully convolutional networks (FCNs) and convolutional neural networks (CNNs).
Our empirical investigations employed these neural network models in the context of wind
speed data analysis. The findings, as elucidated in this paper, are significant in affirming
the models’ effectiveness and reliability in wind speed prediction tasks. Figure 4 in our
manuscript provides a graphical representation of the models’ performance, particularly
illustrating the progressive convergence of the AI-predicted values toward the actual wind
speed values. This convergence is quantitatively measured using the mean squared error
(MSE) or L2 loss, a standard metric in the assessment of predictive precision.

The optimization of the neural network models was achieved using the adaptive
moment estimation (Adam) optimizer, employed with a learning rate of 0.00001. This
optimization strategy was critical in refining the models’ learning efficacy. The performance
metrics, as detailed in the manuscript, reveal a distinctive advantage of the CNN model over
its FCN counterpart. Specifically, the CNN model demonstrates a lower MSE, with values of
1.0488 on the training set and 1.1662 on the validation set after 14 epochs, in comparison to
the FCN model, which exhibits an MSE of 1.61 on the training set and 1.77 on the validation
set. Considering the wind speed dataset’s characteristics, specifically a mean value of
2.25 m/s and a standard deviation of 1.3, the CNN model’s precision closely approximates
the range within 1 standard deviation. The observed level of precision achieved using
the CNN model in our study, which is approximately an MSE of 1.36, is commendable
and stands in favorable comparison to similar research in the field [30–32]. This level
of performance, particularly when assessed in the context of wind speed forecasting,
underscores the efficacy of the CNN architecture in capturing complex spatial and temporal
patterns inherent in meteorological data. The superior performance of the CNN over the
FCN model in our study corroborates the findings from the existing literature, where CNNs
are often reported to outperform FCNs in tasks that require the analysis of intricate data
patterns [33,34].

The prospective enhancements to the forecasting system emphasize the integration of
a more diverse array of monitoring sensors and the inclusion of data from various weather
forecasting sources. These improvements are expected to not only refine the precision of the
predictions but also broaden the model’s applicability beyond just wind speed estimation.
A key limitation identified in the study is the availability of data, particularly the scarcity
of local sources with open access retrospective forecasting data. This is crucial, as machine
learning heavily depends on the quality and quantity of data provided. Additionally,
the study acknowledges the sensitivity of deep neural network configurations, especially
in wind and solar energy forecasting for hydrogen production. Citing Kuzle et al., the
manuscript underscores the challenges in optimizing the network architecture to ensure
accurate and reliable forecasting, a critical aspect of deep learning applications in this
field [35].
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