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Abstract: In this research, we propose a fixed-time sliding mode controller using a prescribed per-
formance control approach to address the speed tracking problem in linear motor traction systems,
which are powered by high-power permanent magnet linear synchronous motors (PMLSMs). Ini-
tially, to tackle the issue of the convergence time and dynamic response associated with traditional
finite-time sliding mode controllers, we introduce a fixed-time sliding mode controller. This controller
guarantees that the system state converges to the origin within a specified upper time limit. Subse-
quently, to enhance the dynamic response of the PMLSM and minimize speed errors, we integrate the
prescribed performance control strategy with a fixed-time sliding mode controller. This effectively
limits the motor’s speed error within the predefined function boundaries, reduces system overshoo,
and mitigates system jitter to a certain degree. Finally, simulation results are presented to validate
that the proposed control strategy significantly enhances precision of speed tracking in PMLSMs.

Keywords: fixed-time sliding mode controller; prescribed performance; linear motor traction systems;
permanent magnet linear synchronous motors

1. Introduction

With the rapid growth in the global economy and population, traditional transporta-
tion methods are facing increasing pressure, particular in the form of urban traffic conges-
tion. Therefore, the development of new high-efficiency, environmentally friendly vehicles,
and transportation systems has become an important direction for research and devel-
opment in the global transportation field. It is against this background that high-power
linear traction systems came into being. They use the force generated by high-intensity
electromagnetic fields to drive objects to move on guide rails, thereby achieving high-speed,
low-energy, and low-noise transportation [1,2]. Compared with traditional fuel-driven
systems and mechanical rotating transmission systems, high-power linear traction systems
are have the characteristics of highly efficient, fast, strong, and environmentally friendly, so
they are widely used for long-distance and so high-speed transportation.

Generally, linear traction systems are powered by a high-power permanent magnet
linear synchronous motor (PMLSM), which possess many advantages, e.g., fast speed
response, accurate fast positioning, and zero-transmission characteristics. Hence, these
systems offer a low mechanical loss, large thrust density, and a fast dynamic response [3,4].
Likewise, they are widely employed in industrial production and rail transit systems, e.g.,
industrial robots, computer numerical control machine tools, and maglev trains etc. [5,6].

A PMLSM’s control system is a complex nonlinear system and therefore requires
advanced control strategies [7–9]. A cascade control arrangement is commonly utilized
in the control systems of PMLSMs. This structure comprises an outer control loop for
speed, and an inner control loop for current, intended to follow the specified speed and the
current references, respectively. The former plays an important role in the control system
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and requires advanced control strategies to achieve precise speed tracking. The commonly
used control methods for the inner loop include proportional-integral (PI) control [10],
current hysteresis control, sliding mode control (SMC), and some other intelligent control
methods [11–13].

In an actual control system, PMLSMs are susceptible to various external disturbances,
such as mechanical noise, vibration, and model mismatch caused by changes in the param-
eters of the equipment itself during long-term operation, which will lead to a deterioration
in the control system’s performance and affect the motor’s tracking accuracy. PI controllers
have been widely used in PMLSMs. However, they are vulnerable to external interferences
to some extent. Hence, various approaches to improving the anti-disturbance capability of a
PMLSM controller have been proposed. Specifically, typical designs often rely on the outer
control loop, namely, the speed control loop, within the cascaded structure. Among various
methodologies, SMC has attracted significant attention forom numerous researchers inves-
tigating PMLSM control due to its simplicity and robustness in the face of disturbances.
In [14], a sliding mode controller was developed to replace the PI controller, demonstrating
a superior control performance. Generally, the SMC method involves selecting a linear
sliding surface. Once the system reaches the sliding mode surface, the speed tracking
error gradually diminishes to zero. The convergence speed is adjustable by modifying the
sliding mode surface parameters, although the state tracking error does not converge to
zero within a finite time. Recent studies have proposed a terminal sliding mode control
(TSMC) strategy to address this limitation. In TSMC, a nonlinear function is introduced into
the sliding mode surface, constructing a terminal sliding mode surface. As a result, after
reaching the sliding mode surface, the system’s tracking error converges to zero within a
finite time [15,16].

To address the issue of the slow convergence in traditional sliding mode control al-
gorithms, scholars have introduced a fixed-time sliding mode control algorithm. This
approach ensures system convergence within a predetermined time, independent of the
initial system state [17–19]. In [20], researchers proposed a fixed-time distributed sliding
mode control method to attain formation control in fractional-order multi-agent systems.
Numerical simulations showcase its superior convergence rate compared to the finite-time
sliding mode control strategy. An innovative fixed-time nonsingular fast terminal sliding
mode control method was presented in [21] to achieve rapid stability and robust control
for second-order nonlinear systems. This method not only guarantees fixed-time conver-
gence but also mitigates singularity issues present in conventional terminal sliding mode
surfaces. Addressing speed regulation system control for permanent magnet synchronous
motors, ref. [22] introduced an integral fixed-time sliding mode control algorithm with
disturbance estimation compensation. Rigorous Lyapunov function analyses established
that the speed tracking error converges to zero within a fixed time. Comparative results
from numerical experiments confirmed the effectiveness and superiority of the integral
fixed-time sliding mode control method. The collective findings suggest that fixed-time
sliding mode controller accelerates system state convergence and enhances the dynamic
performance compared to the finite-time sliding mode controllers.

In servo control systems, beyond considering the system’s dynamic performance, it
is crucial to assess the steady-state speed error to significantly improve performance. In
prescribed performance control (PPC), pre-setting controllers are adopted to meet system
performance targets and requirements. This approach has proven advantageous for en-
hancing system’s stability, control accuracy, and adaptability, and so it is widely used in
servo control systems [23,24], vehicle systems [25], and marine systems [26]. To precisely
regulate the tracking performance of servo systems, including the overshoot, convergence
speed, and steady-state error, a composite finite-time control scheme with prescribed
performance for speed regulation in permanent magnet synchronous motors has been
explored in [27]. Initially, prescribed transient and steady-state performance constraints
are considered by using PPC. Subsequently, a composite finite-time speed controller is
devised based on a feed-forward compensated disturbance observer, and the finite-time
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stability of the closed-loop system was meticulously analyzed. Finally, the control scheme’s
effectiveness is validated through numerical simulations. However, the PPC method is
susceptible to external perturbations, and when a sudden change in motor load occurs, the
speed error may break through prescribed boundaries, affecting the control performance.
Consequently, PPC is often integrated with robust control algorithms such as sliding mode
control (SMC) strategy.

Inspired by the above research, in this study,we introduce a fixed-time sliding mode
controller designed under the framework of prescribed performance control (PPC-FTSMC).
The objective is to achieve precise speed control, enhance the system’s dynamic perfor-
mance, and reduce steady-state errors. Employing field orientation control (FOC) in the
control structure, PPC-FTSMC is devised for the speed loop, complemented by two PI
controllers within the current loops. MATLAB simulations are presented to demonstrate
the robustness and dynamic efficacy of the proposed strategy. The key contributions of this
work are outlined as follows:

• PPC is used to restrict the tracking errors, leading to enhancements in the dynamic
response, mitigation of overshoot, and a reduction in tracking errors.

• FTSMC contributes to an increased system robustness and accelerates the convergence
time of speed errors.

• The fixed-time stability of both the sliding mode surface and the system states under
the composite control scheme proposed is substantiated through Lyapunov stabil-
ity theory.

The remainder of this paper is organized as follows. Section 2 introduces some
important lemmas and describes the mathematical model of PMLSMs. Likewise, Section 3
states a PPC-FTSMC method, and it is applied to the inner loop. Lastly the results from
simulations and corresponding experiments are provided in Section 4, and the work is
concluded in Section 5.

2. Problem Description
2.1. Mathematical Modelling of PMLSMs

Before exploring the mathematical model of the PMLSM, it is crucial to set certain
assumptions. These assumptions involve disregarding the saturation of the motor core,
excluding the losses caused by eddy currents and hysteresis in the motor, and assuming
that the three-phase current waveform follows an ideal sine wave pattern.

We can establish the electromagnetic thrust equation can be written as follows:

Fe = K f iq = Mv̇+Bv+d, (1)

d = FL + Ff + Fr, (2)

and Fe is electromagnetic thrust. Moreover, K f =
3
2

π
τ nψ f is the thrust coefficient, iq are the

stator currents on q axis, τ is polar distance, Bv is viscous friction coefficient, v represent
the speed for PMLSM, n is number of pole pairs, and M is mover mass. d represents the
disturbance, including load disturbance FL, friction between the motor and the guide rail
Ff and thrust fluctuations caused by end effects Fr.

For ease of expression, its dynamic equation can be rewritten as:

dv
dt

= Amv + Bmiq + D (3)

where Am = −B/M, Bm = K f /M, D = −d/M.

2.2. Some Lemmas and Assumptions

Lemma 1 ([20]). If there is a continuous radially bounded function V : Rn → R+ ∪ {0} satisfied :
(1) V(x) = 0 ⇔ x = 0.
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(2) For any positive constant α, β, γ1 and γ2 , if a nonnegative function satisfies V̇(x) ≤
−γ1Vα(x)− γ2Vβ(x), where 0 < α < 1, β > 1. The system will converge in a fix time, and its
convergence time is :

T ≤ Tmax =
1

γ1(1 − α)
+

1
γ2(β − 1)

(4)

Assumption 1: The following conditions must be met in prescribed performance function:
(1) σ(t) is a monotonically decreasing positive function
(2) lim

t→∞
σ(t) = σ∞ > 0.

Assumption 2: In the motor dynamics Equation (3), the concentrated disturbance D of the system
is bounded, there exists a constant l > 0 that |D| ≤ l.

3. PPC-FTSMC Schemes for the Velocity Control Loop
3.1. Prescribed Performance Control

The dynamic characteristics of PMLSM can be improved by utilizing the PPC, which
restricts the actual output speed of PMLSM within a close range to the reference speed and
confines the maximum overshoot within a pre-determined threshold [28]. One possible
choice for the prescribed performance function is:

σ(t) = (σ0 − σ∞) exp(−λt) + σ∞ (5)

where σ0, σ∞, and λ are positive constants and σ0 > σ∞. σ∞ represents the bound of error,
λ represents the convergence rate of the dynamic response of the system. Theoretically, the
larger σ0 and σ∞ are, the smaller the residual set of the system tracking error is. In addition,
increasing λ means that the tracking error convergence rate can be increased.

The error e(t) satisfied:{
−δσ(t) < e(t) < σ(t), e(0) ≥ 0
−σ(t) < e(t) < δσ(t), e(0) < 0

(6)

where 0 ≤ δ ≤ 1.
By introducing a smooth increasing function Ψ(ε), where ε is the transformed error.

The error inequality (6) of the system can be changed to the transformation error form.{
−δ < Ψ(ε) < 1, e(0) ≥ 0
−1 < Ψ(ε) < δ, e(0) < 0

(7)

when e(0) ≥ 0, lim
ε→−∞

Ψ(ε) = −δ and lim
ε→+∞

Ψ(ε) = 1, while e(0) < 0, lim
ε→−∞

Ψ(ε) = −1 and

lim
ε→+∞

Ψ(ε) = δ.

It is worth noting that when e(0) = 0, δ cannot be zero because it will cause ε to be
infinite. So Ψ(ε) can be described as follows:

Ψ(ε) =


exp(ε)− δ exp(−ε)

exp(ε) + exp(−ε)
, e(0) ≥ 0

δ exp(ε)− exp(−ε)

exp(ε) + exp(−ε)
, e(0) < 0

(8)

According to the Formula (8),

e(t) = σ(t)Ψ(ε) (9)

Since Ψ(ε) is strictly monotonically increasing its inverse function must exist

ε = Ψ−1[e(t)/σ(t)] (10)
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As indicated in the literature [29], when ε remains within bounds, Equation (10) re-
mains valid. The tracking error e within the system is transformed into an unbounded
conversion error, denoted as ε through PPC. Consequently, the original boundary con-
straints on tracking error are imposed, converting error control into the stability control of
the system relative to ε. The expression for ε is given by:

ε = Ψ−1
(

e(t)
σ(t)

)
=


1
2

ln
η(t) + δ

1 − η(t)
, e(0) ≥ 0

1
2

ln
1 + η(t)
δ − η(t)

, e(0) < 0
(11)

where η(t) = e(t)/σ(t).

3.2. Fixed-Time Sliding Mode Controller Design

This study introduces a fixed-time SMC approach. Aiming at the velocity loop of
PMLSMs, we use a Prescribed Performance Controller. In the current loop, a PI controller
is implemented. The velocity tracking error is formally defined as:

e = v − v∗ (12)

where v∗ is the reference speed. PPC is applied to speed tracking error. Take the derivative
of ε to convert between the tracking error and the conversion error derivatives as follows:

ε̇ =
∂ψ−1

∂η
· η̇ =

∂ψ−1

∂η
· ėσ − eσ̇

σ2 = m(ė − n) (13)

where m = ∂ψ−1/∂η
σ , n = σ̇e

σ .
Subsequently, the construction of the sliding mode surface is consisitent with the

conversion error derived from the prescribed performance. The feedback controller is then
crafted as a fixed-time sliding mode control, featuring an expressible sliding mode surface,
formulated as:

s = ε +
∫

(α1sig(ε)
2q1−p1

q1 +β1sig(ε)
p1
q1 )dt (14)

where sigα(x) = sign(x)|x|α, where α > 0, x ∈ R, sign(x) is a standard symbolic function.
The parameter α1 and β1 are positive real values, and p1 and q1 are positive odd integers
satisfying p1 < q1. The introduction of the nonlinear function sig(x) into the sliding mode
surface can make the slope of the sliding mode surface near the origin of the phase plane
steeper and the convergence speed faster.

It is obtained by differentiating the sliding mode surface:

ṡ = ε̇ + α1sig(ε)
2q1−p1

q1 + β1sig(ε)
p1
q1

= m(ė − n) + α1sig(ε)
2q1−p1

q1 + β1sig(ε)
p1
q1

(15)

The feedback control law is designed as follows:

i∗q =
1

Bm
[v̇∗ + n − Amv + l · sign(s)

− 1
m
(α1sig(ε)

2q1−p1
q1 + β1sig(ε)

p1
q1 + α2sig(s)

2q2−p2
q2 + β2sig(s)

p2
q2 )]

(16)

where the parameter α2 and β2 are positive real values, and p2 and q2 are positive odd
integers satisfying p2 < q2.
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Choose the Lyapunov function as

V = |s| (17)

Taking the derivative of V yields

V̇ = sign(s) · ṡ

= sign(s) · [m(Amv + Bmiq + D − v̇∗ − n) + α1sig(ε)
2q1−p1

q1 + β1sig(ε)
p1
q1 ]

= sign(s) · [−α2sig(s)
2q2−p2

q2 − β2sig(ε)
p2
q2 − m(lsign(ε)− D)]

= −α2|s|
2q2−p2

q2 − β2|s|
p2
q2 − m(l − Dsign(s))

(18)

According to the assumption 2, we know that |D| ≤ l, and m > 0.

V̇ = −α2V
2q2−p2

q2 − β2V
p2
q2 − m(l − Dsign(s))

≤ −α2V
2q2−p2

q2 − β2V
p2
q2

(19)

According to the lemma, we know that the control method proposed in this paper will
converge in a fixed time and its convergence time is:

T ≤
(

1
α2

+
1
β2

)
q2

q2 − p2
(20)

From Equation (21), it is easy to see that larger α2, β2 and smaller values of p2/q2 will
result in smaller convergence times for the system. It is important to note that a smaller
convergence time does not necessarily mean better performance, as it requires a larger
initial control input signal which may be difficult to achieve in practical control systems.
The block diagram of PMLSMs control system are shown in Figure 1.

PMLSM

SVPWM Inverter
*

qi




Fix Time

SMC
PPC-

+

+

-

0
PI

 su dq →

dq abc

e

qi PI

*dv

dt

+

Encoder
xdx

dt

bi

ci

v

dcU

*

di

di

du

qu

u

u

di

qi





ai

*v

v

e 1

mB

Figure 1. Block diagram of PMLSM control system using PPC-FTSMC strategy.

4. Simulations

To validate the efficacy of the designed PPC-FTSMC controller, this study employs
MATLAB/Simulink software to construct a simulation model for the PMLSM drive control
system. A comparative analysis between the PPC-FTSMC controller, FTSMC controller, and
the conventional PI controller is conducted. The speed tracking response of the PMLSM
under lumped disturbances are examined in the context of both control strategies. Nominal
parameters for simulating the PMLSM are presented in Table 1.
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Table 1. Parameters of the PMLSM in simulations

Parameters Variable Name Value

Stator resistance [Ω] Rs 0.045

Stator Inductance [mH] Ls 1.15

Mover mass [kg ] M 600

Friction coefficient [N·s/m] Bv 0.5

pole-pitch [mm] τ 200

permanent magnet flux
linkage [Wb] f lux 0.145

number of pole pairs n 2

To achieve superior control performance characterized by high tracking accuracy and
fast convergence of state variables, a series of repeated simulation tests were conducted
to identify the control parameters with good performance for the speed loops in the three
controllers. The following settings were determined:

PI: kpv = 1850, kiv = 19750;
FTSMC : p1 = p2 = 7, q1 = q2 = 9, α1 = β1 = 30, α2 = β2 = 350.
PPC-FTSMC :The parameters of the sliding mode surface are consistent with FTSMC.

The prescribed performance function is set as: σ(t) = 0.1e−20t + 0.01 and δ = 1.
For fair comparison, the current loops of the control strategies are PI controllers with

the same parameters, and the proportional integral parameter value is set to kpc = 1.725,
kic = 67.5. The initial lumped disturbance D of the system is set to 2000 N. When t = 2 s,
set the lumped disturbance D to increase from 2000 to 6500 N. In addition, the current i∗q
limiting value of the two controllers is set to ±1000 A, and the amplitude u∗

d and u∗
q limiting

value of the voltage sum is set to ±1500 V. The simulation sampling time is set to 10 s. In
order to display the superiority of the controller, the speed error datas of the motor are
collected and analyzed quantitatively.

In order to evaluate the tracking performance of the designed controller under dif-
ferent operating conditions, the simulation and comparative analysis are carried out in
this chapter.

Case 1: Set the following reference speed curve :

v∗(m/s) =


4t, 0 ≤ t ≤ 1
4, 1 < t < 9
40 − 4t, 9 ≤ t ≤ 10

(21)

The speed response, three-phase current, and electromagnetic thrust presented in
Figures 2 and 3. As we can see, the three-phase current waveform of the three methods are
relatively stable, but the current waveform of PI will jitter when the motor changes from
accelerated operation to uniform operation at 1 s. And at 2 s, when the lumped disturbance
changes, the current waveform of PI will peak. But the current waveform of FTSMC and
PPC-FTSMC can remain stable throughout the motor operation. In terms of electromagnetic
thrust, the thrust waveform of PI is overblown by a relatively obvious amount of about
20% in the starting state of the motor. In addition, when the machine acceleration changes
and the lumped disturbance changes, the thrust waveform of the motor will be overblown,
and the adjustment time is about 0.3 s. When adopt FTSMC, although the motor thrust
waveform is not overshooting, the adjustment time is slightly longer than that of PPC-
FTSMC. Throughout the entire control process, large electromagnetic thrust pulsation
will cause motor jitter. Under the influence of the PPC-FTSMC, the three-phase current
and electromagnetic thrust response speed of the motor are faster than those of the other
controller, enabling quicker attainment of the steady state value. Furthermore, when
the motor encounters abrupt lumped disturbances, the PPC-FTSMC promptly stabilizes
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the motor’s electromagnetic thrust, diminishes the magnitude of speed variations, and
reduces jitter.

Figure 2. Simulation performance of speed response, three-phase current, and electromagnetic thrust
compared with PI in case 1.

Figure 3. Simulation performance of speed response, three-phase current, and electromagnetic thrust
compared with FTSMC in case 1.

Further, the tracking performance of the motor is analyzed by Figure 4, it can be seen
that the PI controller fails to effectively track the specified speed signal and the overshoot
controlled is undoubtedly the largest in the start stage of the motor. It takes approximately
0.4 s for the system to attain the desired speed and achieve a steady state. Although FTSMC
is no overshoot, its response time is the longest, about 2 s, it proves that its speed response
performance is the worst. PPC-FTSMC is used for the fastest dynamic response, with a
response time of about 0.01 s and the smallest error significantly better than the other two
methods. At 2 s, the system lumped disturbance changes, the motor speed tracking error of
PPC-SMC can be effectively limited to the set 0.01 m/s, the adjustment time is about 0.02 s,
while the maximum tracking error of PI control is 0.02 m/s, and the maximum tracking
error of FTSMC control is 0.03 m/s.
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Figure 4. Speed tracking error in case 1.

Case 2: Set the reference speed curve to a sinusoidal signal, its frequency is 2 rad/s
and amplitude is 5 m/s.

As shown in Figures 5 and 6, in terms of three-phase current, the three-phase current
waveform of the three methods is relatively stable, but the three-phase current of PPC-
FTSMC is more stable than the other two methods. When the motor is started, the thrust
waveform will have a period of continuous 4 s oscillation in PI controller. Although the
thrust of FTSMC is not overshot, it also has a response time lasting 0.02 s. The response
time of thrust waveform of the motor system using PPC-FTSMC is the shortest, only 0.01 s,
compared with other two algorithms. Similarly, when the load is disturbed for 2 s, PPC-
FTSMC still has the fastest response time. It can be proved that when the whole system
encounters lumped disturbance changes, the motor system using PPC-FTSMC can stabilize
the electromagnetic thrust of the motor faster, reduce the amplitude of speed change, and
reduce jitter. The speed signal of the motor is further analyzed according to Figure 7, when
using PI control, the motor system cannot track the reference signal in time. When the
speed signal reaches the amplitude, there will be a large speed tracking error of 0.01 m/s.
In the motor system using FTSMC and PPC-FTSMC, the speed tracking error will approach
0, that is, the motor speed will eventually approach the given speed signal. The difference is
that the dynamic adjustment performance of the motor system using FTSMC is poor, in the
initial operation stage of the motor and when the load disturbance changes, the adjustment
time is about 2 s, longer than that of PPC-FTSMC. In the whole operation process of the
motor, whether in the initial stage or when the load disturbance changes, the speed tracking
error of PPC-FTSMC can be kept within the limited 0.01 m/s.

In order to show the superiority of PPC-FTSMC controller, quantitative analysis of
the motor’s speed error data is conducted. The three error indicators listed in this article
include maximum error (MAX), average absolute error (AVG), and root-mean-square error
(RMS). The specific formula are as follows:

MAXerror = max
i

√
ε(i)2 (22)

AVGerror = ∑N
i=1

|ε(i)|
N

(23)

RMSerror =

√
∑N

i=1
|ε2(i)|

N
(24)

The speed error indexes of three control strategies under two simulation conditions
are given in Table 2. In terms of the error value, the speed tracking error of the motor
system using PPC-FTSMC is much smaller than that of the other two methods. As can be
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seen from Table 2, the motor error value of PPC-FTSMC is less than 0.01 m/s given in the
prescribed performance function. It is proved that the motor system with PPC has excellent
performance in speed tracking control.

Figure 5. Simulation performance of speed response, three-phase current, and electromagnetic thrust
compared with PI in case 2.

Figure 6. Simulation performance of speed response, three-phase current, and electromagnetic thrust
compared with FTSMC in case 2.
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Figure 7. Speed tracking error in case 2.

Table 2. The speed errors comparisons using different methods.

Error Case 1 Case 2
PPC-FTSMC FTSMC PI PPC-FTSMC FTSMC PI

Maximum
Error (m/s) 5.1 × 10−3 3.1 × 10−2 6.7 × 10−2 9 × 10−3 3.05 × 10−2 1.59 × 10−1

Average Absolute
Error (m/s) 2 × 10−4 8.3 × 10−3 5.5 × 10−3 2 × 10−4 8.3 × 10−3 1.83 × 10−2

Root Mean Squared
Error (m/s) 4 × 10−4 1.07 × 10−2 1.38 × 10−2 5 × 10−4 1.07 × 10−2 3.4 × 10−2

5. Conclusions

This paper introduces a fixed-time sliding mode controller with prescribed perfor-
mance strategy, which is used for the control of a permanent magnet linear synchronous
motor (PMLSM). Fixed-time sliding mode control is incorporated into the design of the
speed control loop for the PMLSM, improving the system control performance , and achiev-
ing sliding mode controller stability in a fixed time, and accelerating the motor’s speed error
convergence. Furthermore, the prescribed performance function is applied to transform
the constrained speed-tracking error into an unconstrained conversion error. Subsequently,
a control law is formulated to limit the error within predefined bounds. This ensures that
the system’s dynamic characteristics, steady-state error, and other crucial performance
indicators satisfy prescribed requirements. The efficacy of the proposed method is vali-
dated through simulation experiments. A comparative analysis is conducted against a PI
controller and FTSMC, revealing that the proposed approach exhibits satisfactory control
performance and induces smaller speed fluctuations. It is worth further considering that
external disturbance will inevitably affect the operation of the PMLSM system. Although
the prescribed performance control can limit the speed error within predefined bounds,
its anti-interference effect is still not ideal. In follow-up work to this paper, a suitable
disturbance observer will be design to improve anti-interference capability.
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