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Abstract: The paper presents a novel approach for predicting battery energy consumption in electric 
city buses (e-buses) by means of a trip-based data-driven regression model. The model was param-
eterized based on the data collected by running a physical experimentally validated e-bus simula-
tion model, and it consists of powertrain and heating, ventilation, and air conditioning (HVAC) sys-
tem submodels. The main advantage of the proposed approach is its reliance on readily available 
trip-related data, such as travel distance, mean velocity, average passenger count, mean and stand-
ard deviation of road slope, and mean ambient temperature and solar irradiance, as opposed to the 
physical model, which requires high-sampling-rate driving cycle data. Additionally, the data-driven 
model is executed significantly faster than the physical model, thus making it suitable for large-scale 
city bus electrification planning or online energy consumption prediction applications. The data-
driven model development began with applying feature selection techniques to identify the most 
relevant set of model inputs. Machine learning methods were then employed to achieve a model 
that effectively balances accuracy, simplicity, and interpretability. The validation results of the final 
eight-input quadratic-form e-bus model demonstrated its high precision and generalization, which 
was reflected in the R2 value of 0.981 when tested on unseen data. Owing to the trip-based, mean-
value formulation, the model executed six orders of magnitude faster than the physical model. 

Keywords: city buses; battery electric vehicles; data-driven modeling; battery energy consumption; 
prediction; feature selection; machine learning 
 

1. Introduction 
The transition to electric urban bus transportation is recognized as a vital strategy for 

cutting pollutant and greenhouse gas emissions, reducing noise pollution, and increasing 
passenger satisfaction [1]. On the other hand, this transition faces significant challenges, 
including increased investment costs related to fully electric buses (e-buses) and their 
charging infrastructure, as well as operational constraints corresponding to limited vehi-
cle range and extended charging durations in comparison to conventional buses [2]. Sys-
tematic planning of the city bus electrification process is an essential step towards the 
reduction of both capital and operational expenditures and mitigating the operational 
constraints [3]. 

Various factors such as traffic congestion, road gradients, passenger load (ridership), 
and ambient conditions (temperature, solar irradiance) can significantly influence e-bus 
energy consumption [4]. Thus, predicting e-bus battery energy consumption by means of 
a mathematical model becomes a pivotal point for transport planners and operators in 
their effort to optimize the transport system electrification process [5]. This process in-
cludes e-bus scheduling [6] and/or timetabling [7], placing charging system locations and 
determining their number per station [8], cost-efficient charging management [9], and 
fleet management operations in general [10]. 
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Models of e-buses (and e-vehicles in general) can be divided into elementary, physi-
cal, and data-driven models [11]. The elementary models link electric energy consumption 
with basic features of driving cycles such as distance traveled [12]. Physical models gen-
erally offer high prediction accuracy, but they are often unsuitable for application in 
transport system planning due to demand on usually unavailable data related to high 
sampling rate driving cycles [13], and physical parameters and maps of vehicle power-
trains [14]. With the development of machine learning techniques, data models are gain-
ing popularity owing to their adaptability and ability to describe complex energy con-
sumption patterns. However, to achieve good generalization properties, they require 
broad and diverse datasets for training and validation, which are often unavailable, espe-
cially in the case of low-spread e-bus fleets [15]. 

In [16], trip energy consumption for e-buses was segmented into traction and heating, 
ventilation, and air-conditioning (HVAC) system energy usage, while considering data 
from 31 e-buses operating in Jilin Province, China, under a wide range of temperatures 
(−27.0 to 35.0 °C) over 14 months. The approach models traction energy by considering 
inputs such as ambient temperature, curb weight, travel distance, and trip duration, while 
HVAC energy is estimated from the operation mode of the system (both cooling and heat-
ing). A deep learning model for estimating e-bus energy consumption using a minimal set 
of readily accessible trip parameters was introduced in [17]. The model was validated 
against the data collected in Jaworzno’s bus network in Poland, proving its effectiveness 
in infrastructure planning and scheduling optimization with the mean absolute percent-
age errors not exceeding 7.1%. A data-driven prediction model for e-bus energy consump-
tion, incorporating vehicular, operational, topological, and external parameters, was pre-
sented in [18]. Being validated against real-world data from the Altoona test and sup-
ported by 120 diverse drive cycles, this model explains over 96% of the variation in energy 
consumption rates. Additionally, reference [19] proposed a deep learning prediction 
model using autoencoders, which requires only data such as bus stop locations, route 
traveled, and travel times between stops; the model was validated with respect to real data 
from a mid-size city in Poland. This model was used to gain energy management insights 
for public transport network planning. In [20], a support vector machine regression 
model, optimized with the grey wolf optimization algorithm and based on data from three 
e-bus routes in Meihekou City, China, highlighted the importance of the state of charge, 
trip duration, ambient temperature, and AC operation time in accurate energy consump-
tion estimation, with a mean average percentage error of 14.47%. The impact of ambient 
temperature on electric bus efficiency in colder climates was investigated in [21], where 
data from four battery-electric buses in Tampere, Finland, showed a 40–45% higher energy 
consumption in winter seasons than in summer periods. Reference [22] addressed the un-
certainty in electric bus operations through a detailed analysis of six buses in southern 
Finland, using Internet of Things (IoT) systems for data collection, and it highlights the 
influence of ambient temperature, driving style, and route characteristics on energy con-
sumption. This analysis aims to guide the selection of battery capacity and design of 
charging infrastructure. A recurrent neural network (NN) with long short-term memory 
(LSTM) and a convolutional NN (CNN) was considered in [23], where the energy con-
sumption and input parameters were formulated as time series. 

While the existing studies provide valuable insights, they are often restricted to a 
specific, limited number of features and are validated within singular transport systems. 
Such approaches may not fully capture the complexities and variabilities inherent to dif-
ferent operational environments, underscoring the necessity for models that incorporate 
a wider array of features and not demonstrating robust generalization capabilities across 
diverse transport systems. 

To this end, a numerically efficient, data-driven e-bus energy consumption model is 
developed in this paper, which incorporates a wide set of generally available trip-level 
driving cycle features gained through a systematic feature selection approach and pro-
vides a high level of generalization. The contributions of this research are threefold. 
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Firstly, an experimentally validated backward-looking physical model of an e-bus was 
proposed, with an emphasis on the HVAC system description and parameter optimiza-
tion. Secondly, a comprehensive feature selection procedure was established to identify 
statistically the most impactful per-trip features, while prioritizing those features that are 
available from standard city bus transport planning or GPS tracking datasets. Thirdly, a 
numerically efficient trip-based data-driven regression model was proposed and vali-
dated against the experimentally validated physical e-bus model, where a diverse range 
of traffic, road, and ambient conditions were considered when formulating the training 
and particularly validation data sets used to select the model. 

The remaining part of the paper is organized as follows. Section 2 describes the phys-
ical e-bus model, including its parameter optimization procedure and experimental vali-
dation. Section 3 presents the data collection framework used for data-driven e-bus model 
development. Section 4 elaborates on data-driven model feature selection and validation. 
Section 5 presents a comprehensive performance assessment of the final model, encom-
passing both the powertrain and HVAC system submodels. Section 6 delves into a de-
tailed analysis of the model residuals to evaluate its accuracy. Concluding remarks are 
presented in Section 7. 

2. Physical E-Bus Model 
2.1. Recorded Driving Cycle and Energy Consumption Data 

The driving cycle and energy consumption data were recorded on a single, 12 m e-
bus operating on Route 15 in the city of Jerusalem [4]. The data were collected in the sum-
mer season in the period from 7 am to 9 pm, and they include timestamps, geographical 
coordinates (longitude, latitude, and altitude), velocity, distance traveled, cumulative bat-
tery energy consumption, and state of charge (𝑆𝑜𝐶). The data sampling time was 1 s. 

The considered dataset contains 14 trips in total (7 per each travel direction). The 
velocity profile along the day is shown in Figure 1a. The total distance traveled is approx-
imately 122.5 km for a net operating time of 11.5 h. The corresponding reconstructed rid-
ership profile is shown in Figure 1b. Finally, the actual ambient temperature (𝑇௔) and solar 
irradiance (𝑄ሶ௦௢௟) data profiles are shown in Figure 1c. 

 
Figure 1. Recorded city bus driving cycle time profile data: vehicle velocity and distance traveled 
(a), ridership (b), and ambient temperature and solar irradiance (c). 
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Figure 2a shows the plot of recorded and filtered altitude in relation to distance trav-
eled for direction A–B and multiple trips. The reconstructed road slope profile is shown 
in Figure 2b. The driving direction A–B is characterized by mostly downhill driving with 
the road slope peaks up to 5°. 

 
Figure 2. Reconstructed road altitude (a) and road slope profiles (b) with respect to distance trav-
eled. 

Figure 3 shows the recorded battery 𝑆𝑜𝐶 and cumulative energy consumption time 
profiles corresponding to the driving cycle from Figure 1a. These profiles are used as a 
reference for e-bus model parameterization. By linearly extrapolating the energy con-
sumption profile over the whole 𝑆𝑜𝐶 range [0,1], and subtracting the observed end values, 
one obtains a total battery capacity of 292.5 kWh, which equals 91% of the declared, new 
bus battery capacity of 324 kWh. The difference between the two battery capacity values 
can be attributed partly to nonlinear battery behavior, and partly to battery aging (the bus 
was produced in 2017). 

 
Figure 3. Time profiles of battery 𝑆𝑜𝐶 and cumulative battery energy consumption. 

2.2. Physical Powertrain Model 
The powertrain of the considered fully electric city bus is modeled in a backward-

looking manner, i.e., in the direction from the wheels towards the electric machine. The 
driving cycle-defined vehicle velocity (vv), road slope (θ), and ridership inputs (npass), de-
fined in Section 2.1, were fed into the vehicle longitudinal dynamics equations to calculate 
the total wheel torque and the wheel speed [24]: 𝜏௪ = 𝑟௪𝑀௩𝑣ሶ௩ + 𝑟௪𝑅଴𝑀௩𝑔 cos(𝜃) + 𝑟௪𝑀௩𝑔 sin(𝜃) + 0.5𝑟௪𝜌௔௜௥𝐴௙𝐶ௗ𝑣௩ଶ, (1) 
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𝜔௪ = 𝑣௩𝑟௪ , (2) 

where 𝑟௪ is the tireʹs effective radius, 𝑀௩ = 𝑀௩଴ + 𝑀௣௔௦௦ is the sum of the empty vehicle 
mass (Mv0) and the total passengers’ mass (𝑀௣௔௦௦), 𝑅଴ is the rolling resistance coefficient, 𝜌௔௜௥ is the air density, 𝐴௙ is the bus frontal area, 𝐶ௗ is the aerodynamical drag coefficient, 
and 𝑔 is the gravity acceleration. The individual passenger mass is estimated to be 68.125 
kg to make a full bus with the passenger capacity of 80 match the declared maximum 
vehicle payload of 5450 kg. Therefore, the passenger mass 𝑀௣௔௦௦  was calculated as 68.125 ∙ 𝑛௣௔௦௦. 

The e-machine torque (𝜏ெீ) and speed 𝜔ெீ are calculated as follows: 

𝜏ெீ = 𝜏𝑤𝜂𝑡𝑟𝑘𝑡(𝜏𝑤)+𝑃0(𝜔𝑤)𝜔𝑤𝑖0 , (3) 

𝜔ெீ = 𝑖଴𝜔௪, (4) 

where 𝑖଴ is the final drive ratio, while 𝜂௧௥(𝜏௪) and 𝑃଴(𝜔௪) are the drivetrain efficiency 
and the idle power loss maps [4], respectively, with kt being defined as −1 for τw > 0 (mo-
toring) and 1 for τw ≤ 0 (regenerative braking). The e-machine efficiency 𝜂ெீ is modeled 
by a map dependent on the e-machine speed and torque (see Figure 4, [4]), from which 
the e-machine power load to the battery is calculated as follows: 𝑃ெீ =  𝜂ெீ௞ (𝜏ெீ, 𝜔ெீ)𝜏ெீ𝜔ெீ, (5) 

where the exponent k depends on the e-machine operating mode: k = −1 for motoring 
(𝑃ெீ > 0), and k = 1 for regenerative braking (𝑃ெீ < 0). 

 
Figure 4. Normalized efficiency map and maximum torque characteristics of e-machine. 

2.3. Battery Model 
The battery model is based on a single-cell model scaled up to the appropriate num-

ber of serially connected cells contained in the battery pack. The single-cell equivalent cir-
cuit model (ECM) has been developed based on the available data from the SAFT VL30PFe 
cell datasheet and insights from [25]. The ECM is shown in Figure 5a, and it consists of 
the source of the open-circuit voltage source (𝑈௢௖) and the internal resistance (𝑅௜௡௧). Both 
parameters are made dependent on the cell 𝑆𝑜𝐶, as shown in Figure 5b. Temperature de-
pendencies of both parameters are neglected since it is assumed that the e-bus includes an 
effective battery thermal management system. 
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Figure 5. Battery equivalent circuit (a) and 𝑆𝑜𝐶 dependencies of the open-circuit voltage and inter-
nal battery resistance for considered LFP battery (b). 

The battery 𝑆𝑜𝐶 dynamics are described by the state equation: 

𝑆𝑜𝐶ሶ = − ூ್ೌ೟೟ொౣ౗౮ = ට௎೚೎మ (ௌ௢஼)ିସோ೔೙೟(ௌ௢஼)௉್ೌ೟೟ି௎೚೎(ௌ௢஼)ଶொౣ౗౮ோ೔೙೟(ௌ௢஼) , (6) 

where Ibatt is the battery current, Qmax is the battery charge capacity, and Pbatt is the total 
battery power including the e-machine power PMG given by Equation (5), and the powers 
of auxiliary devices (Paux) (Table 1) and HVAC system (PHVAC) determined by the models 
described in the next two subsections: 𝑃௕௔௧௧ = 𝑃ெீ  + 𝑃௔௨௫ + 𝑃ு௏஺஼. (7) 

Note that the slowly changing 𝑆𝑜𝐶 variable is the only state variable of the overall e-
bus backward-looking model (a quasi-static model). The battery charge capacity was ob-
tained from the energy capacity Emax = 292.5 kWh as Qmax = Emax/Uoc (𝑆𝑜𝐶 = 50%) = 459 Ah. 

Table 1. Values of nominal power (Paux,N), duty cycle (𝑑௖) and duty cycle period (𝑡௣) of the modeled 
auxiliary devices. 

Auxiliary Device 𝑷𝒂𝒖𝒙,𝑵 [W] 𝒅𝒄 [-] 𝒕𝒑 [s] 
Servo steering 2500 0.09 400 

Air compressor 2000 0.15 100 
DC/DC converter with low voltage devices 184 1 N/A 

2.4. HVAC System Model 
Apart from the e-bus powertrain itself, the HVAC system represents the most domi-

nant battery energy consumer [26]. The ambient conditions such as ambient temperature 
and solar irradiance have a predominant effect on HVAC energy consumption, followed 
by climatic loads and user preferences [4,22]. It was reported in [27] that the impact of 
HVAC is such that it can reduce the range of an EV by up to 60% in cold weather and up 
to 33% in hot weather. 

Since the considered driving cycle (Figure 1) corresponds to a summer day, the 
HVAC model parameterization is presented for the A/C mode. The overall thermal system 
is illustrated in Figure 6. A proportional–integral–derivative (PID) controller commands 
the cooling power 𝑄ሶு௏஺஼ to maintain the cabin temperature Tcab at its reference value Tcab,R. 
The cooling power 𝑄ሶு௏஺஼ is limited in accordance with the HVAC datasheet [4]. The ref-
erence variable Tcab,R is generated with dependence on the ambient temperature Ta (see the 
cyan line in Figure 6), which is set to fall between the bounds defined by VDV 236:2015 
guidelines for public transport (red and blue lines). Based on the assumptions of fast 
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HVAC system response constant coefficient of performance (COP = 1.8), the HVAC power 
consumption PHVAC from Equation (7) was determined as 𝑄ሶு௏஺஼/𝐶𝑂𝑃. 

 
Figure 6. Illustration of HVAC system energy consumption model. 

The thermal dynamics model includes four thermal masses (Figure 6, [4]). The model 
is implemented in Dymola 2018 FD01 as illustrated in Figure 7. The model inputs include 
ambient temperature (𝑇௔), solar irradiance (𝑄ሶ௦௢௟), vehicle velocity (vv), and ridership (npass). 

 
Figure 7. E-bus cabin thermal model implemented in Dymola 2018 FD01. 

Certain parameters of the cabin thermal model were difficult to determine or estimate 
due to either lack of available data or complex parameter dependencies [4]. The unknown 
cabin thermal model parameters were determined through optimization by using mode-
FRONTIER 2018R2 software. The optimization setup is illustrated by the block diagram 
shown in Figure 8. The overall model used in the optimization setup in Figure 8 includes 
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not only the Dymola thermal model but also the powertrain model implemented in Py-
thon. This is to obtain simulation responses of the battery 𝑆𝑜𝐶 and the overall energy 
consumption Esim = ∫Pbatt dt, which were compared with the recorded 𝑆𝑜𝐶 and energy con-
sumption responses to generate the corresponding RMS errors fed to the optimization 
genetic algorithm MOGA-II to minimize those errors. The two-objective optimization re-
sulted in a Pareto frontier of optimal solutions. The selected solution corresponds to a low 
energy consumption RMS error, and it resulted in a favorable overall fit accuracy (partly 
because of a better resolution of the recorded energy consumption signal than the rec-
orded 𝑆𝑜𝐶 signal). 

 
Figure 8. Block diagram of optimization setup used to determine unknown parameters of e-bus 
cabin thermal model. 

The simulation profiles of e-bus model variables, obtained through the cabin thermal 
model parameter optimization and shown in Figure 9, were further used to optimize the 
parameters of an HVAC regression model. The regression model is quadratic but linear in 
parameters and its inputs correspond to the inputs of the cabin thermal model (𝑇௔, 𝑄ሶ௦௢௟, 
vv and npass). The Matlab function stepwiselm available within the Statistics and Machine 
Learning Toolbox was used to select the model features and optimize its parameters. The 
selected model is given by the following: 𝑃ு௏஺஼ = 𝛽଴  + 𝛽ଵ𝑇௔ + 𝛽ଶ𝑄ሶ௦௢௟ + 𝛽ଷ𝑛௣௔௦௦ + 𝛽ସ𝑣௩௘௛ + 𝛽ଵସ𝑇௔𝑣௩௘௛ + 𝛽ଶଶ𝑄ሶ௦௢௟ଶ. (8) 

The comparative responses of actual and simulation responses of 𝑆𝑜𝐶, energy con-
sumption, and HVAC power, shown in Figure 9, indicate very good modeling accuracy 
on the dataset used in model parameterization (training). 

The above HVAC modeling approach was demonstrated for the particular case of 12 
m e-bus and A/C operating mode. The approach may be extended to other e-bus configu-
rations and operating conditions without reoptimizing the physical model parameters. 
This is illustrated in Appendix A for examples of heat pump mode (i.e., winter conditions) 
and an 18 m e-bus. 
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Figure 9. The response of recorded e-bus model variables for the dataset used in model training and 
corresponding simulation responses of 𝑆𝑜𝐶, energy consumption, and HVAC power. 

2.5. E-Bus Model Validation 
For an unbiased assessment of modeling accuracy, the overall e-bus model was also 

validated against a couple of other datasets (corresponding to different days of operation 
of the same bus on the same route during the same summer month). The results of the 
first validation, shown in Figure 10a, confirm the very good modeling accuracy, charac-
terized by the mean absolute error of 𝑆𝑜𝐶 prediction (𝑀𝐴𝐸ௌ௢஼) being equal to 0.90%. 

 
Figure 10. E-bus model validation for first (a) and second validation dataset (b), as well as for second 
validation dataset but with simulated A/C system switched off from 7 am to 10 am (c). 
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However, the model performance degraded for the second validation (Figure 10b) in 
terms of the occurrence of 𝑆𝑜𝐶 and energy consumption offsets during a relatively long 
bus pause (dwell time) at the end station after the second driving mission (i.e., after 8 am; 
see also the velocity profile in Figure 9). This is reflected in the increase in the correspond-
ing MAESoC indicator from 0.9% to 4.09%. It is hypothesized that, unlike in the previous 
two datasets, the HVAC was shut down during the morning hours since the ambient tem-
perature was around the room temperature. Because the model presumes that the HVAC 
was active during the whole operation period, its 𝑆𝑜𝐶 and energy consumption persis-
tently change, thus accumulating the offset during the morning pause. In order to check 
the above hypothesis, the HVAC is shut down in the model in the period from 7 am to 10 
am. The corresponding results shown in Figure 10c indicate that the modeling accuracy is 
significantly improved when compared to the original response in Figure 10b, which is 
reflected in the reduction of 𝑀𝐴𝐸ௌ௢஼ indicator from 4.09% to 1.81%. A small offset was, 
though, still present in the 𝑆𝑜𝐶 and energy consumption results around 10 am, which is 
expected to be predominantly caused by the fact that the exact HVAC shut-down period 
is not known from the available data. 

Once the e-bus model is successfully validated, it can be used as a basis for energy 
consumption sensitivity analysis for a wide range of scenarios and operating conditions 
(including those not covered by the particular recorded data sets). Such an analysis is pre-
sented in [4]. It is reduced here to the main and compact plots shown in Figure 11. The 
specific energy consumption (Figure 11a) varies significantly partly due to the effect of 
road slope (the consumption is lower for mostly downhill driving in Direction A–B), and 
partly due to the varying ambient, ridership, and traffic conditions (the consumption scat-
ters for individual route directions). The traffic condition influence is substantiated by the 
correlation between the specific energy consumption and the average vehicle velocity 
(Figure 11b). The individual direction-specific consumptions vary in the range from 
around 0.9 to 2.4 kWh/km, while for the two-way trips they fall in the range from 1.2 to 
1.8 kWh/km. The good modeling accuracy is confirmed through good alignment of simu-
lation vs. recorded values with the ideal 1:1 line in Figure 11a. Quantitatively, the plot in 
Figure 11a is represented by Pearson’s correlation coefficient of 0.95 and the coefficient of 
determination is R2 = 0.85, which are quite close to the ideal value of 1. 

 
Figure 11. Simulated vs. recorded values of specific energy consumption (a) and simulated specific 
energy consumption vs. average vehicle velocity (b). 

3. Data Collection for Data-Driven E-Bus Modeling 
3.1. Data Collection Framework 

In the absence of a wide set of recorded e-bus energy consumption data, the frame-
work depicted in Figure 12 was employed to generate the data needed for data-driven 
modeling. Initially, the single-route high-sampling-rate (1 Hz) data were acquired for par-
ametrization and validation of the physical e-bus model (Section 2). 
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Figure 12. Illustration of data collection framework. 

At the same time, low-sampling-rate data (at around 0.25 Hz) were collected from a 
fleet of around 300 conventional buses operating on 29 routes in the same city over the 
period of one month. The recorded low sampling rate data were then transformed into 
the corresponding set of representative high sampling rate driving cycles corresponding 
to trips between two end stations. Those driving cycles were then fed to the developed 
physical e-bus model to obtain the energy consumption data. The transformation was 
based on the Markov chain synthesis method proposed in [13]. 

Finally, a wide set of trip-based statistical features (e.g., mean velocity, number of 
bus station stops, average ridership, trip duration, initial 𝑆𝑜𝐶, etc.) were extracted from 
the synthetic driving cycles. They were paired with the simulation data on energy con-
sumption to form a dataset employed for the development of a data-driven model in Sec-
tions 4 and 5. 

3.2. Data Collection Framework 
In total, 4057 synthetic driving cycles were generated [13]. Each cycle is unique with 

respect to route (considering diverse road and traffic conditions, including varying road 
grades) and trip (considering fluctuating traffic and ridership conditions). Additionally, 
each driving cycle has a distinct initial battery 𝑆𝑜𝐶. 

To rigorously assess the data-driven model extrapolation ability (i.e., its generaliza-
tion properties), four additional sets of driving cycles were derived from the basic set of 
synthetic driving cycles (Set #1): 
• Set #2: Faster and shorter trips: For each trip, the mean velocity of every bus station-

to-station segment is amplified by 50% and the traveled distances are randomly re-
duced; 

• Set #3: Flat roads: the road slope is set to zero; 
• Set #4: Steeper roads scenario: the road grade profile is scaled up by 50%; 
• Set #5: Faster trips: The mean velocity of each station-to-station segment is amplified 

by 50%. 
Figure 13 shows histograms of the main driving cycle features for all the five individ-

ual datasets and the corresponding aggregate dataset. The corresponding histogram of 
powertrain energy consumption per trip is given, as well. When compared to the basic 
dataset (Set #1), the modified datasets extend the range of features, thus making the ag-
gregate dataset wider and flatter. 
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Figure 13. Distributions of main features of standard, modified, and aggregate driving cycle sets 
and the corresponding distribution of powertrain energy consumption (PDF stands for probability 
density function). 

4. Feature �election 
Feature selection is an integral component of machine learning and data analytics. It 

is aimed at enhancing the modelʹs accuracy and simplicity by identifying and retaining 
only the most relevant features. The presented feature selection method corresponds to e-
bus powertrain (and auxiliary devices) modeling only because HVAC modeling repre-
sents an independent and straightforward trip-based modification of the approach pre-
sented in Section 2 (see Section 5). 

4.1. Data Collection Framework 
Two metrics were employed to evaluate energy consumption modeling accuracy [28]: 

(i) root mean square error (𝑅𝑀𝑆𝐸) and (ii) coefficient of determination (𝑅ଶ). To reduce the 
number of model inputs, the powertrain energy consumption is normalized with respect 
to the traveled distance. The output predicted by such a normalized model (i.e., specific 
energy consumption in kWh/km) is in the final modeling stage multiplied by the traveled 
distance to calculate the absolute energy consumption in kWh. The model performance 
metrics 𝑅ଶ and 𝑅𝑀𝑆𝐸 metrics are computed with respect to the final model output, i.e., 
the absolute energy consumption. 

For the purpose of model evaluation, a five-fold cross-validation method was applied 
to the basic dataset (Set #1, Section 3), as depicted in Figure 14. The basic dataset was 
randomly partitioned into five sections, which are termed folds. In each iteration of the 
cross-validation method, a single fold was designated for model validation, with the re-
maining four serving for training. After five iterations corresponding to different folds 
(Figure 14), this process yielded individual scores 𝑅௧௥,௜ଶ  and 𝑅௩௔௟,௜ଶ , i = 1, ..., 5, related to 
training and validation in each iteration, from which lumped/average scores 𝑅௧௥ଶ  and 𝑅௩௔௟ଶ  
were derived (Figure 14). 
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Figure 14. Schematic representation of the model cross-validation strategy. 

In the sixth iteration, the model is trained on the whole (unpartitioned) basic dataset. 
The obtained model is then applied to the extrapolation datasets (Sets #2–#5 from Section 
3), thus resulting in the validation scores 𝑅௦,௝ଶ , j = 2, …, 5 (Figure 14). Finally, the combined 
validation score 𝑅௧௢௧௔௟ଶ  is obtained from the residuals calculated by merging the predicted 
outputs from the validation iterations (𝑦ො௩௔௟,௜ for 𝑖 = 1, … 5) with the predicted values for 
the extrapolation sets (𝑦ො௦,௝  for 𝑗 = 2, … 5 ), and subtracting them from their true-value 
counterparts. The described validation process (Figure 14) was applied to determine the 𝑅𝑀𝑆𝐸 metrics, as well. In addition to the basic data set (see below), it was also applied to 
the aggregate dataset (Sections 5 and 6). 

4.2. Quadratic Regression Model 
Feature selection was conducted by using the following linear-in-parameter quad-

ratic model: 𝑦ො = 𝛽଴ + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + 𝛽ଷ𝑋ଷ + 𝛽ସ𝑋ସ + 𝛽ହ𝑋ଵଶ + 𝛽଺𝑋ଶଶ + 𝛽଻𝑋ଷଶ + 𝛽଼𝑋ସଶ + 𝛽ଽ𝑋ଵ𝑋ଶ +𝛽ଵ଴𝑋ଵ𝑋ଷ + 𝛽ଵଵ𝑋ଵ𝑋ସ + 𝛽ଵଶ𝑋ଶ𝑋ଷ + 𝛽ଵଷ𝑋ଶ𝑋ସ + 𝛽ଵସ𝑋ଷ𝑋ସ, (9) 

where 𝑦ො is the dependent variable (here, specific powertrain consumption), 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ 
are the predictor variables (with n = 4 in the example of Equation (9)), 𝛽଴ is the 𝑦-inter-
cept parameter, and 𝛽ଵ, 𝛽ଶ, … , 𝛽௠, 𝑚 = 2𝑛 + ௡(௡ିଵ)ଶ , are the model parameters correspond-
ing to individual features and identified by the least square method [29]. 

The considered predictor variables include (see dark blue block in Figure 12): the total 
number of route stations 𝑁௦௧௔௧௜௢௡௦, the number of stations that the bus actually stopped at, 𝑁௦௧௢௣௦, the ratio of stopping to total stations 𝜌௦௧௢௣௦ = 𝑁௦௧௢௣௦ 𝑁௦௧௔௧௜௢௡௦⁄ , mean velocity 𝜇௩, 
average ridership 𝑛ത௣௔௦௦ and standard deviation of ridership 𝜎௣௔௦௦, trip duration 𝑡௧௥௜௣, trip 
distance 𝑑௧௥௜௣, the initial state of charge 𝑆𝑜𝐶௜௡௜௧, mean road grade 𝜇௥௚, and the standard 
deviation of road grades 𝜎௥௚. With this set of n = 11 predictor variables, the number of 
quadratic model features equals m = 77. 

4.3. Feature Selection Techniques 
4.3.1. LASSO and RANDOM Forest Importance Methods 

The LASSO (Least Absolute Shrinkage and Selection Operator) technique applies a 
penalty to the absolute values of regression parameters 𝛽௜, 𝑖 = 1, … , 𝑚, as an extension of 
the least square cost function, thus encouraging parameters corresponding to non-influ-
ential features to diminish ([30]; Figure 15). This shrinkage mechanism is controlled by the 
penalty coefficient lambda λ. As λ grows, more model parameters converge to zero. 
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Figure 15. Illustration of LASSO feature selection technique in particular case of n = 11 predictor 
variables and m = 77 features of energy consumption quadratic regression model. 

Random forest importance approach assigns importance scores to features based on 
their frequency in splitting data, indicating their contribution to the prediction accuracy. 
This relative feature importance is illustrated in Figure 16. 

 
Figure 16. Feature importance distribution as determined by Random forest importance analysis. 

The quadratic regression model was re-trained by sequentially adding individual 
features based on their significance ranking provided by LASSO and Random forest im-
portance approaches. The results are shown in Figure 17 based on the 𝑅௧௢௧௔௟ଶ  validation 
metrics introduced in Section 4.1. They indicate that the LASSO approach achieves peak 
performance with a smaller number of features compared to the Random forest im-
portance method. 

 
Figure 17. Comparative plots of aggregate R2 values for the LASSO and Random forest importance 
feature selection methods.  
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4.3.2. Wrapper Methods 
Wrapper methods select the best feature subsets by building and evaluating models 

[30]. Forward feature selection, Backward feature elimination, and Stepwise regression 
are characteristic methods from this category. Each method identifies an optimal set of 
regression model features based on the Bayesian Information Criterion (𝐵𝐼𝐶): 𝐵𝐼𝐶 = 𝑘 ln(𝜎ଶ) + (𝑚 + 1)ln (𝑘), (10) 

where 𝑚 + 1  represents the number of model parameters (including the intercept), 𝑘 
signifies the number of observations (sample size), and 𝜎ଶ represents the average of the 
squared differences between the observed values and the values predicted by the model, 
quantifying the model prediction error. A lower 𝐵𝐼𝐶 index suggests a better model fit. 

Forward Feature Selection begins with no features and continues with successively 
adding them based on model fit improvement until the 𝐵𝐼𝐶 value increase surpasses a 
threshold of 100. Backward Feature Elimination begins with all features and removes 
them successively to improve the model while stopping when the 𝐵𝐼𝐶 falls below the 
threshold of 150. Stepwise regression combines both methods, adjusting features based 
on fit with the adding threshold of 450 and the removal threshold of 400. The above thresh-
olds have been determined heuristically to provide a good trade-off of model performance 
and complexity (i.e., number of terms). 

4.3.3. Best Subset Method 
The best subset method searches through all combinations of features to identify the 

optimal model subset. Due to the high computational demand, the number of predictor 
variables is reduced to the following 𝑛 = 4 variables highlighted by feature selection re-
sults in Figures 15 and 16: mean road grade, standard deviation of road grade, average 
number of passengers, and mean velocity. This leads to the quadratic regression model 
given by Equation (9) and having 𝑚 = 14 features. Consequently, 16,383 distinct linear 
regression models can be produced. The performance of each model, depicted in Figure 
18 by a point, is represented by the values of validation metrics 𝑅௧௢௧௔௟ଶ  and 𝑅𝑀𝑆𝐸௧௢௧௔௟. 

 
Figure 18. Validation results for the best subset method in terms of R² metrics vs. number of predic-
tor variables (a), and RMSE metrics vs. number of predictor variables (b). 

4.4. Comparative Analysis of Model Gained by Various Feature Selection Methods 
Different feature selection methods yield multiple candidate feature sets, which are 

summarized in Table 2. Four candidate sets, including from 3 to 6 features, are identified 
by the best subset method as a good trade-off of modeling accuracy and simplicity (see 
Figure 18a). Although the LASSO and Random forest metrics peaks occur for the sets of 6 
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and 15 features, respectively, simpler sets that are still close to the performance peak sets 
are preferred in Table 2 (see configurations marked in purple and black in Figure 17), 
which is influenced by the best subset approach emphasis on fewer features. The wrapper 
methods are each represented by a single optimal configuration. 

Table 2. Comparative performance metrics of optimal models obtained by various feature selection 
methods. 

Number of 
Features 

�elected  
Features 

𝑹𝒕𝒓𝟐   𝑹𝑴𝑺𝑬𝒕𝒓 
𝑹𝒗𝒂𝒍𝟐   𝑹𝑴𝑺𝑬𝒗𝒂𝒍 𝑹𝒔,𝟐𝟐   𝑹𝑴𝑺𝑬𝒔,𝟐 

𝑹𝒔,𝟑𝟐   𝑹𝑴𝑺𝑬𝒔,𝟑 
𝑹𝒔,𝟒𝟐   𝑹𝑴𝑺𝑬𝒔,𝟒 

𝑹𝒔,𝟓𝟐   𝑹𝑴𝑺𝑬𝒔,𝟓 
𝑹𝒕𝒐𝒕𝒂𝒍𝟐   𝑹𝑴𝑺𝑬𝒕𝒐𝒕𝒂𝒍 

LASSO 

4 𝜇௥௚, 𝜎௥௚ଶ , 𝜇௩ × 𝜇௥௚, 𝜇௩ × 𝑛ത௣௔௦௦ 0.9777  
0.8873 

0.9776  
0.8862 

0.9650  
0.8720 

0.9829  
0.5911 

0.9575  
1.5901 

0.9592  
1.2487 

0.9738  
1.0126 

5 
𝜇௥௚, 𝜎௥௚ଶ , 𝜇௩ × 𝜇௥௚, 𝜇௩ ×𝑛ത௣௔௦௦,𝑛ത௣௔௦௦ × 𝜇௥௚ 

0.9776  
0.8883 

0.9776 
0.8881 

0.9656  
0.8649 

0.9816  
0.6124 

0.9568  
1.6032 

0.9601  
1.2350 

0.9737  
1.0153 

Random forest importance 

9 
𝜇௥௚, 𝜇௥௚ଶ , 𝜎௥௚ × 𝜇௥௚, 𝑁௦௧௔௧௜௢௡௦ × 𝜇௥௚, 𝜇௩ × 𝜇௥௚, 𝜇௩ × 𝑑௧௥௜௣, 𝑁௦௧௢௣௦ × 𝜇௩, 𝑛ത௣௔௦௦ × 𝜇௥௚, 𝜇௩ × 𝜎௥௚ 

0.9752  
0.9346 

0.9750  
0.9381 

0.9645  
0.8783 

0.9312  
1.185 

0.9374  
1.9290 

0.9576  
1.2731 

0.9621  
1.1896 

Forward selection 

8 
𝜇௥௚, 𝜇௩ × 𝑛ത௣௔௦௦, 𝜎௥௚ଶ , 𝜇௥௚ଶ , 𝜇௩ × 𝜇௥௚, 𝑛ത௣௔௦௦ × 𝜇௥௚, 𝜎௥௚, 𝑡௧௥௜௣ × 𝜇௥௚ 

0.9787  
0.8673 

0.9785  
0.8682 

0.9636  
0.8895 

0.8790  
1.5719 

0.9625  
1.4927 

0.9556  
1.3017 

0.9638  
1.1652 

Backward elimination 

10 
𝜇௥௚, 𝜇௩ଶ, 𝜇௩ × 𝑛ത௣௔௦௦, 𝜇௩ × 𝜎௥௚, 𝜇௩ ×𝜇௥௚,𝑛ത௣௔௦௦ × 𝜇௥௚, 𝑛ത௣௔௦௦ × 𝑆𝑜𝐶௜௡௜௧, 𝜎௣௔௦௦ × 𝜎௥௚, 𝜎௥௚ଶ , 𝜇௥௚ଶ  

0.9781  
0.8787 

0.9780  
0.8788 

0.9656  
0.8640 

0.9464  
1.0462 

0.9617  
1.5088 

0.9571  
1.2799 

0.9710  
1.0761 

Stepwise regression 

6 
𝜇௥௚, 𝜇௩ × 𝑛ത௣௔௦௦, 𝜎௥௚ଶ , 𝜇௥௚ଶ , 𝜇௩ × 𝜇௥௚, 𝑛ത௣௔௦௦ × 𝜇௥௚ 

0.9783  
0.8755 

0.9782  
0.8752 

0.9647  
0.8757 

0.9840  
0.5719 

0.9660  
1.4222 

0.9569  
1.2825 

0.9760  
0.9839 

Best subset 

3 𝜇௥௚, 𝜎௥௚ଶ , 𝜇௩ × 𝑛ത௣௔௦௦ 0.9778  
0.8860 

0.9777  
0.8849 

0.9662  
0.8567 

0.9828  
0.5923 

0.9574  
1.5919 

0.9591  
1.2504 

0.9739  
1.0104 

4 𝝁𝒓𝒈, 𝝁𝒓𝒈𝟐 , 𝝈𝒓𝒈𝟐 , 𝝁𝒗 × 𝒏ഥ𝒑𝒂𝒔𝒔 0.9784  
0.8727 

0.9784  
0.8721 

0.9639  
0.8855 

0.9825  
0.5978 

0.9666  
1.4091 

0.9546  
1.3161 

0.9755  
0.9922 

5 𝜇௥௚, 𝜇௥௚ଶ , 𝜇௥௚ × 𝜎௥௚, 𝜎௥௚ଶ , 𝜇௩ × 𝑛ത௣௔௦௦ 0.9786  
0.8694 

0.9785  
0.8690 

0.9642  
0.8817 

0.9821  
0.6047 

0.9681  
1.3774 

0.9547  
1.3153 

0.9759  
0.9862 

6 𝜇௥௚, 𝑛ത௣௔௦௦, 𝜇௥௚ଶ , 𝜇௥௚ × 𝜇௩, 𝜎௥௚ଶ , 𝜇௩ଶ 0.9781  
0.8782 

0.9781  
0.8782 

0.9666  
0.8521 

0.9823  
0.6010 

0.9662  
1.4178 

0.9582  
1.2630 

0.9763  
0.9817 

Note: All 𝑅𝑀𝑆𝐸 values are given in kWh. 

Out of the total of 10 configurations listed in Table 2, the four-feature one given by 
the best subset method (given in bold in Table 2 and marked in Figure 18) was selected for 
further analysis in Section 5. This is because its score 𝑅௧௢௧௔௟ଶ  = 0.9755 nearly matches the 
top score 𝑅௧௢௧௔௟ଶ  = 0.9763 of the best-subset model with six features. Moreover, minimal 
variance in 𝑅ଶ (and 𝑅𝑀𝑆𝐸) among different data sets (see metrics Rs,2,…, Rs,4 in Table 2) 
points to a consistent performance of the selected best subset model, along with its good 
interpretability (e.g., there is only a single interaction term—the one between mean veloc-
ity and average ridership). 

5. Final Model and Its Performance Assessment 
In Section 4, powertrain model features were selected (see the bolded row of Table 2), 

and the model was trained and validated on the basic dataset and then tested on four 
separate (extrapolation) datasets. Herein, a combined/aggregate dataset, including all the 
five data subsets (see Figure 13), was used for both training and validation, i.e., the train-
ing/validation folds in Figure 14 were extracted from the aggregated dataset. This 
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approach aims to improve the modeling accuracy and allows for a direct performance 
comparison between the linear regression model and more complex machine learning al-
gorithms, which often perform well at interpolation but face challenges with extrapola-
tion. The training and validation metrics ( 𝑅௧௥ଶ ,  𝑅௩௔௟ଶ , 𝑅𝑀𝑆𝐸௧௥, 𝑅𝑀𝑆𝐸௩௔௟) were obtained on 
the aggregate dataset by using a five-fold cross-validation, as illustrated in Figure 14. 

5.1. Powertrain Trip-Based Model 
The selected quadratic regression model, given by ா೛೟ௗ೟ೝ೔೛ = 𝛽଴ + 𝛽ଵ 𝜇௥௚ + 𝛽ଶ 𝜇௥௚ଶ + 𝛽ଷ 𝜎௥௚ଶ + 𝛽ସ 𝜇௩𝑛ത௣௔௦௦, (11) 

and trained on the aggregate dataset yields the performance metrics listed in the first row 
of Table 3. These metrics are nearly identical to the corresponding ones listed in Table 2, 
thus highlighting the modelʹs robustness and generalizability. 

Table 3. Comparative performance metrics of different machine learning algorithms using previ-
ously selected features. 

Number of  
Features 

Features/Predictor  
Variables 

𝑹𝒕𝒓𝟐  𝑹𝑴𝑺𝑬𝒕𝒓 
𝑹𝒗𝒂𝒍𝟐   𝑹𝑴𝑺𝑬𝒗𝒂𝒍 𝑹𝒔,𝟐𝟐   𝑹𝑴𝑺𝑬𝒔,𝟐 

𝑹𝒔,𝟑𝟐   𝑹𝑴𝑺𝑬𝒔,𝟑 
𝑹𝒔,𝟒𝟐   𝑹𝑴𝑺𝑬𝒔,𝟒 

𝑹𝒔,𝟓𝟐   𝑹𝑴𝑺𝑬𝒔,𝟓 
𝑹𝒔𝟐 തതതത 𝑹𝑴𝑺𝑬𝒔തതതതതതതതതത 

Quadratic Regression 

4 𝝁𝒓𝒈, 𝝁𝒓𝒈𝟐 , 𝝈𝒓𝒈𝟐 , 𝝁𝒗 ∗𝒏ഥ𝒑𝒂𝒔𝒔 
0.9756  
0.9922 

0.9756  
0.9922 

0.9639  
0.8855 

0.9825  
0.5978 

0.9666  
1.4091 

0.9546  
1.3161 

0.9669  
1.0521 

LASSO Regression 

4 
𝜇௥௚, 𝜇௥௚ଶ , 𝜎௥௚ଶ , 𝜇௩ ∗𝑛ത௣௔௦௦ 

0.9756  
0.9922 

0.9756  
0.9922 

0.9639  
0.8855 

0.9825  
0.5978 

0.9666  
1.4091 

0.9546  
1.3161 

0.9669  
1.0521 

RIDGE Regression 

4 𝜇௥௚, 𝜇௥௚ଶ , 𝜎௥௚ଶ , 𝜇௩ ∗𝑛ത௣௔௦௦ 
0.9756  
0.9922 

0.9756  
0.9922 

0.9639  
0.8855 

0.9825  
0.5978 

0.9666  
1.4091 

0.9546  
1.3161 

0.9669  
1.0521 

Decision Trees 

4 𝜇௥௚, 𝜎௥௚, 𝜇௩, 𝑛ത௣௔௦௦ 1.0000  
0.0079 

0.9558  
1.3208 

0.9253  
1.2769 

0.9488  
1.0245 

0.8676  
2.8035 

0.9124  
1.8356 

0.9135  
1.7351 

Random Forest 

4 𝜇௥௚, 𝜎௥௚, 𝜇௩, 𝑛ത௣௔௦௦ 0.9969  
0.3518 

0.9771  
0.9500 

0.9569  
0.9700 

0.9815  
0.6165 

0.9076  
2.3422 

0.9520  
1.3593 

0.9495  
1.3220 

Gradient Boosting 

4 𝜇௥௚, 𝜎௥௚, 𝜇௩, 𝑛ത௣௔௦௦ 0.9789  
0.9124 

0.9776  
0.9399 

0.9546  
0.9936 

0.5272  
3.1140 

0.8388  
3.0933 

0.9462  
1.4393 

0.8167  
2.1600 

K-nearest Neighbors 

4 𝜇௥௚, 𝜎௥௚, 𝜇௩, 𝑛ത௣௔௦௦ 0.9801  
0.8868 

0.9760  
0.9848 

0.9174  
1.3427 

−1.3900  
7.0018 

0.5985  
4.8820 

0.9009  
1.9527 

0.2567  
3.7948 

Support Vector Regression 

4 𝜇௥௚, 𝜎௥௚, 𝜇௩, 𝑛ത௣௔௦௦ 0.9774  
0.9448 

0.9772  
0.9477 

0.9437  
1.1089 

0.7150  
2.4177 

0.5231  
5.3207 

0.9405  
1.5121 

0.7806  
2.5898 

MLP Neural Networks 

4 𝜇௥௚, 𝜎௥௚, 𝜇௩, 𝑛ത௣௔௦௦ 0.9774  
0.9450 

0.9772  
0.9473 

0.9648  
0.8760 

0.8337  
1.8465 

0.9505  
1.7138 

0.9564  
1.2945 

0.9263  
1.4327 

1D Convolution Neural Networks 

4 𝜇௥௚, 𝜎௥௚, 𝜇௩, 𝑛ത௣௔௦௦ 0.9767  
0.9581 

0.9767  
0.9582 

0.9643  
0.8823 

0.3889  
3.5405 

0.9672  
1.3961 

0.9557  
1.3053 

0.8190  
1.7810 

Note: All 𝑅𝑀𝑆𝐸 values are given in kWh. 

5.1.1. Assessment of Alternative Machine Learning Algorithms 
To potentially improve the modeling accuracy, alternative machine learning algo-

rithms were evaluated on the aggregate dataset and compared with the quadratic regres-
sion model (11). Most of those algorithms were set to use the individual predictor 
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variables rather than quadratic and interaction terms/features present in the model (11) 
(see the second column of Table 3). This is because more sophisticated machine learning 
algorithms should automatically detect/realize inherent interactions between individual 
predictor variables. 

The evaluated machine learning algorithms and their main design parameters are 
summarized as follows: 
1. LASSO Regression: The parameter λ is set in the range from 0.0001 to 0 with incre-

ments of 0.00001; 
2. Ridge Regression: The parameter λ is varied in the same range as for LASSO Regres-

sion; 
3. Decision Trees: The maximum depth parameter ranges from 10 to 100, with incre-

ments of 1; 
4. Random Forest: The number of estimators is in the range from 4 to 200, with incre-

ments of 1; 
5. Gradient Boosting: The number of estimators is set in the same way as with the Ran-

dom forest method; 
6. K-nearest Neighbors: The algorithm is set with neighbors ranging from 1 to 200; 
7. Support Vector Regression: various kernels, including Radial Basis Function, and 

first-, second-, and third-order polynomials are examined; 
8. Multilayer Perceptron (MLP) Neural Networks: The number of layers and nodes var-

ies from 1 to 4 and from 16 to 512, respectively; 
9. 1D Convolution Neural Networks: the same architecture parameters are considered 

as with MLP neural network, all with the stride of 1. 
Table 3 displays the best-performing configurations. Evidently, the advanced regres-

sion techniques do not considerably surpass the quadratic regression model when the val-
idation performance is concerned, which is evidenced by the 𝑅௩௔௟ଶ  index differing only at 
the third decimal place for the aggregated set. So, even when the advanced models are 
trained on the aggregate dataset, as in Table 3, they may considerably underperform the 
quadratic regression model for real-life scenarios not fully captured by the aggregated 
dataset. Moreover, the advanced techniques typically perform poorly when tested on ex-
trapolation datasets. 

To substantiate the above observation, the models were also trained on set #1 and 
subsequently tested on the extrapolation sets #2–#5 (see Figure 14 and Section 4). The cor-
responding results are included in Table 3 through individual extrapolation set metrics 𝑅௦,௝ଶ  and 𝑅𝑀𝑆𝐸௦,௝, j = 2, ..., 5, and their average values 𝑅௦ଶതതതത and 𝑅𝑀𝑆𝐸௦തതതതതതതതത. It is evident from 
these results that the quadratic regression model surpasses the more complex models in 
extrapolation ability performance, with the exceptions of LASSO and RIDGE regression 
models that reduce to the quadratic model. Hence, due to its simplicity, interpretability, 
and strong performance, the quadratic regression model is recommended in applications. 

5.1.2. Assessment of Station-to-Station Segment-Based Modeling Approach 
A station-to-station (S2S) segment-based modeling approach was examined as an al-

ternative to the above trip-based approach. The objective was to identify the potential ben-
efits of utilizing more granular data in the modeling process. Specifically, the trip was 
divided into bus S2S segments, and the predictor variables and energy consumption were 
calculated for those segments and stored in the datasets. 

The best subset method results, presented in Table 4, indicate that the selected fea-
tures for models with three, four, and five inputs are largely consistent with those identi-
fied in the trip-based approach. However, the performance indicators point to certain per-
formance degradation for the S2S approach. This suggests that breaking down trips into 
S2S segments does not tend to capture additional variations influencing energy consump-
tion. Hence, the trip-based approach, with its less complex data requirements and favor-
able accuracy, is recommended for operational planning applications. 
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Table 4. Comparative performance metrics of station-to-station (S2S) segment-based and trip-based 
energy consumption models. 

Number of 
Features Approach Features/Predictor  

Variables 
𝑹𝑴𝑺𝑬𝒕𝒓 
[kWh] 

𝑹𝑴𝑺𝑬𝒗𝒂𝒍 
[kWh] 𝑹𝒕𝒓𝟐  𝑹𝒗𝒂𝒍𝟐  

3 Trip-based 𝜇௥௚, 𝜎௥௚ଶ , 𝜇௩ × 𝑛ത௣௔௦௦ 1.0026 1.0026 0.9743 0.9743 
3 S2S based 𝜇௥௚, 𝜇௥௚ଶ , 𝜎௥௚ଶ × 𝑛ത௣௔௦௦ 1.0045 1.0046 0.9670 0.9669 
4 Trip-based 𝜇௥௚, 𝜇௥௚ଶ , 𝜎௥௚ଶ , 𝜇௩ × 𝑛ത௣௔௦௦ 0.9922 0.9922 0.9756 0.9756 
4 S2S based 𝜇௥௚, 𝜇௥௚ଶ , 𝜎௥௚ଶ , 𝜇௩ × 𝑛ത௣௔௦௦ 1.0270 1.0275 0.9734 0.9733 

5 Trip-based 𝜇௥௚, 𝜇௥௚ଶ , 𝜇௥௚ × 𝜎௥௚, 𝜎௥௚ଶ , 𝜇௩ × 𝑛ത௣௔௦௦ 0.9862 0.9862 0. 9760 0.9760 

5 S2S based 𝜇௥௚, 𝜇௥௚ଶ , 𝜇௥௚ × 𝑛ത௣௔௦௦, 𝜎௥௚ଶ , 𝜇௩ × 𝑛ത௣௔௦௦ 0.9935 0.9941 0.9755 0.9754 

5.1.3. Incorporation of Additional Features 
It is demonstrated in Table 3 that the quadratic regression model is characterized by 

a high R2 score on different sets of seen and unseen data (at least 0.97, meaning that 97% 
of the variability in the dependent variable can be explained by the predictor variables on 
aggregated set). In a further attempt to analyze the possible root causes of the remaining 
modeling error and potentially enhance the model performance, additional features were 
derived from the synthetic driving cycles used in the model development phase. In addi-
tion to the four selected predictor variables (see Table 3), the mean positive (𝜇௔శ) and neg-
ative (𝜇௔ష) accelerations, as well as their standard deviations (𝜎௔శ, 𝜎௔ష) and the standard 
deviation of velocity (𝜎௩) were employed as influential variables related to vehicle dynam-
ics. By using this extended set of predictor variables, an MLP NN model with four hidden 
layers was implemented. 

The corresponding modeling results shown in Table 5 indicate that the validation 
index 𝑅௩௔௟ଶ  increases from 0.9772 to 0.9890 when using the NN model with the extended 
set of predictor variables. This reveals that (i) the limited performance of the models from 
Table 5 is more because of the limited set of features than the limited model structure; and 
(ii) the model with trip-based features can closely match the original, high-sampling-rate 
physical model, provided that the trip-based feature set is rich enough. However, despite 
the commendable performance, the practical application of the model based on the addi-
tional, acceleration-based features is constrained by limited data availability. Namely, the 
typical bus tracking data are sampled too slowly to consistently capture the fast transients 
of vehicle acceleration signals. 

Table 5. Comparative performance metrics of quadratic regression models and MLP neural network 
models with standard and enriched feature set. 

Number of 
Features 

Features/Predictor Variables 𝑹𝑴𝑺𝑬𝒕𝒓 [kWh] 𝑹𝑴𝑺𝑬𝒗𝒂𝒍 [kWh] 𝑹𝒕𝒓𝟐  𝑹𝒗𝒂𝒍𝟐  

Quadratic Regression 
4 𝝁𝒓𝒈, 𝝁𝒓𝒈𝟐 , 𝝈𝒓𝒈𝟐 , 𝝁𝒗 ∗ 𝒏ഥ𝒑𝒂𝒔𝒔 0.9922 0.9922 0.9756 0.9756 

MLP Neural Networks 
4 𝜇௥௚, 𝜎௥௚, 𝜇௩, 𝑛ത௣௔௦௦ 0.9450 0.9473 0.9774 0.9772 

9 𝜇௥௚, 𝜎௥௚, 𝜇௩, 𝑛ത௣௔௦௦, 𝜎௩, 𝜇௔శ, 𝜇௔ష, 𝜎௔శ, 𝜎௔ష 0.6994 0.6996 0.9892 0.9890 

When excluding the acceleration-related features, and leaving only the velocity 
standard deviation as the additional predictor variable, one obtains the best subset 
method results shown in Table 6. These results indicate that the additional predictor var-
iable notably impacts the model only when combined with the basic four predictor varia-
bles, underscoring that the original four predictor variables are more influential than the 
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added one. The negligible change in the R² metrics reveals that the inclusion of velocity 
deviation brings marginal improvements in the modeling accuracy. 

Table 6. Comparative performance metrics of selected regression model and the one extended with 
velocity standard deviation predictor variable. 

Number of 
Features Features/Predictor Variables 𝑹𝑴𝑺𝑬𝒕𝒓 [kWh] 𝑹𝑴𝑺𝑬𝒗𝒂𝒍 [kWh] 𝑹𝒕𝒓𝟐  𝑹𝒗𝒂𝒍𝟐  

Quadratic Regression 
4 𝝁𝒓𝒈, 𝝁𝒓𝒈𝟐 , 𝝈𝒓𝒈𝟐 , 𝝁𝒗 ∗ 𝒏ഥ𝒑𝒂𝒔𝒔 0.9922 0.9922 0.9756 0.9756 
5 𝜇௥௚, 𝜇௥௚ଶ , 𝜎௥௚ଶ , 𝜇௩ଶ, 𝜎௩ ∗ 𝑛ത௣௔௦௦ 0.9846 0.9846 0.9761 0.9761 

Hence, the quadratic regression model (3) remains to be recommended for applica-
tion due to low data demands, simplicity, and favorable accuracy. 

5.2. HVAC Trip-Based System Model 
The HVAC power consumption regression model developed and indirectly experi-

mentally validated within the physical e-bus model in Section 2 has a quadratic form 
gained by a feature selection method for four inputs: ambient temperature 𝑇௔, solar irra-
diation 𝑄ሶ௦௢௟, ridership 𝑛௣௔௦௦, and vehicle velocity 𝑣௩௘௛ (see Equation (8)). 

For integration into the trip-based data-driven model, the features of the HVAC 
model should be averaged on a per-trip basis. This modification is justified by two as-
sumptions: (i) the ambient conditions, such as solar irradiation and temperature, remain 
approximately constant during a relatively short bus trip, and (ii) the velocity and rid-
ership variables, which may significantly change during the trip, are of secondary influ-
ence on the HVAC consumption when compared to the influence of ambient condition 
variables. To further suppress the influence of velocity and ridership variations on mean 
value model accuracy, it is suitable to avoid the nonlinear terms of Equation (8), and thus 
in the model. It is shown that this intervention does not considerably deteriorate the ac-
curacy of the physical model, and notably improves the accuracy of the mean value model, 
which is formulated as follows: 𝑃ு௏஺஼ = 𝛽଴ + 𝛽ଵ𝑇ത௔ + 𝛽ଶ𝑄ሶത௦௢௟ + 𝛽ଷ𝑛ത௣௔௦௦ + 𝛽ସ𝜇௩, (12) 

where the mean predictor variables are calculated over the trip, i.e., the driving cycle. The 
HVAC energy consumption per trip is then determined as follows: 𝐸ு௏஺஼ = 𝑡௧௥௜௣𝑃ு௏஺஼, (13) 

where 𝑡௧௥௜௣ is the trip duration. 
The mean value HVAC model (12) and (13) was tested against the original model (8) 

by using the five-fold cross-validation method illustrated in Figure 14. The corresponding 𝑅௩௔௟ଶ  value was 0.999 and an 𝑅𝑀𝑆𝐸௩௔௟ was only 0.128 kWh. This confirms that the mean 
value HVAC system model can be used with a negligible loss of accuracy. 

5.3. Overall E-Bus Model 
The overall e-bus regression model integrates the powertrain and HVAC system sub-

models given by Equation (11) and Equations (12) and (13), respectively. It is represented 
by the expression given in the first row of Table 7 and compared with existing models 
from the literature, listed in the remaining rows of Table 7. This comparison reveals that, 
although it includes similar features overall, the proposed model is generally richer than 
the existing individual models in terms of the number of features and nonlinearities ac-
counted for (in terms of interactions). By relying solely on readily available and objective 
features, the model avoids subjective variables such as driving aggressiveness or road 
conditions, which could introduce bias and necessitate city-specific adjustments, poten-
tially leading to overfitting. Being validated across diverse scenarios, including varying 
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route profiles and traffic patterns, the model distinguishes itself by demonstrating robust-
ness and broad applicability in diverse operational environments. 

Table 7. Comparative analysis of the overall model with regression models used in literature. 

 Regression Model 

This study 
𝐸 = 𝛽଴𝑑௧௥௜௣ + 𝛽ଵ 𝜇௥௚𝑑௧௥௜௣ + 𝛽ଶ 𝜇௥௚ଶ 𝑑௧௥௜௣ + 𝛽ଷ 𝜎௥௚ଶ 𝑑௧௥௜௣ + 𝛽ସ 𝜇௩𝑛ത௣௔௦௦𝑑௧௥௜௣ +𝛽ହ𝑡௧௥௜௣ + 𝛽଺𝑇ത௔𝑡௧௥௜௣ + 𝛽଻𝑄ሶത௦௢௟𝑡௧௥௜௣ + 𝛽଼𝑛ത௣௔௦௦𝑡௧௥௜௣ + 𝛽ଽ𝜇௩𝑡௧௥௜௣  

Abdelaty et al. [18] 
𝐸 = 𝛽଴ + 𝛽ଵ 𝐺𝑅 + 𝛽ଶ 𝐷௔௚௚ + 𝛽ଷ𝑅஼ + 𝛽ସ𝑃ு௏஺஼ + 𝛽ହ𝑛௣௔௦௦ + 𝛽଺𝑆஽ + 𝛽଻𝜇௩ +𝛽଼𝑆𝑜𝐶௜௡௜௧ + 𝛽ଽ𝑑௧௥௜௣  

Vepsäläinen et al. [22] 𝐸 = 𝛽଴ + 𝛽ଵ |20 − 𝑇ୟ| + 𝛽ଶ 𝑃ௗ௖ + 𝛽ଷ𝑆஽ + 𝛽ସ𝐷௔௚௚  
Pamula et al. [17] 𝐸 = 𝛽଴𝑑௡ + 𝛽ଵ Δ𝑡 + 𝛽ଶ Δℎ + 𝛽ଷ𝑤  
Pamula et al. [19] 𝐸 = 𝛽଴𝑑௡ + 𝛽ଵ Δ𝑡 + 𝛽ଶ Δℎ + 𝛽ଷ𝑤 + 𝛽ସ𝑡𝑝ℎ  

Vehviläinen et al. [21] 𝐸 = ൜𝛽଴𝑇௔ଷ + 𝛽ଵ𝑇௔ଶ + 𝛽ଶ𝑇ୟ,   𝑖𝑓 𝑇ୟ ≥ 0°𝐶𝛽ଷ𝑇ୟ,                                 𝑖𝑓 𝑇ୟ < 0°𝐶  

Bie et al. [31] 𝐸 = 𝛽଴𝑆𝑜𝐶௜௡௜௧ + 𝛽ଵ𝑡௧௥௜௣ + 𝛽ଶ𝑇௔  

Xing et al. [23] 𝐸 = 𝛽଴ + 𝛽ଵ ln ቀଵିௌ௢஼೔೙೔೟ଵ଴଴ ቁ + 𝛽ଶ𝑡௧௥௜௣ + 𝛽ଷ𝜇௩ଶ + 𝛽ସ𝜇௩ + 𝛽ହ𝑡௔ଶ + 𝛽଺𝑡௔  𝐺𝑅—road grade; 𝐷௔௚௚—driving aggressiveness; 𝑅஼—road condition; 𝑃ு௏஺஼—power of the HVAC 
system; 𝑆஽—stops density per km; 𝑇௢—optimal operating temperature; 𝑃ௗ௖—DC converter power; 𝑑௡ —distance between stops; Δ𝑡 —travel time between stops; 𝛥ℎ —elevation difference between 
stops; 𝑤—weather code; 𝑡𝑝ℎ—hour code; 𝑡௔—operation time of the AC system of each trip. 

6. Analysis of Model Residuals 
A practical analysis of model residuals was carried out separately for powertrain and 

HVAC models, as well as for the full vehicle model. The analysis results relate to the vali-
dation dataset aggregated from individual subsets #1–#5 (Figure 14). 

6.1. Powertrain Model 
An essential step in evaluating regression models involves examining the spread of 

residuals against the predicted values, which should be distributed around a horizontal 
zero-value line without forming any distinct patterns [32]. The residual plot of the power-
train quadratic regression model from Table 3 is shown in Figure 19a. It indicates a slight 
slope of −0.015 kWh/kWh around the zero-value line, thus confirming the model con-
sistency. Figure 19b shows that the model predictions scatter closely around the ideal 
identity line. 

 
Figure 19. Powertrain model residuals plotted vs. predicted values (a) and model predicted vs. true 
value plot (b). 

The normality of residuals is another model assessment criterion. Figure 20a demon-
strates that, despite the p-value being lower than the normality threshold of 0.05, the re-
siduals exhibit an unbiased, symmetric distribution resembling the normal distribution. 
The distribution of relative residuals, shown in Figure 20b, indicates that a great majority 
of relative residuals (90% of them, see Table 8) fall below the margin of 8%. The Q–Q plot 
in Figure 20c provides further illustration of the residual distribution normality by 
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plotting the residuals in a manner that should form a straight line if they are normally 
distributed. Figure 20d shows a heat plot of the residual versus true value. It reveals that 
the higher relative residuals are associated with lower predicted values, which is appar-
ently due to the nature of relative residual calculation that tends to be more sensitive to 
smaller values. Table 8 provides a summarized residual statistics. 

Table 8. Characterization of the absolute (Abs.) and relative (Rel.) residual distributions of the 
powertrain model. 

 Mean �td. 1% 5% 10% 15% 25% 50% 75% 85% 90% 95% 99% 
Abs. [kWh] −0.06 0.85 −2.31 −1.43 −1.02 −0.78 −0.47 −0.06 0.31 0.62 0.87 1.35 2.56 

Rel. [%] −0.50 6.93 −18.70 −11.51 −8.52 −6.75 −4.43 −0.45 3.46 5.87 7.65 10.72 17.83 

 
Figure 20. Characteristic powertrain model residual plots. 

6.2. HVAC Model 
Figure 21 shows the main residual plots of the HVAC model given by Equations (12) 

and (13), while the corresponding statistics are given in Table 9. Ninety percent of residu-
als fall below the absolute and relative margins of 0.16 kWh or 3.74%, respectively, which 
confirms the good modeling accuracy. 

 
Figure 21. The HVAC model’s predicted vs. true value plot (a) and corresponding relative residual 
distribution plot (b). 
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Table 9. Characterization of absolute (Abs.) and relative (Rel.) residual distributions for HVAC 
model. 

 Mean �td. 1% 5% 10% 15% 25% 50% 75% 85% 90% 95% 99% 
Abs. [kWh] 0.02 0.11 −0.25 −0.16 −0.09 −0.05 −0.02 0.01 0.06 0.11 0.16 0.25 0.37 

Rel. [%] 0.85 2.05 −2.86 −2.05 −1.64 −1.29 −0.51 0.52 2.09 3.19 3.74 4.48 6.28 

6.3. Overall Model 
Figure 22 shows the residual analysis results for the overall e-bus model (both power-

train and HVAC models). The relative residual distribution was narrower than for the 
powertrain model (cf. Figures 20b and 22b) due to the accuracy contribution of the HVAC 
submodel. Consequently, the score 𝑅௩௔௟ଶ  of the full model (when validated on the aggre-
gate dataset) increased from the powertrain model validation value of 0.9756 (Table 3) to 
0.9812. 

 
Figure 22. The overall e-bus model’s predicted vs. true value plot (a) and corresponding relative 
residuals distribution plot (b). 

Table 10 shows a comparison of the execution time for routines that predict energy 
consumption across 20,285 trips using the regression model and its physical counterpart. 
The total execution time when using the physical model is 2920 s, which gives the average 
value of 0.14 s per trip. In contrast, the regression model requires a total execution time of 
only 1.5 milliseconds, averaging about 74 nanoseconds per trip, which is approximately 
2,000,000 times faster than the physical model. Accordingly, the regression model can con-
veniently be used in large-scale electrification planning simulation and optimization stud-
ies to facilitate assessment and decision-making processes for numerous scenarios. 

Table 10. Computational time comparison for physical and regression models (for 20.285 trips). 

Type of Model Total Elapsed time, 𝑻𝒆𝒙𝒆𝒄 * Average Execution Time per Trip 
Physical model 2920 s 0.14 s 

Regression model 1.5 ms 74 ns 
* The computations were performed on a Dell G5 15 Laptop (Dell, Round Rock, TX, USA), equipped 
with an Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz, 16.0 GB RAM (Intel, Santa Clara, CA, USA), 
running on a 64-bit Windows 11 Home operating system, utilizing Python version 3.10 and Tensor-
Flow-gpu version 2.10.0, with an Intel(R) UHD Graphics GPU. 

7. Conclusions 
A method for predicting the battery energy consumption of electric city buses (e-

buses) using a trip-based data-driven regression model was proposed in the paper. The 
method was designed to strike a balance between model accuracy, computational effi-
ciency, and generalization capabilities. The key findings of the presented study are as fol-
lows: 
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• A backward-looking physical model of a 12 m electric city bus was developed, with 
an emphasis on the heating, ventilation, and air conditioning (HVAC) system sub-
model. For the sake of e-bus model implementation simplicity and numerical effi-
ciency, a quadratic regression HVAC model was set up and its parameters were op-
timized based on the responses of a physical HVAC model developed in Dymola  
2018 FD01. The developed e-bus model was successfully validated with respect to 
several recorded datasets not used in the stage of model parameterization; 

• The emphasis was then placed on the data-driven model, derived from simulations 
of the physical model under a wide set of traffic, road, and ambient conditions. The 
model relies on typically available trip-related data, as opposed to the physical 
model, which requires high-sampling-rate driving cycle data. It consists of independ-
ent powertrain and HVAC submodels to resemble the structure of the physical 
model. For the powertrain, a feature selection method was used to find an optimal 
quadratic regression model for the specific energy consumption (in kWh/km), where 
the selected features include the mean road grade and its square, the road grade 
standard deviation square, and the product of mean velocity and ridership. The 
model performance (characterized by the validation R2 value of 0.975) is comparable 
to more complex methods such as neural networks and gradient boosting but with 
the added advantage of greater simplicity and generalization (i.e., robustness); 

• An exploration into a better quantized, station-to-station segment modeling ap-
proach did not enhance the modeling accuracy when compared to the trip-based ap-
proach. On the other hand, the modeling accuracy was found to notably grow when 
extending the feature set with vehicle acceleration and deceleration features, thus 
underscoring the significance of including a broader set of relevant features as op-
posed to making the quantization of the basic feature set denser. However, the vehi-
cle acceleration features are usually unavailable in real city bus transport systems. 
Thus, the basic, narrow feature set-based quadratic regression model is generally rec-
ommended for applications due to low data demands, simplicity, and favorable ac-
curacy; 

• The original HVAC system model with four inputs (ambient temperature, solar irra-
diance, vehicle velocity, and ridership) was reformulated to have (i) a mean value 
form to be applicable to trip-based inputs of the data-driven model and (ii) a linear 
structure to suppress the influence of velocity and ridership variation on mean value 
modeling accuracy; 

• When validating the overall model on an aggregated dataset, it registered a notable 
R2 score of 0.981. It executes approximately 1,900,000 times faster than the physical 
model, thereby offering both accurate energy consumption predictions and compu-
tational efficiency for large-scale simulation and optimization studies of city bus fleet 
electrification planning; 

• Although the proposed modeling approach was demonstrated on a 12 m fully electric 
city bus and A/C operating mode, it can be readily applied to other sizes (e.g., 18 m) 
and types of city buses (e.g., HEV, PHEV, and H2 buses), as well as for other operat-
ing conditions (e.g., heat pump mode). 
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Appendix A. Modification of HVAC Model for Heat Pump Mode and 18 m E-Bus 
Once the physical parameters of the e-bus cabin thermal model are determined 

through optimization for the summer conditions (A/C mode; see Figure 6), the HVAC 
energy consumption physical model can readily be extended to winter operating condi-
tions, where the heat pump mode with COP = 1.5 is assumed. The heating capacity limit 
is set to 19 kW, and it is assumed that the cabin is pre-heated (e.g., during night charging) 
for the period of 2 h prior to the start of the trip. The cabin air reference temperature TcabR 
is set to 22 °C, although according to the VDV recommendation it should be reduced if 
the ambient temperature falls below −10 °C (cf. the form of TcabR(Ta) map in Figure 6 in the 
case of A/C mode). The modified thermal model can then be directly run and used for 
HVAC regression model parameterization. Nevertheless, if the recorded e-bus energy 
consumption data were available, the model can be fine-tuned either manually or by op-
timization (e.g., COP can take values of up to 2 or even 3). 

The obtained regression model is given by 𝑃ு௏஺஼ = max൫0, 𝛽଴ + 𝛽ଵ𝑇௔ + 𝛽ଶ𝑄ሶ௦௢௟ + 𝛽ଷ𝑛௣௔௦௦ + 𝛽ସ𝑣௩௘௛ + 𝛽ଵସ𝑇௔𝑣௩௘௛൯. (A1) 

where the max operator ensures that the calculated HVAC power does not fall below zero. 
The model has been validated for unseen synthetic driving cycles, reflecting extreme cold, 
moderate cold, and warmer winter conditions. The validation results confirm the regres-
sion model accuracy in representing the HVAC system power consumption across differ-
ent ambient conditions. On colder days, the HVAC power varies between 4 and 10 kW, 
while in warmer days, it remains below 5 kW. 

 
Figure A1. Validation of 12 m e-bus heating-mode HVAC system regression model in various winter 
conditions. 
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Furthermore, the heating-mode (or similarly cooling-mode) HVAC energy consump-
tion physical model can be modified for the 18 m e-bus. The heating capacity limit is in-
creased to 22 kW, while the cabin air reference temperature TcabR and the COP are kept at 
22 °C and 1.5, respectively. The cabin volume, area, and thermal capacity parameters are 
increased in accordance to the bus size increase from 12 m to 18 m. The obtained physical 
model has been used to reparametrize the regression model (A1). Figure A2 shows the 
comparative HVAC power responses for the 12 m and 18 m buses and the three operating 
conditions from Figure A1. Expectedly, these responses have the same shape, with the 
higher power magnitudes occurring for the larger bus size. 

 
Figure A2. HVAC regression model responses for 12 m and 18 m e-bus in heating mode. 
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