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Abstract: Gas turbines operate under harsh conditions of high temperature and pressure for extended
periods, inevitably experiencing performance degradation. Predicting the performance degradation
trend of gas turbines and optimizing planned maintenance cycles are crucial for the economic and
safety aspects of gas turbine operation. In this study, a novel data-driven approach for predicting gas
turbine performance degradation is proposed. Initially, gas turbine operating data are augmented
using a mechanism model. Subsequently, a data-driven performance model is constructed based on
support vector regression (SVR) and gas turbine operational characteristics, enabling real-time calcu-
lation of performance degradation indicators. Building on this, an Autoregressive Neural Network
(AR-Net) is employed to construct a model for predicting the trend of performance degradation. The
proposed method is applied to predict performance degradation caused by fouling in the compressor
of a gas turbine. Comparative analysis with three other performance degradation prediction methods
indicates that the proposed approach accurately identifies the performance degradation trend of gas
turbines, determining the optimal maintenance timing. This holds significant importance for the
condition-based maintenance of gas turbines.

Keywords: gas turbine; performance degradation; support vector regression; AR-Net model;
performance prediction

1. Introduction

Gas turbines are advanced power equipment with high energy efficiency, strong fuel
adaptability, and low pollutant emissions, making them important for constructing clean,
low-carbon, safe, and efficient energy systems. However, operating consistently under
harsh conditions of high temperature, high pressure, and polluted environments, gas tur-
bines experience varying forms and degrees of performance degradation. This degradation
leads to a decline in the thermal efficiency and output power of gas turbines, thereby im-
pacting the economic viability and safety of gas turbine power plants [1]. Common causes
of performance degradation in gas turbines include fouling, wear, erosion, corrosion, and
increased blade tip clearances [2]. Among these, fouling is the most prevalent degradation
mode, with compressor fouling typically accounting for approximately 70–85% of the total
performance loss [3]. This is because gas turbines intake a large volume of air, inevitably
introducing dust, sand, salt, and other impurities from the air, leading to adverse effects,
such as reduced efficiency and flow in the compressor [4].

In the operation and maintenance process of industrial gas turbines, regular water
washing strategies are commonly employed to remove compressor fouling. Among them,
online water washing does not require shutdown but has relatively poorer effectiveness,
while offline water washing is more thorough compared to online water washing and can
effectively eliminate the impact of compressor fouling. However, the disadvantage is that it
requires a shutdown [5]. Therefore, optimizing the water washing cycle, that is, the interval
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for offline water washing, is crucial during the operation of the gas turbine. If the water
washing cycle is too short, the cost of shutdown and offline washing becomes prohibitively
high. Conversely, an extended cycle may result in a significant reduction in gas turbine
output power due to compressor fouling, subsequently increasing the cost of electricity
generation and potentially compromising the safety of the gas turbine.

In order to predict the performance degradation trend of gas turbines, it is essential to
first establish a performance model for the gas turbine under healthy conditions. This model
should reflect the output parameters of the gas turbine under different environmental and
control conditions and then be used to calculate the differences between actual performance
parameters and healthy state performance parameters [6]. The most common approach
involves the use of physics-based methods, which utilize mechanism models to calculate
the health parameters of the gas turbine. This includes nonlinear Gas Path Analysis (GPA)
methods [7,8], Kalman Filtering algorithms, and their variations [9,10].

Due to the drawbacks of physical models, such as computational complexity and
the need for accurate component characteristic curves, data-driven models have gained
significant attention. The main data-driven models include artificial neural networks
(ANNs) [11,12], XGBoost [13], high-dimensional model representation (HDMR) [14], etc.
Data-driven models, once trained, have significantly lower computational costs compared
to physics-based models. Sometimes, even when physics-based models are available,
data-driven models may be trained using simulated data generated by the physics-based
model [15]. Therefore, data-driven models, characterized by their speed and adaptability,
have broad application prospects.

The prediction of performance degradation in gas turbines aims to forecast the de-
velopment trend of performance parameters over a period of time. By predicting the
performance degradation before it reaches a predetermined threshold, appropriate mainte-
nance measures can be scheduled while avoiding unexpected failures [6]. Y.G. Li et al. [16]
proposed a hybrid model combining linear regression and quadratic regression to predict
the remaining service life of gas turbine engines. Based on real-time operational data,
the corresponding regression model is selected, and coefficients are determined. Zhou
Dengji et al. [17], taking into account the uncertainty of performance degradation data
and the requirement for long-term prediction, proposed a gray prediction model based
on Markov processes and gray correlation analysis. Using the fouling process of a gas
turbine compressor as an example, they demonstrated that this model outperforms other
prediction models. However, this method requires performance degradation data from
multiple gas turbines with different models. Wang Weiying et al. [18] presented a gas
turbine air path performance degradation prediction method based on the ARIMA time
series model. Through simulation experiments, it was proven effective in predicting the
degradation trend caused by the compressor fouling. However, this method is only suit-
able for short-term prediction, and its long-term prediction performance is poor. Marta
Zagorowska et al. [19] employed a combined method of a moving window approach and
adaptive regression analysis to predict the expected value of performance degradation
indicators and quantify the uncertainty of the prediction. The essence of this method is
to determine whether the trend of data within the moving window follows a linear or
nonlinear regression and then estimate the parameters of the regression function to achieve
adaptive prediction. Jinwei Chen et al. [20] proposed a sliding window prediction method
based on LSTM to predict nonlinear fouling trends and identify declines in compressor flow
rate and efficiency. Real field data from a gas turbine power plant were used for training
and testing, and it was found that this method had a smaller relative mean square error
compared to other prediction methods. Y. Jin et al. [21] developed a hybrid framework that
integrates thermodynamic models and Long Short-Term Memory (LSTM) neural networks
to predict washing cycles (remaining service life prediction) and detect filter leakage (filter
diagnosis). The prediction model based on the LSTM–Hankel method exhibited good
performance in long-term washing cycle prediction.
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In neural network prediction algorithms, the Autoregressive Neural Network (AR-
Net) [22] has been successfully applied to time series forecasting in various fields [23–25],
making it a feasible method for predicting the performance degradation trend of gas
turbines. This paper proposes a hybrid model-based prediction method for gas turbine
performance degradation using support vector regression (SVR) and AR-Net. The method
first utilizes mechanism models to augment the operating data and then constructs a per-
formance model based on SVR and gas turbine operational characteristics. This model
enables real-time estimation of performance degradation indicators. Based on the degrada-
tion indicators from historical maintenance cycles, an AR-Net prediction model is built to
forecast the performance degradation trend.

The contributions of this work include the following:
(a) Proposing a novel data-driven method for predicting the performance degradation

of gas turbines. Using actual operating data and augmented data generated from the
mechanism model, a high-accuracy performance model under healthy conditions of gas
turbines is established.

(b) Introducing the use of an Autoregressive Neural Network (AR-Net) for predicting
the performance degradation trend of gas turbines. This approach can effectively utilize
operating data from historical maintenance cycles.

(c) Simulating real fouling data of the compressor and comparing the predictive
results of the proposed method with three other methods. The results demonstrate that
the proposed method can effectively predict the offline water wash cycle of gas turbines,
providing guidance for the condition-based maintenance of gas turbines.

The structure of the remaining parts of this paper is as follows. Section 2 presents a gas
turbine performance degradation prediction method based on a hybrid model of SVR and
AR-Net. Section 3 is the results and discussion, which first constructs the SVR performance
model under healthy conditions and then calculates the performance degradation indicators
in real-time for the performance degradation caused by compressor fouling and builds
the AR-Net prediction model for performance degradation trend prediction. Section 4
concludes the paper.

2. Methodology

The gas turbine performance degradation prediction method proposed in this paper
consists of three parts: a data-driven performance model under healthy conditions, perfor-
mance degradation indicator calculation, and performance degradation trend prediction.
Firstly, the data-driven performance model is constructed based on the SVR algorithm.
To solve the problem of insufficient actual operating data, a mechanism model is used to
augment the operating data. Secondly, indicators closely related to gas turbine performance
are selected, and the residual between the output value of the performance model and the
real-time calculated value is calculated to obtain the performance degradation indicator. A
piecewise linear function is used to smooth the degradation indicator. Finally, based on
AR-Net, a trend prediction model is built to predict the performance degradation trend for
a future period by learning the performance degradation trend of historical maintenance
cycles. A flowchart of the proposed method is shown in Figure 1.

2.1. Gas Turbine Structure and Mechanism Model

The analysis target is a micro gas turbine, mainly used for industrial distributed power
generation, commercial distributed power generation, mobile emergency power supply, etc.
Its structure is shown in Figure 2, mainly including a single-stage centrifugal compressor,
an annular combustion chamber, and a single-stage radial inflow turbine. The design point
performance parameters under ISO conditions are shown in Table 1.
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Table 1. Performance of the gas turbine at the design point.

Parameter Value

Power generation/MW 2
Power generation efficiency/% 25.7

Pressure ratio 7.5
Exhaust flow rate/(Kg/s) 10.1

Turbine inlet temperature/K 1223
Exhaust temperature/K 803
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A mechanism model is established on the Matlab/Simulink platform for this gas
turbine. The modules of the mechanism model are shown in Figure 3. The mechanism
model can generate operating data of the gas turbine under different conditions, thereby
solving the issue of insufficient training data required for the data-driven model of the gas
turbine.
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2.2. Data Preprocessing

Due to equipment failures, sensor errors, operational mistakes, and other external
factors, gas turbine data often contain missing values and outliers. This can have a signifi-
cant negative impact on subsequent data analysis and model development. Therefore, it
is essential to first handle missing values and outliers in operational data to ensure data
quality and completeness.

Considering the need for the rapid adjustment of fuel supply to meet load dispatch
requirements after gas turbines are connected to the grid, there are two types of actual
operating data: steady-state and transient. In this study, the performance degradation
prediction is mainly based on steady-state data. Therefore, it is necessary to screen the
actual operating data for steady-state conditions. This study adopts the steady-state
screening algorithm proposed by Wang Zhong [26], with output power as the feature
variable for steady-state filtering. The operating parameters of the gas turbine can be
considered as a combination of true values and noise values. When the gas turbine is
in a steady-state condition, the true values of the operating parameters remain constant,
and the variations in the measured values are mainly caused by random errors. When
the gas turbine is in a transient state, the true values of the operating parameters undergo
significant changes, which are generally visually reflected in the changes in output power,



Energies 2024, 17, 781 6 of 17

increasing or decreasing over time. Therefore, considering the selection of output power as
the feature variable for steady-state filtering, its expression is as follows:

pt = µ + mt + ε →
{

m = 0 steady-state
m ̸= 0 transient

(1)

where pt represents the measured power at time t; µ represents the true value of power; m
represents the rate of change of power; and ε represents the random error of power, which
follows a normal distribution.

In Equation (1), it can be seen that the difference between steady-state and transient
operating conditions lies in whether the rate of power change m is equal to zero. To facilitate
the estimation of the m, the difference between the power at two consecutive time points,
denoted as ∆p, its expression is as follows:

∆p = pt − pt−1 = m + (εt − εt−1) (2)

As the random error ε follows a normal distribution, the expected value of the statistic
∆p is equal to m. According to the nature of time series, m can be estimated using the mean
of sample statistics within a time window, as shown below:

m̂ =
−

∆p =
1
h

t=h

∑
t=1

(pt − pt−1) (3)

where h is the number of samples within the sampling time window.
In order to ensure the reliability of the estimation, an interval estimation method is

used to determine the expected value m of the sample power difference. If the estimated
interval range includes 0, it is considered highly likely that the gas turbine is operating
under steady-state conditions during that time period; otherwise, it is considered to be
operating under transient conditions.

After obtaining steady-state operating data using the above method, in order to avoid
the influence of dimensional differences between the operating data on the training of the
SVR model, it is necessary to normalize the data, making it fall within the range of [0, 1].
The transformation function is as follows:

xnorm =
x − min(x)

max(x)− min(x)
(4)

where xnorm is the normalized value, min(x) is the minimum value of x, and max(x) is the
maximum value of x.

2.3. Gas Turbine Performance Model Based on Support Vector Regression

Support vector regression (SVR) [27] is a nonlinear supervised learning algorithm that
is suitable for solving high-dimensional pattern recognition, small samples, and linear and
nonlinear regression problems. The basic idea of SVR is to map data to a high-dimensional
feature space through nonlinear mapping so that the independent and dependent variables
have good linear regression characteristics in that feature space. In the high-dimensional
feature space, SVR can use a linear regression model for fitting. Then, by inverse mapping,
the results obtained in the high-dimensional feature space are returned to the original
space to achieve regression fitting of the data. SVR is based on the principle of structural
risk minimization and has robustness and repeatability, as well as strong generalization
performance and globally optimal prediction [28].
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Given a data sample set {(xi, yi), i = 1, 2, . . . , n}, where xi =
[

x1
i , x2

i , . . . , xd
i

]T
and

yi ∈ R, the regression function established from this is as follows:

f (x) = wφ (x) + b (5)

where w is the feature weight vector, φ(x) is the nonlinear mapping function, and b ∈ R is
the threshold.

SVR can tolerate a maximum deviation of ε between f (x) and y; that is, the absolute
value of the difference between f (x) and y does not exceed ε. At this time, a linear
insensitive loss function lε is defined as follows:

lε( f (x), y, ε) =

{
0, |y − f (x)| ≤ ε

|y − f (x)| − ε, |y − f (x)| > ε
(6)

where f (x) is the predicted value of the regression function and y is the actual value of the
data.

Introducing slack variables ξi and ξ̂i and penalty factor C, the following constraints
are established:

min
w,b,ξi ,ξ̂i

∥ w ∥2

2
+ C

n

∑
i=1

(
ξi + ξ̂i

)
(7)

s.t.


f (xi)− yi ≤ ε + ξi
yi − f (xi) ≤ ε + ξ̂i

ξi ≥ 0, ξ̂i ≥ 0, i = 1, 2, . . . , n
(8)

By introducing Lagrange multipliers and transforming it into its dual form, we can
obtain the fitting function of SVR as follows:

f (x) =
n

∑
i=1

(α̂i − αi)K(x, xi) + b (9)

where α̂i and αi are Lagrange multipliers, n is the number of support vectors, and K(x, xi) is
the kernel function. The kernel function used in this paper is the Gaussian kernel function
(RBF), which is expressed as follows:

K(x, xi) = exp(−γ ∥ x − xi ∥2) (10)

where γ is the coefficient of the kernel function.
According to the operating characteristics of a gas turbine, the input and output

parameters of the SVR performance model can be determined, as shown in Figure 4. By
considering input parameters such as ambient temperature, ambient pressure, ambient
humidity, fuel flow rate, fuel temperature, fuel composition/lower heating value (LHV),
and shaft speed, the operating state of the gas turbine can be uniquely determined, enabling
the modeling of the performance model under steady-state conditions. It is important to
note that a separate SVR model needs to be established for each output parameter, resulting
in the need for multiple many-to-one SVR performance models. During the model training
phase, a grid search is performed to optimize the hyperparameters mentioned earlier,
namely, the penalty factor C and the kernel function coefficient γ. The range of C is from
10−3 to 105, and the range of γ is from 10−5 to 10.
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During the model testing phase, the Root Mean Square Error (RMSE) and the Mean
Absolute Percentage Error (MAPE) are used as evaluation metrics for the model. The
calculation formulas for the RMSE and MAPE are as follows:

RMSE =

√
1
n

n
∑

t=1
(yt − ŷt)2

MAPE = 1
n

n
∑

t=1

∣∣∣ yt−ŷt
yt

∣∣∣ ∗ 100%
(11)

where n is the number of data points in the test set, yt represents the true values, and ŷt
represents the predicted values.

By calculating the residual value between the parameter values predicted by the
SVR performance model for the healthy state and the actual parameter values, namely,
the performance degradation indicator D I, the performance degradation level of the gas
turbine as a whole or its components can be quantified. The formula for calculating D I is
as follows:

D I = xsvr − xdeg (12)

where x represents the selected performance parameter, xsvr represents the predicted
performance parameter under healthy conditions by the SVR performance model, and xdeg
represents the actual performance parameter after performance degradation.

2.4. Smoothing of the Degradation Indicator Based on the Piecewise Linear Model

Due to the obvious nonlinear trend of DI and its susceptibility to fluctuations caused
by measurement factors and environmental factors, a piecewise linear model [29] is used
in this paper to smooth DI, which is then used for the training and prediction of the
subsequent AR-Net model.
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The piecewise linear model models the given sequence as a continuous piecewise linear
sequence, which can produce an interpretable nonlinear trend model. Its mathematical
expression is as follows:

y(t) = δ(t) · t + ρ(t) (13)

where δ(t) is the growth rate that changes over time and ρ(t) is the offset that changes over
time.

The piecewise linear model changes its growth rate and offset only at a finite number
of change points, and all change points can be determined by a simple semi-automatic
mechanism [29]. Assume that C is the set of all change points, and then the mathematical
expression is as follows:

y(t) = (δ0 + Γ(t)Tδ) · t + (ρ0 + Γ(t)Tρ) (14)

where
δ = (δ1, δ2, ..., δnC )
ρ = (ρ1, ρ2, ..., ρnC )

Γ(t) = (Γ1(t), Γ2(t), ..., Γnc(t))

Γj(t) =
{

1, if t ≥ cj
0, otherwise

(15)

2.5. Performance Degradation Prediction Model Based on an Autoregressive Neural Network

The Autoregressive Neural Network (AR-Net) model [22] is a time series prediction
model that combines the traditional Autoregressive (AR) model with neural networks. It
uses past observations as inputs and learns the linear or nonlinear patterns of the time series
through the neural network structure to make predictions for future values. The core idea of
the model is to combine the Autoregressive model with deep neural networks. Traditional
Autoregressive models typically use linear combinations of lagged observations to model
time series, while neural networks can learn more complex nonlinear relationships. By
combining the two, AR-Net can better capture nonlinear patterns and complex trends in
time series.

Specifically, the mathematical expression of AR-Net can be represented as follows:

At(t), At(t + 1), ..., At(t + h − 1) = AR-Net
(
yt−1, yt−2, ..., yt−p

)
(16)

where p is the lag of past observations and h is the forecast horizon.
The network structure of AR-Net is shown in Figure 5.
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The AR-Net model takes the first p observations of the time series as inputs to the
first layer. It then passes through several hidden layers (fully connected neural networks),
where each hidden layer transforms the output values from the previous layer using an
activation function. The last layer outputs h predicted values without an activation function
and without bias. The computation process of the model is as follows:

a1 = fa(W1x + b1)
ai = fa(Wiai−1 + bi) for i ∈ [2, ..., l]
y = Wl+1al

(17)

where x is the input, b represents the bias, l is the number of hidden layers, W is the weight
of the network layer, and fa(x) is the ReLU activation function, expressed as follows:

fa(x) = ReLU(x) =
{

x, x ≥ 0
0, x < 0

(18)

Through this computation process, the AR-Net model can effectively extract features
from the performance degradation indicators of historical maintenance cycles and make
accurate predictions.

3. Results and Discussions
3.1. Performance Model Training

The actual operating data of the micro gas turbine model is approximately 3 h, with
a sampling interval of 1 s. The actual operating data is preprocessed using the data-
cleaning algorithm described in Section 2.2. Then, steady-state screening is performed
with a sampling time window length of h = 20 and a significance level α of 0.05. Taking an
example of 4114 data points from a start–stop process, the output power after steady-state
screening is shown in Figure 6. After removing the data points with zero power, we obtain
1160 steady-state data points.

Energies 2024, 17, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 6. Output power comparison before and after steady-state screening. 

Following the above steps, preprocessing all the actual operating data can yield ap-
proximately 3200 steady-state operating data points, and the main parameters are shown 
in Figure 7. It can be observed that the actual operating data cover a small range of oper-
ating conditions, which is not sufficient for predicting the performance degradation of the 
gas turbine under varying operating conditions. Therefore, in order to provide enough 
training samples for the SVR performance model, it is necessary to input variables such 
as ambient temperature, ambient pressure, and output power into the mechanism model 
described in Section 2.1 to generate 15,000 operating data under different operating con-
ditions. Latin hypercube sampling (LHS) [30] is used to determine the range of input var-
iables. LHS divides the search space into equal probability intervals and generates random 
values from each interval to ensure that the sampling points cover the entire search space. 
Table 2 displays the search space for the input variables. 

 

Figure 6. Output power comparison before and after steady-state screening.

Following the above steps, preprocessing all the actual operating data can yield
approximately 3200 steady-state operating data points, and the main parameters are shown
in Figure 7. It can be observed that the actual operating data cover a small range of
operating conditions, which is not sufficient for predicting the performance degradation
of the gas turbine under varying operating conditions. Therefore, in order to provide
enough training samples for the SVR performance model, it is necessary to input variables
such as ambient temperature, ambient pressure, and output power into the mechanism
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model described in Section 2.1 to generate 15,000 operating data under different operating
conditions. Latin hypercube sampling (LHS) [30] is used to determine the range of input
variables. LHS divides the search space into equal probability intervals and generates
random values from each interval to ensure that the sampling points cover the entire search
space. Table 2 displays the search space for the input variables.
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Table 2. Search space of the input variables.

Variables Search Space

T0 (◦C) [−10, 50]
P0 (bar) [0.98285, 1.04365]

Wout (kW) [200, 2000]

The simulated operating data generated by the mechanism model, along with the
actual operating data, are used together for training the SVR performance model. The
prediction accuracy of the SVR models for each performance parameter is shown in Table 3,
with errors all within 1%. This indicates that the SVR performance model can accurately
model the input and output of a gas turbine in healthy conditions.

Table 3. Prediction accuracy of the SVR model for performance parameters.

Performance Parameters RMSE MAPE

T2 0.39 0.06%
P2 0.04 0.53%
T4 0.33 0.05%

Wout 0.58 0.04%
ηc 0.003 0.39%

3.2. Performance Degradation Indicator Calculation

Compressor fouling is taken as an example to verify the proposed method. Assuming
there is only compressor fouling and no other failures in the gas path components, fouling
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can be implemented by injecting the reduction in compressor efficiency into the mechanism
model, thus simulating the accumulation of compressor fouling. The trend of compressor
efficiency change over time can be referenced from the real degradation trend described in
Ref. [20].

To better simulate the actual operating conditions, the real ambient temperature
change was used as an input for the mechanism model to generate 4000 h of operation data.
A comparison between the actual and predicted values of the exhaust temperature and
compressor polytropic efficiency is shown in Figure 8. Polytropic efficiency is considered
in this study to express the loss of the compressor aerodynamic performances; it is a
more accurate term used to determine the degradation of the components than isentropic
efficiency. Polytropic efficiency takes into account not only the start and the end of the
compression and expansion processes but also the path of these processes [31]. Compressor
polytropic efficiency [32] can be calculated using the following formula:

ηc =

T1

(
π

γ−1
γ − 1

)
T2 − T1

=
π

γ−1
γ − 1

θ − 1
(19)

where π represents the pressure ratio of the compressor, γ represents the specific heat ratio,
and θ represents the temperature ratio at the inlet and outlet of the compressor.
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In Figure 8, it can be observed that the variation in ambient temperature leads to
significant fluctuations in both exhaust temperature and compressor polytropic efficiency.
As the operating time increases, the exhaust temperature of the gas turbine shows an
overall increasing trend. This is mainly due to the gradual accumulation of deposits on the
compressor blades, resulting in a decline in compressor performance and a reduction in the
output power of the gas turbine. To maintain the same output power, the control system
increases the fuel mass flow rate. After washing, the exhaust temperature decreases, and
compressor polytropic efficiency rises again.

Considering that compressor polytropic efficiency can better reflect the performance
degradation of the compressor components, the residual of compressor polytropic efficiency
is selected as the performance degradation indicator DI of the compressor components.
DI is calculated for each moment according to Equation (12), and the results are shown in
Figure 9. It can be observed that the growth of DI in the second washing cycle is faster
than that in the first washing cycle, but there is a certain similarity in the growth trend.
Therefore, DI of the first washing cycle can be used to train the prediction model, and the
trend can be predicted based on the real-time calculation of DI in the second washing cycle.
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3.3. Prediction Model Validation and Comparison

In this study, the hyperparameters of the AR-Net prediction model were set as follows:
the historical time step p was set to 500, the prediction step h was set to 300, and two hidden
layers with sizes of 64 and 32 were set. Then, the piecewise linear model mentioned in
Section 2.4 was used to smooth the DI in the first washing cycle and used as the training
set to train the network weights of the AR-Net model. The training results are shown in
Figure 10, and the RMSE of the prediction model on the training set is 0.03, indicating that
the prediction model can fit the DI well in the first washing cycle.
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Next, the proposed prediction model was used to predict the DI in the second washing
cycle. In order to compare the predictive performance of different models, three other
models were selected as comparisons, including LSTM [20], ARIMA [18], and ADP [19].
Table 4 lists the hyperparameter settings of each model.

Table 4. Hyperparameter settings for the models.

Model Setting

AR-Net

Input steps: 500
Output steps: 300

First hidden layer size: 64
Second hidden layer size: 32

LSTM

Input steps: 500
Output steps: 300

First hidden layer size: 64
Second hidden layer size: 32

ARIMA
AR order: 500

Integrated order: 3
MA order: 500

ADP The number of data points fitted: 500

Table 5 shows the predictive accuracy of the four models at different prediction times.
Due to their failure to capture the trend of historical washing data, both ARIMA and
ADP exhibit significant errors in forecasting both the final washing time and DI changes
during the prediction process, making them only suitable for short-term forecasting. LSTM
and AR-Net both show good long-term predictive accuracy, with AR-Net exhibiting a
significantly improved predictive performance over time and outperforming LSTM.

Table 5. Comparison of prediction models.

AR-Net LSTM ARIMA ADP

Time (h) RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

500 0.08 5.10 0.08 4.80 0.58 33.42 0.47 29.24
1000 0.06 2.51 0.09 4.49 0.33 14.37 1.00 46.37

Figures 11 and 12 show the predictive performance of the four models at different
prediction times, assuming a threshold of 2 for DI. The black vertical line marks the
beginning of the prediction results. It can be observed that although LSTM is capable of
making predictions, it does not adjust in real time based on the trend of historical values,
resulting in similar results for both predictions. On the other hand, AR-Net provides
relatively accurate predictions for different operating times. When the operating time
is 500 h, due to limited historical data, AR-Net can only make predictions based on the
historical data from the previous washing cycle, resulting in some lag in the predictions.
However, when the operating time reaches 1000 h, AR-Net accurately learns the faster
upward trend and provides more precise predictions based on the latest DI. Therefore, AR-
Net outperforms LSTM as a prediction model and can accurately identify the accelerating
trend of engine performance degradation.
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4. Conclusions

In order to optimize the maintenance cycle of gas turbines, this paper proposes a novel
data-driven method for predicting the performance degradation of gas turbines. Based on
an SVR performance model, the gas path performance parameters under healthy conditions
can be obtained, and then the residual values D I between the predicted and actual values
are calculated. Finally, the AR-Net prediction model is used to accurately predict D I for
a future period of time, which is used to determine the maintenance time. By simulating
the real fouling trend of the compressor and comparing it with the other three models, the
correctness of the proposed method is verified. The results show the following:

1. The predicted values of the SVR performance model and measured parameters can be
used to calculate D I. After smoothing with a piecewise linear model, the influence of
environmental conditions and control factors is eliminated to some extent.
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2. The prediction model based on AR-Net can accurately predict the performance degra-
dation of gas turbines over time and demonstrates the superiority of the proposed
method compared to other models.

3. In practical engineering applications, various degradation indicators, such as residual
power output and residual exhaust temperature, can be used to comprehensively
assess the performance degradation trend of a gas turbine and its components. This
allows for better scheduling of turbine maintenance, thus optimizing operational costs
and major overhaul time.

Author Contributions: S.D.: wrote the paper, performed research, and processed data; X.Z.: funding
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model. All authors have read and agreed to the published version of the manuscript.
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Nomenclature

Latin symbols
ADP adaptive degradation prediction
ARIMA autoregressive integrated moving average
AR-Net autoregressive neural network
DEC compressor efficiency degradation
DI degradation indicator
LSTM long short-term memory

.
m f fuel mass flow rate
N shaft speed
P pressure
SVR support vector regression
T temperature
Wout output power
Greek symbols
ηc compressor polytropic efficiency
π compression ratio
θ temperature ratio
Subscripts
0 ambient
2 compressor outlet
4 turbine outlet
deg degraded parameters
svr output parameters of the SVR model
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