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Abstract: The oxidation of complex hydrocarbons is a computationally expensive process involving
detailed mechanisms with hundreds of chemical species and thousands of reactions. For low-
temperature oxidation, an accurate account of the fuel-specific species is required to correctly describe
the pyrolysis stage of oxidation. In this study, we develop a hybrid chemistry framework to model
and accelerate the low-temperature oxidation of complex hydrocarbon fuels. The framework is based
on a selection of representative species that capture the different stages of ignition, heat release,
and final products. These species are selected using a two-step principal component analysis of the
reaction rates of simulation data. Artificial neural networks (ANNs) are used to model the source
terms of the representative species during the pyrolysis stage up to the transition time. This ANN-
based model is coupled with C0–C4 foundational chemistry, which is used to model the remaining
species up to the transition time and all species beyond the transition time. Coupled with the
USC II mechanism as foundational chemistry, this framework is demonstrated using simple reactor
homogeneous chemistry and perfectly stirred reactor (PSR) calculations for n-heptane oxidation over
a range of composition and thermodynamic conditions. The hybrid chemistry framework accurately
captures correct physical behavior and reproduces the results obtained using detailed chemistry at a
fraction of the computational cost.

Keywords: chemistry reduction; data-based hybrid chemistry model; artificial neural network; principal
component analysis

1. Introduction

Establishing a mechanistic separation between faster pyrolysis and subsequent slower
oxidation in complex hydrocarbon fuels forms the basis for the HyChem approach to
high-temperature oxidation (HTO) [1–3]. The pyrolysis stage features a common set of
fuel fragments, whose global chemistry model is coupled with simpler C0–C4 foundational
chemistry [1]. In contrast to HTO, the low-temperature oxidation (LTO) of these fuels is
characterized by the initial formation of fuel-specific intermediates [4] (e.g., for alkanes,
these include alkyl, alkylperoxy, and alkyl hydroperoxide radicals). The modeling of the
chemistry of these intermediates represents an important challenge in the development of
new detailed mechanisms for complex fuels.

In a recent study, we proposed a data-based hybrid chemistry approach for the chem-
istry acceleration of complex fuels in HTO [5]. In this approach, a set of representative
species, instead of pre-selected fuel fragments, are used to model the pyrolysis stage. These
species “shadow” the progress of the fuel fragments and can be modeled beyond the
pyrolysis stage using simpler foundational C0–C2 or C0–C4 chemistry [5–7]. The represen-
tative species are selected using principal component analysis (PCA), a traditional tool
for chemistry reduction [8], and their hybrid chemistry is modeled using artificial neural
networks (ANNs) during pyrolysis and simpler foundational chemistry during oxidation.
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Recently, Alqahtani [9] proposed an extension of the same approach for the LTO
chemistry of complex hydrocarbon fuels. He showed that a set of representative species
can be selected for different fuels. One of the key strategies in the development of
HyChem [1–3,10–14] and the data-based hybrid chemistry approach [5,7] is based on mod-
eling fuel and fragments during the pyrolysis stage, during which fuel consumption occurs.
The fast pyrolysis followed by the slower oxidation of fragments during HTO in complex
hydrocarbon fuels was observed by You et al. [15]. Unlike HTO, in LTO, fuel is consumed
primarily by oxidation and this consumption occurs in two stages. The first stage, which
corresponds to an exponential rise in OH and HO2 radicals, is characterized by a build-up
of fuel-specific intermediates, as mentioned above, a moderate increase in temperature,
and oxygenated intermediates like CO, CH2O, CH3CHO (acetaldehyde), CH2CO (ketene),
and other heavier carbonyls. The slow oxidation of these intermediates is then followed by
a second-stage ignition [16]. Similarly to HTO [5], where PCA is used to identify fragments
in the context of representative species, key intermediates that track both stages of fuel con-
sumption can be selected as representative species using PCA. These representative species
can then be modeled using ANNs. ANNs have been successfully used in combustion for
the tabulation of chemical reactions and chemistry reduction [17–21]. Additionally, as a
regression tool for species and temperature chemical source terms, ANNs have been used
to accelerate the evaluation of chemistry [22–27].

This study extends the earlier work of Alqahtani in several ways. First, we validate the
hybrid chemistry model from data generation to a posteriori simulations by constructing
ANN models for the reactions of the representative species. Second, the hybrid model is
demonstrated using two canonical reactor models that are commonly used for chemistry
reduction. They include ignition with homogeneous chemistry and the use of the perfectly
stirred reactor (PSR). Data clustering is also implemented to couple these two reactor
models during the training of the ANN. The present study’s ultimate goal is to extend the
hybrid chemistry strategy for complex fuel HTO [5] to complex fuel LTO. The resulting
approach addresses the specific requirements for implementing hybrid chemistry for LTO
and implements strategies for combining training data from different reactor models. We
explore this feasibility using n-heptane, which was one of the three fuels considered in
Ref. [5].

2. Methodology

To demonstrate the proposed hybrid chemistry approach, we contrast the temporal
evolutions of fuel-specific intermediates and other species to temperature during the
homogeneous ignition of n-heptane during LTO. They are obtained from the simulations
of a simple reactor model based on homogeneous chemistry at constant volume, using
Senkin [28] and the detailed mechanism proposed by Mehl et al. [29]. Figure 1 shows the
temperature and species mole fraction profiles during n-heptane LTO based on the initial
conditions of 700 K, 20 atm, and a mixture equivalence ratio of 0.5. The species shown in
Figure 1 account for some of the higher species concentrations during all phases of LTO.
Figure 1d shows the fuel-derived intermediates, while Figure 1b,c show other intermediate
species with lower chemical complexity, including the usual species found in the fragment
list for high-temperature chemistry combined with CH2O, HO2, and H2O2. These species
exhibit the mechanistic phases of the ignition process, including the two stages of ignition.
More importantly, the simpler species account for the bulk of the composition within
the mixture, while the fuel-derived intermediates (e.g., C7H15O2, C7H14, C7H14O, and
C7H1OOH for n-heptane) account for much smaller fractions of the composition of the
original fuel at their peaks between the two ignition stages. Toward the start of the second
stage, the fuel-derived intermediates are depleted at a faster rate than other species, such as
CO, H2, CH2O, and C2H4. These results support our proposed hybrid chemistry approach.
Tracking the initial stages of fuel oxidation using a common set of simpler hydrocarbons
and other species, which also track the bulk of the mixture, can potentially delineate the
various stages of fuel oxidation and account for the bulk of the atoms in the mixture.
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Figure 1. Temperature and species mole fraction profiles during the two-stage LTO of n-heptane,
where ϕ = 0.5, T = 700 K, and p = 20 atm. (a) temperature and fuel mole fraction, (b) CO, H2, C2H4

and CH2 mole fractions, (c) OH, HO2, H2O2 and C2H4 mole fractions, (d) C7H14, C7H14O, C7H14O2

and C7H14OOH mole fractions.

As an extension of our recent work on HTO [5], we seek to couple a foundational
chemistry model with a chemical model for complex fuel LTO. Using ANNs, we model the
reaction rates of representative species, which are used to track the stages of fuel oxidation.
These species tend to consist of simpler hydrocarbons and other intermediates or oxidation
species. The remaining species are modeled entirely by foundational chemistry, using
the species equations described in Section 2.1. As a data-based framework, the proposed
hybrid model is designed to be adaptive to a set of conditions that is determined by the
data on which the model is trained.

2.1. Database Generation

We generate a database of chemical data using the simple reactor model of homoge-
neous chemistry at constant pressure and steady PSR. The mixture conditions used for
these reactors consist of equivalence ratios of 0.8, 1, and 1.2 and initial temperatures of
700 to 860 K in increments of 20 K. Additionally, 50 residence times that are evenly spaced
on a log scale from −9 to 0 are used for the steady PSR. The lumped mechanism by Brunialti
et al. [30] is used as the detailed chemistry mechanism, which consists of 538 species and
2824 reactions. The governing equations for the simple reactor are listed below.

• The energy equation

dT
dt

= − ∑N
k=1 hl ˆ̇ωk Ŵk

ρc̄p
(1)

• The species equation for k = 1, . . . , N

dYk
dt

=
ˆ̇ωkŴk

ρ
, (2)

where T is the temperature, hk, ˆ̇ωk, and Ŵk are the enthalpy, reaction rate, and molecular
weight of the kth species, respectively, ρ is the mixture density, c̄p is the mixture average
specific heat at constant pressure, and Yk is the concentration of the kth species.

The governing equations for the steady PSR are listed below.
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• The enthalpy equation

0 =
hin − h

τ
(3)

• The species equation for k = 1, . . . , N

0 =
Yk,in − Yk

τ
+

ˆ̇ωkŴk
ρ

, (4)

where h is the total enthalpy (chemical and sensible) of the mixture, τ is the residence time,
and the subscript in denotes the inlet conditions to the PSR.

2.2. Representative Species Selection

Representative species are selected using a principal component analysis (PCA) of the
simulation data [5], using the chemical reaction rates of all species in detailed or skeletal
mechanisms. PCA is a powerful technique for identifying the importance of the chemical
reactions involved in a mechanism [8].

PCA is implemented as an eigendecomposition of the covariance matrices of the
species reaction rate data. It results in a vector of principal components (PCs), Ψ, which
represents a linear transformation of the centered species reaction rate vector Ω.

Ψ = QT Ω. (5)

where Q is the eigenvector of the species reaction rate covariance matrix. The jth PC can be
expressed in terms of species reaction rate as follows:

Ψj =
N

∑
k=1

qk,j ˆ̇ω*
k (6)

where N is the total number of species/reaction rates, ˆ̇ω*
k is the centered (i.e., yielding a

zero mean across training data) kth species reaction rate, and qk,j are the (k, j) elements
of Q.

The PCs are then ordered based on their eigenvalues, such that the bulk of the data
variance is represented by the leading PCs. For a given PC, we also order the species
reaction rates in Equation (6), based on the magnitudes of their coefficients qk,j. From
this re-ordering of the PCs and the species reaction rates for each PC, we identify the
corresponding representative species. In Ref. [5], as well as here, we implement PCA in
two steps. The two-step procedure is adopted to progressively select the representative
species. A set of conditions is imposed on the retained principal components (PCs). The
first condition is satisfied by accounting for more than 99% of the data variance. The second
condition, i.e., the cutoff condition, is set at 90% of the data variance. The representative
species are selected from the list of species that are part of the C0–C4 foundational chemistry.
Once the representative species are selected, a model for their chemistry is constructed
based on the available data.

2.3. Data Clustering

The database of chemical reactions used is a multidimensional and multiscale sys-
tem with complex nonlinear behavior. Although it is theoretically possible to employ a
single ANN to deal with such a complex problem, it is not a good choice because of poor
computational efficiency and accuracy. And while a very deep and wide network can be
used to approximate the entire dynamics, this may lead to higher computational costs.
As a result, it is necessary to cluster data to improve accuracy and lower computational
costs [17,18,31,32]. Self-organizing maps (SOMs) [33] and K-means [34] are well-established
clustering techniques for clustering chemical data [17–19]. Local principal component anal-
ysis (LPA) [35] is another approach used to cluster data with similar chemical compositions.
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While clustering techniques are not within the scope of this study, we use the clustering
approach implemented in the PCAfold 2.0 software [36]. This software implements a
zero-neighborhood clustering technique, which clusters data by separating close-to-zero
observations into one or two clusters. This feature of clustering close-to-zero data is very
important since the mass fractions and reaction rates of most representative species are zero,
if not close to zero, during the early stages of oxidation. To account for the contributions
of all representative species, zero-neighborhood clustering is carried out in the principal
component (PC) spaces of the reaction rates of both the homogeneous reactor and PSR,
where zero PCs correspond to regions where mass fractions and reaction rates are close
to zero.

Before applying zero-neighborhood clustering, we separate the data into two categories
based on the first and second stages of ignition. The first stage of ignition in LTO can be identified
by the “plateau” of the slope of the CO time history [16]. In this study, this plateau occurs
around the time when the CH2O mass fraction reaches its maximum peak. After clustering
the data into the two stages of ignition, we apply zero-neighborhood clustering on each stage
of ignition.

The parameters of zero-neighborhood clustering are the offset percentage from zero,
the number of clusters, and the option to group data close to zero into one or two different
clusters. In this work, the number of clusters is set to four for both stages of ignition and
data close to zero are clustered into two different bins. This results in a total of eight clusters.
The offset percentage from zero at which splits are performed is set to 2.5 and 1 for the first
and second stages of ignition, respectively. The clustering is performed as follows [36]:

(a) Using the offset percentage from zero ϵ0, we obtain the offset ε

ε =
ϵ0 · |max(PCobs)− min(PCobs)|

100
, (7)

where PCobs is the reaction rate PCs;
(b) The cluster borders are obtained using the offset ε as

BC− =

{
F (min(PCobs), −ε, nclusters+1

2 ), if |min(PCobs)| > |max(PCobs)|
F (min(PCobs), −ε, nclusters/2), otherwise

, (8)

BC+ =

{
F (ε, max(PCobs), nclusters/2), if |min(PCobs)| > |max(PCobs)|
F (ε, max(PCobs),

nclusters+1
2 ), otherwise

, (9)

where BC− and BC+ are the negative and positive borders of a cluster, nclusters is
the set number of clusters, || is the absolute value operator, and F is the function to
evenly space numbers over a specified interval (linspace);

(c) Data are then clustered based on where they fall along the negative or positive borders.

The sensitivities of the offset percentage and the number of clusters are not in the
scope of this study; however, these could be explored in future works.

2.4. Artificial Neural Network Architecture

In the present study, an ANN-based regression is developed to determine the reaction
rates of the representative species in terms of the temperature and mass fractions of the
fuel: O2, H2O2, and CH2O. These scalars, which are part of the representative species, are
adequate markers of each of the stages of ignition and they have high correlations with the
remaining representative species. The temperature and these five species are the inputs to
the ANNs. ANNs are developed for each cluster.

For each cluster, two sets of ANNs are developed. The first set of ANNs is only used
to predict each of the inputs. This is conducted to further improve the accuracy of the
hybrid scheme during the a posteriori time integration of the governing equations. Since
the ANN models are coupled with foundational chemistry, small errors in the predictions of
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temperature and species mass fractions propagate over time and become larger, resulting in
the inaccurate prediction of all representative species and the chemical system. By training
an ANN for each input, we eliminate the complexity associated with multidimensional
outputs and independently optimize each ANN’s prediction accuracy and computational
efficiency. The second set consists of one ANN for predicting the reaction rates of all
remaining species. The data are scaled for training using the equations below.

• Input scaling

TS∗ =
TSλ

n − 1
λ

(10)

where

TSn =
TS − min(TS)

max(TS)− min(TS)
and λ = 0.1 (11)

• Reaction rate scaling

ˆ̇ωn = 2
ˆ̇ω − min( ˆ̇ω)

max( ˆ̇ω)− min( ˆ̇ω)
− 1 (12)

Each input is modeled by a single ANN comprising two hidden layers with 20 neurons,
while the remaining representative species are modeled by a single ANN comprising three
hidden layers with 20 neurons. Figure 2 shows an example of the network architectures for
CH2O and remaining species prediction. The transfer function connecting a given neuron
to neurons in a previous layer is the hyperbolic tangent function. The ANN weights and
biases are updated during the training process by minimizing the selected loss function,
which is the mean squared error (MSE). For each input ANN, loss function minimization
is optimized by a Levenberg–Marquardt backpropagation algorithm in Matlab [37] and
the training is completed over 5000 epochs. The ANN modeling of the remaining species
is optimized using the Adam optimizer in PyTorch [38] over 100,000 epochs. During
the first 20,000 epochs, a learning rate of 0.005 is used with a weight decay of 10−6, after
which the learning rate and weight decay are decreased to 10−5 and 10−9, respectively.
The training data used to build the hybrid model are divided randomly into three sets: a
training set, a test set, and a validation set with the proportions of 70/20/10%, respectively.
The training is carried out on AMD Ryzen Threadripper ROI 5975WX CPU for a total time
of about 1.5 h, of which about 1 h accounts for training the input ANNs and 30 min account
for training the remaining representative species ANNs. A K-nearest neighbor (K-NN)
algorithm [39] is used to classify each of the clusters and identify which ANN to use for the
prediction of the representative species. This training is carried out in less than 2 min. The
classifier uses the same inputs as the ANNs.
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2.5. Summary of the Hybrid Chemistry Model

After generating the data, selecting the representative species, clustering the data,
and modeling the reaction rates using ANNs, we couple the ANN-regression models with
foundational chemistry, where the ANNs model the representative species and foundational
chemistry models all other remaining species. To illustrate the implementation of this
hybrid scheme, we use the simple reactor model of homogeneous chemistry at constant
pressure, as described in Section 2.1. The governing equations for this system of N species
in foundational chemistry and a subset of Nr representative species are listed below.

• The energy equation
dT
dt

= − ∑N
k=1 hk ˆ̇ωk Ŵk

ρc̄p
(13)

• The representative species equation for k = 1, . . . , Nr

dYk
dt

=
ˆ̇ωkŴk

ρ
where ˆ̇ωk =

{
ˆ̇ωk,h, if t < τtransition
ˆ̇ωk,f, otherwise

, (14)

• Remaining species equation for k = 1, . . . , N − Nr

dYk
dt

=
ˆ̇ωk,fŴk

ρ
. (15)

where T is the temperature, hk, ˆ̇ωk, and Ŵk are the enthalpy, reaction rate, and molecular
weight of the kth species, respectively, ρ is the mixture density, c̄p is the mixture average
specific heat at constant pressure, and Yk is the concentration of the kth species.

In the above equations, the subscript “h” corresponds to a global or ANN model
for the representative species that is used up to a transition point and “f” corresponds
to the foundational chemistry model. In the present study, that transition point also can
be tagged as the transition time τtransition during fuel oxidation. An adequate model may
be needed up to the onset of the second ignition stage. Beyond that transition time, the
representative species reaction rates are modeled with foundational chemistry. Meanwhile,
all remaining species are modeled with foundational chemistry. The hybrid model for
representative species chemistry attempts to capture the roles of the initial stages of fuel
oxidation, including the formation of fuel-specific intermediates, which are not captured
by foundational chemistry.

For more complex reactor models, a classifier may be used to decide which chemistry
model to use for a given mixture condition. These classifiers, such as the pattern recognition
network (PRN) used in Ref. [5], are also trained on detailed chemistry simulation data. Hybrid
models for the reaction rates of the representative species can be determined via regression
using ANNs, as shown in [5–7]. Alternatively, they can also be determined using global
reaction rates, similar to the forms proposed for fragments in HyChem [1–3].

3. Results and Discussion
3.1. Selected Representative Species

Table 1 lists the representative species obtained using the two-step PCA approach.
From 538 species in the detailed mechanism, 24 species are retained using the two-step PCA.
The two-step PCA achieves a 95.5% reduction. The major products of combustion, CO2
and H2O, along with CO, are among the selected species. Low-temperature radicals, such
as H2O2, HO2, and CH2O, are also retained. Other species that are dominant and highly
reactive in HTO or the second stage of ignition, such as H2 and HCCO, are also among
the retained species. Additionally, the two-step PCA also selects the species H, O, OH,
HO2, H2, H2O, H2O2, CH3, HCO, CH2O, CO, CO2, and CH3CHO, which are formed in the
oxidation of any fuel and can be used as universal markers of oxidation reactions [40], as
well as OH, HO2, CH2O, and CO, which can be used to predict the IDTs of many fuels [41].
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This demonstrates that the two-step PCA retains key species that adequately mark both
stages of ignition during LTO. A total of 26 thermochemical scalars are modeled, including
24 representative species, temperature, and fuel.

Table 1. List of the selected representative species.

Fuel n-C7H16

Selected Species (24) H, O, OH, HO2, H2, H2O, H2O2, O2, CH3, HCO, CH2O, CH3O, CO,
CO2, C2H3, C2H4, C2H5, HCCO, CH2CO, CH3CO, CH2CHO, CH3CHO,
C3H6, and C2H3 CHO

3.2. Data Clusters

The results of the clustering technique are shown in Figures 3 and 4 for the homo-
geneous reactor and Figures 5 and 6 for the steady PSR. In Figure 3, the clustered mass
fractions (top row) and the reaction rates (bottom row) are shown for the fuel, O2, H2O2,
and CH2O. Figure 4 shows the clusters during both stages of ignition. We can observe that
Clusters 2, 3, and 4 contain all zero and close-to-zero reaction rates in the first stage of igni-
tion, while Cluster 1 mostly contains reaction rates with larger magnitudes. This illustrates
the importance of the clustering approach. Since most of the close-to-zero reaction rates
present during the slow and early stages of oxidation are modeled separately from the
large reaction rates, better prediction accuracy is achieved for the early stages of ignition
compared to modeling the entire first stage of ignition. Similarly, for the second ignition
stage, Cluster 7 contains all zero reaction rates, corresponding to equilibrium. Cluster 8
contains the high-reactivity data of the high-temperature ignition.

0

1

2

3

4

5
×10 2 YnC7H16

1.0

1.5

2.0

×10 1 YO2

0

2

4

6 ×10 3 YH2O2

0

2

4

6

8
×10 3 YCH2O

3.5 4.0 4.5 5.0
Time (s)

4

3

2

1

0
×101 nC7H16

3.5 4.0 4.5 5.0
Time (s)

1.0

0.8

0.6

0.4

0.2

0.0
×103 O2

Cluster
1
2
3
4

5
6
7
8

3.5 4.0 4.5 5.0
Time (s)

1

0

1

×101 H2O2

3.5 4.0 4.5 5.0
Time (s)

2

0

2

4

×101 CH2O

Figure 3. Homogeneous data clustering: species mass fraction and reaction rate temporal profiles
during the oxidation of n-heptane, where ϕ = 0.8, T = 700 K, and p = 20 atm.
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Figure 4. Homogeneous data clustering: temperature temporal profile during the oxidation of
n-heptane, where ϕ = 0.8, T = 700 K, and p = 20 atm.

Figure 6 shows the clustered mass fractions (top row) and reaction rates (bottom row)
for the fuel, O2, H2O2, and CH2O and Figure 6 shows the clustered temperature. Unlike
the homogeneous reactors where eight clusters are identified, here, data are only found
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in Clusters 2 and 7. This is due primarily to the initial separation of the data into two
categories based on the stages of ignition, as described in Section 2.3. Additionally, all data
after ignition are included in Cluster 7. The reaction rates of the PSRs are 1 to 2 orders of
magnitude smaller than those of the homogeneous reactors; therefore, they are close to
zero, which is why they fall into Cluster 7.
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Figure 5. PSR data clustering: species mass fraction and reaction rate temporal profiles, where
ϕ = 1.2, T = 780 K, and p = 20 atm.
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Figure 6. PSR data clustering: temperature temporal profile, where ϕ = 1.2, T = 780 K, and p = 20 atm.

3.3. ANN Training and Reaction Rate Prediction

We investigate the generalization of the ANNs by predicting test and training datasets.
The scatter plot in Figure 7 shows good correlation between the actual Cantera and ANN-
predicted reaction rates. Here, the models are trained using data obtained by solving
Equations (1)–(4) with the initial temperatures of 700, 740, 780, 820, and 860 K for equiva-
lence ratios of 0.8, 1, and 1.2 and tested using the initial temperatures of 720, 760, 800, and
840 K for the same equivalence ratios. Figure 8 shows the evolution of the loss functions
as a function of the epochs or iterations for the first four clusters. Training for Clusters
5 to 8 also exhibits similar behavior. At around 20,000 iterations, the loss function becomes
somewhat “steady” and no longer decreases. Decreasing the learning rate and weight
decay improves the network’s training and decreases the loss function. Table 2 shows the
training losses.

The homogeneous reactor ANN predictions of reaction rates are shown in Figure 9,
with an initial temperature of 700 K and an equivalence ratio of 1. The PSR ANN predictions
of reaction rates are shown in Figures 10 and 11, with initial temperatures of 740 K and
700 K and equivalence ratios of 1 and 0.8. The ANN predictions accurately match the
Cantera solutions. Despite the reactors displaying two different behaviors, the ANNs in
each cluster accurately learn and predict each reactor’s behavior.
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Figure 7. Training (red symbols) and test (blue symbols) data scatter plot of Cantera and ANN-
predicted reaction rates. The black line represents the line of best fit.
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Figure 8. Training losses of clusters for the first stage of ignition.

Table 2. Values of the loss functions of the obtained models for the training dataset.

Cluster Loss

1 2.4 × 10−6

2 3.4 × 10−6

3 3.9 × 10−7

4 1.5 × 10−7

5 2.6 × 10−6

6 2.1 × 10−7

7 4.6 × 10−6

8 1.3 × 10−6
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Figure 9. Comparison of the ANN-predicted and Cantera reaction rates for the homogeneous reactor,
with an initial temperature of 700 K and an equivalence ratio of 1.
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Figure 11. Comparison of the ANN-predicted and Cantera reaction rates for the PSR, with an initial
temperature of 700 K and an equivalence ratio of 0.8.

3.4. Hybrid Chemistry Model

We demonstrate the hybrid chemistry approach by comparing a posteriori simulations
to detailed chemistry data using the homogeneous reactor. The foundational chemistry
is based on the C0–C4 USC Mech-II mechanism [42], with 111 species and 784 reactions.
The governing Equations (13)–(15) are integrated using Cantera [43]. To demonstrate the
hybrid chemistry scheme, we show the results of simulations with initial temperatures of
740 K and 820 K and an equivalence ratio of 1. These two sets of conditions are included
in the training data. We also show results with an initial temperature of 720 K and an
equivalence ratio of 0.8 to demonstrate the model’s ability to interpolate. Figures 12–14
show comparisons of the temporal profiles of the detailed mechanism calculations (solid
black) and those of the hybrid scheme (dotted red) for the temperature and select species
mass fractions under these initial conditions.

Figure 12. Comparison of temperature and species mass fraction profiles during the oxidation of
n-heptane, where ϕ = 0.8, T = 720 K, and p = 20 atm. The hybrid model results are shown by the
dotted red lines and those of the detailed mechanism are shown by the solid black lines.

The figures show that the timings of the two stages of ignition are accurately captured
by the hybrid chemistry scheme. However, we do not consider fuel-specific intermediates
nor the very initial stages of fuel oxidation, which include H abstraction and some of
the chain propagation reactions that also involve other key radicals, such as OH and
CH3 [4]. Nonetheless, the profiles of these radicals are well predicted and match the
detailed chemistry calculations. Regardless, if the goal is to capture the ignition delay, heat
release, and products, the hybrid scheme’s performance is very good. More importantly, the
scheme results in a computation speed increase of up to 9 times that of detailed chemistry
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calculations. Additionally, there is a potential to save memory since the hybrid model tracks
fewer species (111) and reactions (784) compared to the detailed mechanism (538 species
and 2824 reactions). Further acceleration may be achieved with a further reduction in the
number of representative species and foundational chemistry as well.

Overall, the proposed hybrid scheme can capture ignition delay times (IDTs) and the
extent of temperature increases (i.e., the rates of heat release) at each stage and can be used
to determine the final products of combustion.

Figure 13. Comparison of temperature and species mass fraction profiles during the oxidation of
n-heptane, where ϕ = 1, T = 820 K, and p = 20 atm. The hybrid model results are shown by the dotted
red lines and those of the detailed mechanism are shown by the solid black lines.

Figure 14. Comparison of temperature and species mass fraction profiles during the oxidation of
n-heptane, where ϕ = 1.2, T = 740 K, and p = 20 atm. The hybrid model results are shown by the
dotted red lines and those of the detailed mechanism are shown by the solid black lines.
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4. Conclusions

In the present study, we demonstrate the feasibility of a data-based hybrid chemistry
scheme for LTO, based on modeling the chemistry of representative species and coupling
this chemistry with simpler foundational chemistry. In total, 24 representative species
are selected using two-step PCA carried on reaction rate data obtained from simulations
using detailed chemistry with 538 species and 2824 reactions. Among the 24 representative
species are 14 species that are formed during the oxidation of any fuel [40] and 4 species
(OH, HO2, CH2O, and CO) that can be used for IDT prediction of many fuels [41]. ANNs
are used to model the representative species reaction rates and are coupled with smaller
C0–C4 foundational chemistry with 111 species and 784 reactions to model the remaining
species. To improve the computational efficiency and prediction accuracy of the ANNs,
the reaction rate data are clustered into eight clusters such that data close to zero are in
the same cluster. A validation of this approach via comparisons to detailed chemistry
calculations for n-heptane shows that the model results match well with detailed chemistry
calculations. The model also correctly captures the timings of the stages of ignition, as well
as IDT, heat release, and major species and radicals. With a calculation speed increase of
up to 9 times that of detailed chemistry, the hybrid scheme can accelerate the chemistry
integration process. Similarly, a speed increase of 1 order of magnitude is achieved for
HTO [5].

Future work will aim to achieve aggressive reductions in the numbers of representative
species by refining the PCA-based procedure or using other reduction methods, such
as directed related graphs (DRGs) [44–46] or global pathway selection (GPS). Ref. [47]
identified a smaller number of representative species in a hybrid model based on desired
criteria for accuracy in prediction chemistry. The sensitivity of the hybrid scheme to the
choice of foundational chemistry will also be investigated to establish prediction accuracy
and computational acceleration across different foundational chemistry sizes. We will also
extend the scheme using neural ordinary differential equations (NODEs) as these have
been shown to have better prediction accuracy and generalization [48–51]. Additionally,
improving the criteria for determining the transition from ANN regression to foundational
chemistry could further enhance the model and these criteria could be used to implement
PRN classifiers. The choice of transition can determine how accurate the final products
are because, beyond this point, only foundational chemistry is used; thus, having accurate
mixture compositions before the transition is important.
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