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Abstract: Photovoltaic (PV) power generation forecasting is an important research topic, aiming to
mitigate variability caused by weather conditions and improve power generation planning. Climate
factors, including solar irradiance, temperature, and cloud cover, influence the energy conversion
achieved by PV systems. Long-term weather forecasting improves PV power generation planning,
while short-term forecasting enhances control methods, such as managing ramp rates. The stochastic
nature of weather variables poses a challenge for linear regression methods. Consequently, advanced,
state-of-the-art machine learning (ML) approaches capable of handling non-linear data, such as long
short-term memory (LSTM), have emerged. This paper introduces the implementation of a multivari-
ate machine learning model to forecast PV power generation, considering multiple weather variables.
A deep learning solution was implemented to analyze weather variables in a short time horizon.
Utilizing a hidden Markov model for data preprocessing, an LSTM model was trained using the
Alice Spring dataset provided by DKA Solar Center. The proposed workflow demonstrated superior
performance compared to the results obtained by state-of-the-art methods, including support vector
machine, radiation classification coordinate with LSTM (RCC-LSTM), and ESNCNN specifically
concerning the proposed multi-input single-output LSTM model. This improvement is attributed
to incorporating input features such as active power, temperature, humidity, horizontal and diffuse
irradiance, and wind direction, with active power serving as the output variable. The proposed
workflow achieved a mean square error (MSE) of 2.17× 10−7, a root mean square error (RMSE) of
4.65× 10−4, and a mean absolute error (MAE) of 4.04× 10−4.

Keywords: photovoltaic systems; irradiance; machine learning; forecasting; LSTM; electric grid;
hidden Markov models

1. Introduction

The constant increase in electric energy use around the world poses an important
challenge to electric power generation [1]. Transitions to renewable energy are occurring
because non-renewable energy is not viable in the long term due to social and environ-
mental concerns and conventional fuel supply issues. Different energy sources would be
needed to cover fluctuations from the sun or the wind and guarantee a quality service. For
example, storage technologies would provide alternative supply during energy deficiencies
due to cloud cover or at night.

Solar energy is the most used renewable energy source in the world, having generated
855.7 TWh by the end of 2020 [2]. PV systems are the main technologies based on solar
energy resources [2,3]. The energy transformations achieved by PV panels are affected by
manufacturing factors associated with materials, maintenance, cleaning, dimensions [4],
and climate factors, grouped into atmospheric parameters, solar irradiance, and geographic
characteristics. Table 1 presents some weather variables that affect power generation from
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PV systems [5]. Irradiance has the highest correlation with the power output, as proven in
previous works and later in this paper, with a correlation coefficient of 0.96. Irradiance and
other weather variables exhibit stochastic behavior, which makes classic statistical methods
ineffective in predicting their behavior.

Table 1. Classified weather variables.

Classes Input Variables

Atmospheric characteristics

Pressure, temperature, cloud abundance, rainfall, cloud formation, cloud cover in the
atmosphere, radiation, humidity, density, wind energy, wind speed, wind direction,
evaporation, sunshine duration, wind gust, average temperature, ambient temperature,
minimum temperature, maximum temperature, sky information, temperature variation.

Solar characteristics
Solar energy, solar irradiance, zenith angle, global horizontal irradiance, diffuse horizontal
irradiance, direct normal irradiance, global solar radiation, daily solar radiation, cell
temperature, wavelength, precipitation, photovoltaic energy.

Geographic conditions latitude, longitude, altitude.

Weather variables can be analyzed at different time horizons, which can be grouped
into very short-term (<30 min), short-term (between 30 min and 6 h), and long-term time
horizons (between 4 and 6 h) [5]. Another option is to group variables as intra-hour (15 min
to 2 h), intra-day (1 to 6 h), and day-ahead (1 day to 3 days) [6]. Each group has different
sources of information; for example, the long-term horizon uses satellite images, and the
short term uses sky images. Prediction in the medium or long term has a high error rate.
On the other hand, very short-term predictions have better accuracy and are used in power
generation planning [7] or applications such as ramp rate in PV power [8].

There are diverse approaches to predicting environmental characteristics, such as time
horizon, machine learning, and deep learning methods and those that estimate variables.
For example, when grouping by method, the proposed groups are statistical models, cloud
image models, numeric models, and hybrid models. Statistical models work with historical
data to predict the subsequent values, and these models can be sub-grouped into statistical
or linear models and artificial intelligence or non-linear models. Some examples of linear
models are stationary analysis, autoregressive integrated moving average (ARIMA), multi-
ple regressions, and exponential smoothing. Nonlinear models include fuzzy inferences,
genetic algorithms, neural networks, and machine learning methods [6]. These linear
and non-linear models are used in very short-term or intra-hour groupings. Artificial
intelligence methods are well-suited for managing diverse problems. For example, neural
networks are a great tool for solar irradiance prediction, and the most popular method for
this prediction is multilayer perceptron (MLP) [6]. Distinguishing spurious results from
actual cloud dynamics is an important problem. Dips from actual cloud dynamics can be
identified as outliers and eliminated in the preprocessing stage. However, an initial model
outlining common behavior for PV power generation could be used as a first step, with any
relevant dips modeled at a subsequent stage. The initial baseline modeling might depend
on the dataset used.

1.1. Related Works

Some relevant works for predicting power output in PV systems address the issue of
discontinuous or sudden fluctuation in power generation due to factors such as temperature,
wind velocity, cloud cover, and other weather variables [7]. This analysis and prediction use
a short time horizon (0.5 to 6 h), and prediction is achieved with machine learning methods,
particularly with support vector machine (SVM). Another paper compared multiple linear
regression (MLR), decision tree (DTR), and k-nearest neighbor (KNN); the author concluded
that KNN is the best machine learning method because it had more accurate predictions
compared to the other models [9].

In another paper, three linear methods were compared on their ability to predict PV
power output: autoregressive (AR), LM model, and exogenous input (ARX). All performed
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well in stable conditions but yielded inaccurate results under unexpected fluctuations; the
ARX model produced better results [10]. Another author used convolutional neural network
(CNN) and long short-term memory (LSTM) to create a robust deep spatiotemporal model
named convolutional LSTM (ConvLSTM) to work in multiples regions or PV systems that
are separated from each other [11]. ConvLSTM was compared to the ARMA model and
fully connected LSTM (FC-LSMT); ConvLSTM produced better results.

Recurrent neural networks (RNNs) and LSTM architectures have been used to create
a new framework for sequence learning named Evolino [12]. The Evolino framework
was probed with a Mackey–Glass time series prediction. In order to perform power
prediction, a path with three stages was proposed: data preprocessing to treat missing
values, data normalization, and parameter initialization [13]. In the second stage, a radiation
coordinate classification method was employed based on the correlation between different
features at different times, typically in the time window 8:30–17:30. This classification
method categorizes data points into specific radiation coordinates, capturing variations
in solar radiation levels. Finally, the preprocessed and classified data were input into an
LSTM model for power forecasting; the model was assessed using the benchmark dataset
DKASC [14]. The evaluation metrics RMSE and mean absolute percentage error (MAPE)
were reported to evaluate the accuracy of the model.

One study proposed an examination of the impact of the configuration and selection
of hyperparameters in an LSTM architecture. The objective was to establish the different
contributions of the LSTM configuration, input, forgetting, and output gates in forecasting
applications [15]. Another work proposed a feature extraction method based on sentiment
analysis. Concatenated time series information of prices and other variables were used as
input in prediction models, including random forest, LSTM, and multilayer perceptron [16].

Another proposed approach focused on preprocessing the data to remove abnormali-
ties by performing data normalization [17]. Subsequently, the ESN-CNN model is trained,
combining the echo state network (ESN) and convolutional neural network (CNN) to
extract spatial features from the data. This hybrid model aims to leverage the capabilities
of both ESN and CNN for improved performance. Finally, the model is assessed using
the DKASC dataset [14], and metrics such as RMSE and MAPE are reported to evaluate
its accuracy. Table 2 summarizes the related works and highlights their advantages and
disadvantages.

Table 2. Related work summary.

Related Work Advantages Disadvantages

I-ACO-SVM [7]

SVM is a classical machine learning technique. A workflow
was proposed where the radial basis function kernel
parameters are fine-tuned using optimal parameters obtained
from the ant colony algorithm. This approach yields better
accuracies and can be implemented in an embedded system
due to its computational efficiency [7].

The hyper-tuning of the parameters requires initial
computational efforts due to the application of a
search grid.

KNN [9]
KNN is a suitable method for conducting load profile
forecasting because it is highly adaptable for analyzing the
K-nearest neighbors.

The limitations of KNN methods arise from their
requirement for a substantial amount of data to
accurately perform similarity measurements for
identifying the k-nearest neighbors. In contrast, deep
learning approaches have demonstrated superior
performance in terms of MSE, MAPE, and R2.

ConvLSTM [11]

The performance achieved by the convolutional LSTM
outperforms the accuracy obtained for the baseline
algorithms, including classical machine learning techniques.
This model integrates spatial image analysis into the study of
power prediction [11].

Given the intricacy of the convolutional LSTM and
the need for hyperparameter tuning via an extensive
grid search, it demands a robust computational
infrastructure.
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Table 2. Cont.

Related Work Advantages Disadvantages

Evolino [12] The Evolino framework typically avoids problems of
vanishing gradients related to the RNN [12].

In the framework that combines Evolino with LSTM,
the training process is computationally expensive
and may encounter overfitting issues owing to the
large number of parameters that must be tuned [12].

RCC-LSTM [13]

The framework proposed in [13] outperforms the results of
baseline algorithms such as RCC-RBFNN and RCC-BPNN.
One of the major contributions is made during the
preprocessing stage, where similarity measurements are
obtained using the window size.

The RCC-LSTM requires a selection of threshold
values, and the adjustment of cell numbers is
contingent upon specific weather conditions in
accordance with a fixed window size.

ESN-CNN [17]

The pipeline proposed in [17] comprises three stages. The
first stage involves preprocessing, which includes the
removal of data abnormalities, followed by data
normalization and the initialization of parameters for the
echo state network (ESN). The output of the final ESN stage
serves as the input for the convolutional neural network
(CNN). This pipeline demonstrates excellent performance in
power prediction for the benchmark datasets.

Echo state networks are susceptible to overfitting,
primarily due to their large number of processing
units. Furthermore, the convolutional operations
within this framework require matrix multiplication,
escalating computational complexity.

1.2. Contributions

The main contributions of this paper are:

• A robust and precise workflow to power prediction is presented, leveraging hidden
Markov models to effectively identify outliers within the raw weather data. Moreover,
a deep learning LSTM architecture is designed to enhance PV prediction performance,
surpassing the results reported in [7,13,17].

• PV prediction is performed at short time horizons (five minutes ahead) with time steps
of five minutes using the ambient weather dataset on Puerto Rico. The Caribbean loca-
tion introduces challenges, as historically, weather predictions have been unreliable
due to the high variability of winds and the complicated dynamics of the heat patterns
throughout the day from both sea and land.

This paper presents an implementation of a machine learning model to predict the
power output of a PV system consisting of two subprocesses: the preprocessing stage and
the trained model for power prediction. The initial preprocessing involves the application
of a hidden Markov model (HMM) to automatically detect and eliminate outliers. Subse-
quently, the LSTM model is trained to predict the common behavior of power generation,
establishing a baseline model as the initial step toward future work specifically addressing
outlier prediction in the context of Puerto Rico. The two variations of the LSTM are pre-
sented: one uses a single input to obtain a single output (SISO), and the other uses multiple
inputs to obtain a single output (MISO). The prediction horizon was set at a short time
(five minutes ahead) to assess the effectiveness of HMM outlier detection and elimination.
This specific time horizon captures the dynamic behavior of clouds and their impact on
PV systems.

1.3. Outline

To outline the proposed method, this paper is separated into six sections. The introduc-
tion sets the stage by presenting the motivation, context, related works on PV systems and
weather forecasting, and the primary contributions of this study. The proposed workflow
details the stages for constructing the proposed machine learning model, with each step
described in subsections. The third section describes the two datasets employed. The results
outlined in section four showcase outcomes across six experiments and employ metrics
for comparison with state-of-the-art solutions. The fifth section presents a discussion and
interprets the results in the context of enhancing PV systems. Lastly, the sixth section
provides a concise summary and conclusions, encapsulating the essential findings and
contributions of this paper.
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2. Proposed Workflow

Power output prediction in PV systems needs multiple steps to prepare the data, train
the model, and compute the results. Figure 1 presents a workflow used to build a machine
learning model.
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In addition, Table 3 presents a detailed summary of the variables.

Table 3. Notation used in the article.

Symbol Description

Di f f Magnitude difference between two consecutive points

x Variable to represent some feature

x[t] Magnitude of feature x in the time t

x[t− 1] Magnitude of feature x in the time t− 1

s = {s1, s2, . . . , sT} Hidden state vector of HMM

o = {o1, o2, . . . , oT} Observation variable vector of HMM

p(ot| st) Prior probability of HMM

O[i] Training data

i Position of the measurement

xH [i] Present measure, used as input in the training process

yH [i] Future desired measures, used as a reference in the training process

x̂H [t] Predicted measure. This is the output of the trained model

ct Visible state in time t of LSTM cell

ht Hidden state in time t of LSTM cell

xt = xH [t] Present measure used as input to LSTM cell

ft Forget state of LSTM cell

it Input state of LSTM cell

ot Output state of LSTM cell

ĉt Predicted visible state of LSTM cell

σ Sigmoid function

· Dot operator

W, U, and b Configuration parameter of LSTM cell
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2.1. Input Variables

The first step in the workflow is related to the dataset and variables used. The dataset
has the following variables: active energy delivered/received, active power, current phase
average, wind speed, temperature, humidity, horizontal and diffuse irradiance, wind
direction, weather daily rainfall, radiation global tilted, and radiation diffuse tilted.

The input data were normalized using min–max scaling; this process transforms the
amplitude of each variable to values between 0 and 1. Normalization allows the comparison
of different variables in the same space while simplifying amplitude information. To
perform the model generalization and avoid overfitting, the NaN values are removed from
the data and replaced by the mean values from a neighborhood.

2.2. Outlier Detection and Removal

The power output and other variables typically have outliers generated by cloud cover.
In [18], the authors mention that shadows are the most negative environmental factor for
PV power systems.

In the outlier detection phase, the difference between points in the signal is computed
as follows.

Di f f = x[t]− x[t− 1] (1)

where x[t] is the magnitude of feature x in the time t. A large value represents an unusual
value or outlier, and a small value represents a normal value. The Gaussian HMM classifies
each point using the computed feature Diff. Three classes configured in the HMM model
were: outlier, inlier, and constant.

HMM is a process involving the evolution of hidden states over time. In other words,
it describes the transitions between hidden states. These states are associated with obser-
vations corrupted by noise. If the state variables are S1, S2, . . . , ST and the corresponding
observation variables are 01, 02, . . . , 0T , an HMM can be parametrized by an initial distribu-
tion p(S1), transition probabilities p(St+1| St), and observation probabilities p(Ot| St) [19].
The joint distribution of a length T is factorized as:

p(s, o) = p(s1)
T−1

∏
t=1

p(st+1|st)
T

∏
t=1

p(ot|st) (2)

where s = {s1, s2, . . . , sT} represents a particular assignment of hidden state and o =
{o1, o2, . . . , oT} represents an observation variable [19]. The hidden states used in this
implementation are 0 and 2 for inliers or normal values and 1 for outliers.

According to the Gaussian HMM approach, the prior probability p(ot| st) is obtained
from the probability distribution function (PDF). The PDF provides approximations of
Gaussian densities [19,20], which are obtained by:

p(ot| st) ∼ N
(
ot

∣∣ µ̂t, Σ̂t
)

(3)

where µ̂t and Σ̂t are estimated from each observation.
The output from the outlier detection step is a classification of measures; this classifi-

cation is used in the outlier removal step to smooth the measures with higher differences.
Finally, the output of the outlier removal step is the time series signal without outliers. The
best performance is obtained when three classes are configured to classify the measures.
These classes can be described as follows: zero or minimal differences (indicated in Figure 2
by blue dots), small differences (orange dots), and higher differences (green dots). For
example, in Figure 2, the power output in one day is presented, the signal has outliers, and
the outlier detection step classifies the points as outliers with green dots or normal values
with orange and blue dots.
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Figure 3 shows the signal output of the outlier removal step, where all outliers have
been eliminated. It is observed that the difference in amplitude is less than 0.06 due to
imperfections in the signal.
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2.3. Split Data

The available measurements are divided into three groups: testing, training, and
validation. The percentage is chosen heuristically as follows: the testing group has 30% of
the measurements, the training group has 40%, and the validation group has 30%. Each of
these groups is used in different steps in the next stages.

2.4. Training Data

Since statistical methods are ineffective in the prediction of irradiance and other
weather variables [5], artificial intelligence methods have gained acceptance and are well-
suited for PV power prediction. For example, neural networks are a great tool for solar
irradiance prediction, and the most popular method for this prediction is multilayer per-
ceptron (MLP) [6]. Deep learning is a subcategory of artificial intelligence where methods
are used to resolve complex non-linear problems [21]. Some of the main methods are:
convolutional neural network (CNN), support vector machine (SVN), long short-term
memory (LSTM), and recurrent neural networks (RNN). LSTM is typically used for time
series variables such as irradiance and other weather features.

Training data are represented by O[i], where i is the position of the measurement,
and i = [0, 1, 2, . . . , n], where n is the number of measures in the training data. Using O[i]
generates two vectors, x[i] and y[i], where:

xH [i] = O[i], ∀i = [0, 1, 2, . . . , n− 1] (4)

yH [i] = O[i + 1], ∀ i = [0, 1, 2, . . . , n− 1] (5)

Equations (4) and (5) generate two vectors with length n − 1; both vectors fit the
model in the training block. The xH [i] vector represents the present measure, and the yH [i]
vector represents the future desired value. Both vectors are given after the application of
the outlier detection and removal steps using HMM.

2.5. Testing Data

The testing data have two vectors, xH [i] and yH [i], computed from Equations (4) and
(5), and n is the number of measures in the testing data. Both vectors are used to test the
built model in the training block. The xH [i] vector represents the present measure and
input to the model; the output model is the predicted vector x̂H [t]. The yH [i] vector is used
to compute metrics and is explained in Section 2.7 (Metrics).

2.6. Training Model

The power prediction methods applied to PV systems have been extensively addressed
in [6,7,9,13,17]. In recent years, deep learning methods, particularly those utilizing long
short-term memory (LSTM) networks, have gained significant attention for time series
prediction problems [19], outperforming traditional machine learning techniques in terms
of MSE and RMSE [7]. This paper presents an approach based on SISO and MISO LSTM
models, wherein a hidden Markov model removes outliers for power prediction.

2.6.1. Long Short-Term Memory (LSTM)

LSTM is a deep learning method used for time series prediction. A key feature of
LSTM is the possibility of protecting the memory cells using sigmoid gates [12]. With this,
the LSTM method can update the output based on previous outputs and present input
data [22]. Figure 4 presents the cell components in LSTM.
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Each LSTM cell receives the previous state ct−1, the previous hidden state ht−1, and
the actual measure xt = xH [t]. Forget gate, input gate, and output gate use the sigmoid
function to protect the memory cell [11].

For a single LSTM cell, as presented in Figure 4, it is possible to calculate the values
using the equations in (6).

ft = σ
(

W f × xt + U f × ht−1 + b f

)
it = σ(Wi × xt + Ui × ht−1 + bi)

ot = σ(Wo × xt + Uo × ht−1 + bo)
ĉt = tanh(Wc × xt + Uc × ht−1 + bc)

ct = ft · ct−1 + it · ĉt
ht = ot · tanh(ct)

(6)

where σ is the sigmoid function used as activation function, and ‘·’ is the dot operator or
dot product operation. Finally, W, U, and b are configuration parameters [21].

The LSTM implemented uses ct−1 and ht−1 initial values in zeros. The output is taken
as ht.

2.6.1.1. Implementation

The proposed SISO and MISO LSTM models were implemented using TensorFlow ver-
sion 2.11.0 [23]. For the SISO LSTM model, the network hyperparameters were configured
with four neurons in the hidden layer and trained for ten epochs, with a batch size of 1.
The learning rate was set to 1× 10−4, the optimizer used was Adam, and the optimization
metric was mean squared error (MSE).

The MISO LSTM model was configured with three hidden layers, followed by a dense
operation, and trained for 200 epochs. The optimizer used was Adam, and the loss function
employed was MSE. The batch size was determined by grouping the following features:
active power, temperature, humidity, horizontal irradiance, diffuse irradiance, and wind
direction. These features were set as the input for the MISO LSTM model to perform power
prediction as the target.

2.7. Metrics

In order to evaluate the performance of the proposed MISO and SISO LSTM models,
the following metrics were employed: mean squared error (MSE), root mean squared error
(RMSE), and mean absolute error (MAE). These models were tested using the benchmark
dataset DKA Solar and Ambient Weather dataset.
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3. Dataset Description

In order to evaluate the proposed SISO and MISO LSTM models, experiments were
conducted using two distinct benchmark datasets: DKA Solar and Ambient Weather. The
details of each dataset are described as follows:

• DKA Solar [14]: This online hub provides a platform for sharing variable weather
measurements obtained from PV farms located in Australia. The dataset used to
evaluate the proposed models spans from 2013 to 2020, with 1,281,324 measurements
taken every five minutes. The first 12,950 dataset values were not used because there
are no active power values; however, the number of samples is high, with 1,268,374
measurements. In addition, DKA has 13 numeric features such as active power, wind
speed, weather temperature, relative humidity, global horizontal irradiance, and
others. The dataset was accessed on 22 June 2022. The first task involved in using
the DKA dataset was to find the place and time selected by previous state-of-the-
art papers; this was conducted in order to enable a comparison of the results of the
proposed method. Next, the time spans were selected where all features were available
because some features presented zero or empty information for some periods. Finally,
step “Section 2.1” from the proposed workflow was executed.

• Ambient Weather [24]: This is a platform used to register, share, and download weather
measurements. The “UPRM CID Sustainable Energy Center, Mayagüez” device was
selected in Puerto Rico. The data used span from 20 February 2022 to 6 September
2022, with 56,340 measures taken every five minutes and 18 features. Ambient Weather
is a community where owners of meteorological sensors can seamlessly share measure-
ments from Puerto Rico in real time. For instance, the Sustainable Energy Center (SEC)
laboratory operates two meteorological stations, contributing real-time data such as
irradiance, temperature, humidity, and more. However, it is important to note that the
Ambient Weather dataset currently only offers records dating back one year, resulting
in a relatively short time span for analysis. Furthermore, instances of electrical inter-
ruption have occasionally led to gaps in the data from certain meteorological stations.
To address this, the first task involved downloading data from various stations and
selecting a time span with minimal gaps. These gaps were replaced using the ffill
(forward fill) interpolation technique available in Python 3.10.7 [25]. Subsequently,
step “Section 2.1” from the proposed workflow was executed.

4. Results

Correlation analysis of the DKA Solar Center dataset determined which features
provided more information to train the ML model. The Pearson correlation method was
used to calculate the correlation between features. The results are presented in Figure 5.

Based on Figure 5, the most correlated features to active power are horizontal and
diffuse irradiance, with correlation coefficients of 0.96 and 0.55, respectively. The features
used in the experiments presented below were selected based on this correlation analysis.

The ML model proposed was trained with the DKA Solar Center dataset [14]. Ex-
periment 1 used only the active power feature as input and output. Experiment 2 used
active power, wind speed, temperature, humidity, horizontal and diffuse irradiance, wind
direction, and weather daily rainfall as input, and active power as output. Experiment 3
used active power, temperature, humidity, horizontal and diffuse irradiance, and wind
direction as input, and active power as output.

Experiment 3 used temperature, humidity, global horizontal radiation, diffuse hori-
zontal radiation, and wind direction, based on the features presented in [7]. The results
obtained with the proposed LSMT model are better than the three models (support vector
machine, RCC-LSTM, and ESNCNN) tested in [7,13,17]. Another difference is that the
LSTM model was trained and tested with three years of data; on the other hand, the SVM
model in [7] was trained and tested with one year of data.
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The optimization metric MSE along each epoch was analyzed in the training model for
Experiment 3, and the results are presented in Figure 6. The MSE computed by subsequent
epochs shows lesser values after the first epoch. Therefore, the MSE in epoch 10 is smaller
than MSE in epoch 1. To show the behavior of the optimization metric MSE in detail,
Figure 7 presents a zoomed-in look at MSE vs. each epoch for the training model in
Experiment 3.

An additional test was executed using the Ambient Weather Network dataset [24].
The objective was to assess the proposed ML model’s performance using a dataset with
more outliers than DKA and build a baseline model as the first step towards future work
focusing on outlier prediction in Puerto Rico. The “UPRM CID Sustainable Energy Center,
Mayagüez” device was selected in Puerto Rico, and the records from 20 February 2022
to 6 September 2022 were downloaded. The dataset has 56,340 measures and 18 features.
However, Experiment 4 used only solar radiation as input and output. Experiment 4 had
an MSE of 3.49× 10−1 KW, an RMSE of 5.91× 10−1 KW, and an MAE of 9.18× 10−3 KW.



Energies 2024, 17, 668 12 of 18

Energies 2024, 17, x FOR PEER REVIEW 12 of 18 
 

 

LSTM model was trained and tested with three years of data; on the other hand, the SVM 
model in [7] was trained and tested with one year of data. 

The optimization metric MSE along each epoch was analyzed in the training model 
for Experiment 3, and the results are presented in Figure 6. The MSE computed by subse-
quent epochs shows lesser values after the first epoch. Therefore, the MSE in epoch 10 is 
smaller than MSE in epoch 1. To show the behavior of the optimization metric MSE in 
detail, Figure 7 presents a zoomed-in look at MSE vs. each epoch for the training model 
in Experiment 3. 

 
Figure 6. Optimization function vs. epochs in Experiment 3. 

 

Figure 6. Optimization function vs. epochs in Experiment 3.

Energies 2024, 17, x FOR PEER REVIEW 12 of 18 
 

 

LSTM model was trained and tested with three years of data; on the other hand, the SVM 
model in [7] was trained and tested with one year of data. 

The optimization metric MSE along each epoch was analyzed in the training model 
for Experiment 3, and the results are presented in Figure 6. The MSE computed by subse-
quent epochs shows lesser values after the first epoch. Therefore, the MSE in epoch 10 is 
smaller than MSE in epoch 1. To show the behavior of the optimization metric MSE in 
detail, Figure 7 presents a zoomed-in look at MSE vs. each epoch for the training model 
in Experiment 3. 

 
Figure 6. Optimization function vs. epochs in Experiment 3. 

 
Figure 7. Optimization function vs. epochs, zoomed in.

A comparison of the original signal x[t], the signal after outlier removal yH [t], and
the predicted signal x̂H [t] is presented in Figure 8. Because the signals yH [t] and x̂H [t] are
future values, the signal x[t] must be moved one time step into the future.

The results of Experiment 4 are less accurate than those of the other tests because the
Ambient Weather Network dataset has more outliers than the DKA Solar Center dataset.
For example, in Figures 9 and 10, both datasets are compared over one day.
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Experiment 5 work was trained with the DKA Solar Center dataset [14], similar to
Test 1, but without the outlier detection and removal steps from the proposed workflow,
so the input data to train the ML model includes outliers. Experiment 5 had an MSE of
8.97× 10−2 KW, RMSE of 2.99× 10−1 KW, and MAE of 9.98× 10−2 KW.

Experiment 6 used the same subset selected in [7]: data from the DKA Solar Center
dataset [14] from January 2018 to December 2019. The subset has 199,097 measures. All of
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the steps on the model were used, and the results have an MSE of 1.72× 10−3 KW, RMSE
of 4.15× 10−2 KW, and MAE of 2.79× 10−2 KW.

Experiment 7 included the DKA Solar Center dataset [14] using all of the available
data but only the two features most correlated to active power, which were horizontal and
diffuse irradiance, with correlation coefficients of 0.96 and 0.55, respectively. All of the
steps in the model were used, and the results have an MSE of 5.55× 10−7 KW, an RMSE of
7.45× 10−4 KW, and an MAE of 1.21× 10−4 KW.

The results of all seven experiments and the previous results reported by researchers
who worked with the DKA Solar Center dataset [14] are presented in Table 4, highlighting
the best result in bold.

Table 4. LSTM model proposed accuracy with the DKA solar center dataset.

Name Dataset Features Outlier Delete MSE (KW) RMSE (KW) MAE (KW)

Experiment 1 DKA Only active power Yes 3.05× 10−3 5.54× 10−2 3.09× 10−2

Experiment 2 DKA 8 features Yes 4.55× 10−6 2.13× 10−3 1.30× 10−3

Experiment 3 DKA 5 features as SVM [7] Yes 2.17× 10−7 4.65× 10−4 4.04× 10−4

Experiment 4 Ambient Weather Only solar radiation Yes 3.49× 10−1 5.91× 10−1 9.18× 10−3

Experiment 5 DKA Only active power No 8.97× 10−2 2.99× 10−1 9.98× 10−2

Experiment 6 DKA subset selected in SVM [7] 5 features as SVM [7] Yes 1.72× 10−3 4.15× 10−2 2.79× 10−2

Experiment 7 DKA subset selected in SVM [7] 2 features Yes 5.55× 10−7 7.45× 10−4 1.21× 10−4

SVM [7] DKA 5 features Yes 3.49× 10−2 1.86× 10−1 1.15× 10−1

RCC-LSTM [13] DKA - - 8.84× 10−1 9.4× 10−1 5.87× 10−1

ESNCNN [17] DKA - - 3.09× 10−2 1.73× 10−1 9.71× 10−2

5. Discussion

A discussion of the results obtained from the application of the models MISO and
SISO LSTM is presented below:

• The MSE metric in Experiment 1, Experiment 2, and Experiment 3 have orders that
range from 10−3 KW to 10−7 KW. These MSE values are smaller than those presented
in [7,13,17], where the MSE value had an order of 10−2 KW.

• Experiment 1 presented good results using only one input, which reduced the model’s
complexity and training time. Typically, the predicted values are only differ slightly
from the real values; this error is smaller than 4 Watts in most cases.

• The trained models show good performance regarding signals with low outliers.
This model can predict the common behavior of irradiance or power signals in PV
systems. However, the proposed model does not produce good predictions regarding
measures with sudden fluctuations, because the datasets do not have information
on cloud movements to let the ML model anticipate a sudden fluctuation or outlier.
Future work will include cloud movement information to train the prediction model
to account for these abrupt variations.

• Experiment 3 showed the best results because it used more information than other
experiments, but the model used here was more complex than in other experiments.

• Experiment 6 used one year of data, less than other experiments. The objective was to
replicate the same conditions as reference [7]. The results of the proposed model are
better than those presented in [7,13,17].

• The results in Table 4 show that adding more features to the ML model does not
guarantee better results. For example, Experiment 3, with five features, produced
better results with its fewer features than Experiment 2, which has eight features.

• Another example of the previous discussion can be found in Experiment 6 and Experi-
ment 7. Both of these Experiments use the same subset of the dataset, but Experiment 7
has fewer features (only two) than Experiment 6 (five features). However, Experiment
7 achieved better results than Experiment 6. One explanation for this is that more
features can introduce noise instead of relevant information; because of this, feature
analysis, such as correlation analysis, is an essential part of building ML models.
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• The LSTM method outperforms the traditional ML methods used in forecasting prob-
lems because LSTM can save and remove information. This was confirmed with
Experiment 3, which applied the LSTM method and obtained better results than [7],
where SVM was utilized.

• In accordance with what was expected, the outlier removal step improved the model’s
performance. Comparing Experiment 1, where outliers were removed, to Experiment
5, in which outliers were kept, the results obtained in Experiment 1 were more accurate.

The model developed in this paper will be used to forecast solar irradiance in Puerto
Rico, which has a goal of achieving 100% renewable energy by 2050 and where the main
renewable energy source is the sun [26]. Such an aggressive goal requires not only the
massive deployment of PV systems but also new ways to plan and operate the local
power system. A key aspect to securing the stability of the local grid is to have as clear
a prediction as possible of the amount of power that will be available in the near future
from the thousands of PV systems spread around the archipelago. The problem becomes
more complicated due to Puerto Rico’s location in the Caribbean, where long-term weather
predictions have historically been unreliable due to the high variability of winds, the central
mountainous region of the main island, the relatively small size of the jurisdiction, and the
complicated dynamics of the heat patterns throughout the day from both sea and land.

6. Conclusions

• The preprocessing step and specific feature selection used data correlation analysis.
Horizontal irradiance and active power were the most correlated variables, with a
correlation coefficient of 0.96. Therefore, horizontal irradiance and active power are
the most important features for active power prediction.

• The evaluation of the proposed ML model was conducted via five experiments. The
best results were obtained in Experiment 3 with an MSE of 2.17× 10−7 KW, an RMSE
of 4.65× 10−4 KW, and an MAE of 4.04× 10−4 KW. These results are better than those
presented in [7,13,17].

• Applying HMM for outlier detection and elimination enables the classification of
measures without the need for a predefined threshold setup. Outlier detection and
elimination improved the results compared to the original signal. This is evident when
comparing Experiment 1 to Experiment 5, where Experiment 1 used a signal without
outliers as input, whereas Experiment 5 used the original signal as input. The results
of Experiment 1 were better.

• The Puerto Rico dataset [24] has more outliers than the Australian dataset [14]. Because
of this, the proposed ML model trained with the Australian dataset produced better
results than the Puerto Rico dataset. Although this model does not consider outliers,
we understand that cloud dynamics can cause dips identified as outliers. Future work
will improve the ML model prediction by including outliers.

• The proposed ML method is an excellent tool for reducing the photovoltaic generation
planning error implicit in medium- or long-term prediction by updating the generation
planning at regular intervals. This enables an energy management system (EMS) to
execute necessary actions such as battery charging or utilizing grid energy to maintain
high-quality service. However, the proposed ML model does not capture outliers
because it requires additional information about cloud movements, which is currently
unavailable in the datasets used for this study.

• The outlier detection and elimination strategy using HMM can be used in preprocess-
ing steps for weather datasets and other datasets with time series variables. In addition,
the LSTM model can be used in short-term generation planning to complement the
information used in EMS and enable proactive response to specific situations, for
example, activating batteries when the irradiance decreases below the defined limit.
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Abbreviations
In order to help understand this paper, the following list of abbreviations summarizes the abbrevia-
tions used in the document.

Abbreviation Meaning
PV Photovoltaic
ML Machine learning
LSTM Long short-term memory
RCC-LSTM Radiation classification LSTM
MSE Mean square error
RMSE Root mean square error
MAE Mean absolute error
HMM Hidden Markov model
TWh Terawatts by hour
ARIMA Autoregressive integrated moving average
MLP Multilayer perceptron
SVM Support cector machine
KNN K-nearest neighbor
AR Autoregressive
ARX Autoregressive exogenous input
CNN Convolutional neural network
ConvLSTM Convolutional LSTM
ARMA Autoregressive moving average
FC-LSTM Fully connected LSTM
MAPE Mean absolute percentage error
ESN Echo state network
R2 R squared
RNN Recurrent neural network
SISO Single input to obtain a single output
MISO Multiple inputs to obtain a single output
DTR Decision tree
NaN Not a number
Pow Active power
Win_S Wind speed
Tem Temperature
Hum Humidity
Glo_H Global horizontal irradiance
Dif_H Diffuse horizontal irradiance
Wind_D Wind direction
Wea_D Weather daily rainfall
UPRM University of Puerto Rico—Mayaguez
CID Investigation and development center
EMS Energy management system

https://dkasolarcentre.com.au
https://dkasolarcentre.com.au
https://ambientweather.net/
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