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Abstract: The challenge of maintaining optimal comfort in residents while minimizing energy
consumption has long been a focal point for researchers and practitioners. As technology advances,
reinforcement learning (RL)—a branch of machine learning where algorithms learn by interacting
with the environment—has emerged as a prominent solution to this challenge. However, the modern
literature exhibits a plethora of RL methodologies, rendering the selection of the most suitable one a
significant challenge. This work focuses on evaluating various RL methodologies for saving energy
while maintaining adequate comfort levels in a residential setting. Five prominent RL algorithms—
Proximal Policy Optimization (PPO), Deep Deterministic Policy Gradient (DDPG), Deep Q-Network
(DQN), Advantage Actor-Critic (A2C), and Soft Actor-Critic (SAC)—are being thoroughly compared
towards a baseline conventional control approach, exhibiting their potential to improve energy use
while ensuring a comfortable living environment. The integrated comparison between the different
RL methodologies emphasizes the subtle strengths and weaknesses of each algorithm, indicating that
the best selection relies heavily on particular energy and comfort objectives.

Keywords: reinforcement learning; energy efficiency; thermal comfort; buildings; residents; Energym

1. Introduction
1.1. Motivation

Contrary to the outdated standpoint considering residents as static constructions,
the modern perspective identifies them as multifunctional cyber-physical entities able to
provide efficient thermal comfort and promote occupants’ quality of life [1–5]. However, to
provide adequate comfort to residents—using the potential integrated heating, ventilation,
and air conditioning (HVAC) equipment—a specific amount of energy needs to be con-
sumed. Such an amount portrays a significant portion of the overall energy consumption,
rendering residential buildings as energy-intensive consumers and a significant contributor
to the surge in greenhouse gas (GHG) emissions [6–8]. To this end, to maintain residential
comfort in a viable way, the need to harmonize energy conservation while maintaining
comfort levels has become an essential objective [9–12].

For many years, residents relied on manual approaches to control HVAC by adjusting
thermostats, opening windows, or turning on fans based on their immediate comfort needs.
While these actions provided quick adjustments to the indoor environment, the lack of
real-time adaptability often resulted in energy wastage during unoccupied or temperate pe-
riods [12,13]. Recognizing this gap, scheduling devices emerged, facilitating pre-configured
temperature preferences and timed functions, granting a level of autonomous management
while ensuring a stable comfortable environment. However, their static configurations often
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resulted in energy wastage during, e.g., vacant periods or unforeseen climatic changes,
highlighting the necessity of a more sophisticated control mechanism [14].

Following the initial steps in automation, Rule-Based Control (RBC) emerged as the
dominant strategy to strike a balance between energy saving and comfort. The utilized
rules derived from hands-on observations and expert recommendations, setting actions for
specific conditions, like reducing temperatures during off-hours or adjusting ventilation
according to occupancy [15]. RBC, however, illustrated numerous limitations, struggling
to adapt in real-time to varying factors such as changing weather, fluctuating occupancy,
or equipment variations [16]. Additionally, RBC was primarily centered on upholding
comfort standards, neglecting energy conservation or financial efficiency. The absence of a
holistic understanding of the interplay between various HVAC elements also resulted in
less ideal outcomes [16–18].

The complexity and unpredictability of managing HVAC led to the rise of algorithm-
based control methods, such as RL [19–23]. At its core, RL algorithms learn from interactions
with the environment, allowing decisions based on real-time data. Instead of relying on
predefined rules such as RBC, RL methodologies continuously refine their strategy, ensuring
optimal energy use without compromising comfort. Since residential environments are
dynamic—with changing occupancies and external conditions—RL frameworks were
adequate to anticipate and respond to different scenarios, whether it is a sudden weather
change or varying resident preferences [23,24]. This continuous learning and adaptability
mean that RL is sufficient to achieve long-term energy efficiency while always prioritizing
the comfort of inhabitants [25–27].

However, choosing the optimal RL approach for enhancing energy efficiency in HVAC
systems presents a significant challenge [28,29]. Given the dynamic nature of HVAC envi-
ronments, influenced by fluctuating weather conditions, varying building occupancy, and
equipment performance, no single RL algorithm stands out as a universal solution [29].
The plethora of RL algorithms, each tailored to specific scenarios and action spaces, further
complicated the selection. The lack of a one-size-fits-all RL solution for HVAC systems
suggests that evaluating numerous RL approaches is pivotal in identifying the best-suited
strategy for specific applications, such as HVAC systems. Different RL algorithms operate
uniquely when controlling residential HVAC due to their varied underlying principles,
learning mechanisms, and optimization strategies [23]. Each algorithm is designed with
certain assumptions and priorities, which means they respond differently to the dynamic
nature of HVAC environments, influenced by fluctuating weather conditions, varying
building occupancy, and equipment performance. Some might excel in rapidly changing
conditions, while others might be more stable and consistent over longer periods [29]. By
comparing different algorithms under consistent conditions, researchers may gain clarity
on their respective performances, ensuring evaluations are both fair and insightful [30].
This process highlights the strengths and weaknesses of each algorithm, aiding in mak-
ing informed decisions. Furthermore, it is not just about finding the best algorithm but
understanding how each can be optimized or tailored for specific scenarios.

Motivated by the plethora of RL approaches, current work integrates a comparison
between different RL control algorithms towards a conventional RBC approach for exhibit-
ing their adequacy to support an efficient optimal control scheme for balancing energy
saving and comfort. To this end, PPO, DDPG, DQN, A2C, and SAC methodologies are
thoroughly assessed in a simulative environment for their ability to control the operation
of HVAC and thus reduce energy consumption while ensuring indoor comfort. By testing
their energy-saving capabilities in a standard residential apartment setting, the research
reveals which algorithm stands out as the most suitable.

These algorithms have demonstrated superior performance in similar tasks in previous
research, indicating their potential effectiveness for the specific application of HVAC control.
Their ability to handle the complexities of an environment like a residential apartment
requires balancing between energy saving and comfort. Defining which RL approach
balances exploration and exploitation more efficiently is beneficial in finding the optimal
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control strategies for HVAC and portrays a key factor for the current study. Each of
these algorithms has unique strengths and characteristics which render them suitable
for the problem of HVAC control for energy saving and comfort. For instance, PPO is
known for its stability and reliability in different environments, making it a good choice for
applications where safety and consistency are important. DDPG and SAC, being off-policy
algorithms, are effective in environments with continuous action spaces, like HVAC control.
Another key factor for the selection of the specific set of algorithms was influenced by their
practicality in terms of implementation and the availability of support. Algorithms like PPO,
DDPG, DQN, A2C, and SAC are often well-documented and supported by popular machine
learning frameworks. This makes them more accessible for integration into existing systems,
particularly in HVAC applications, fostering potential future real-life deployment.

It should be mentioned, that the concerned RL algorithms are meticulously evaluated
against established criteria and user preferences, offering valuable insights into their
performance trends. This approach adopts a user-centric perspective, aligning algorithmic
control with individual comfort needs and energy efficiency goals, thereby providing
customized solutions for various thermal comfort categories. Additionally, by emphasizing
the distinct features of each algorithm, the study underscores the significance of choosing
the appropriate algorithm based on the specific requirements of the application.

1.2. Related Literature Work

The literature exhibits numerous RL applications in residential buildings for the
efficient control of different HVAC equipment. RL approaches such as PPO, DDPG, DQN,
A2C, and SAC are commonly utilized to balance energy saving and comfort, reducing
costs and the environmental impact on residents. More specifically, in [31], a comparison
of the DQN methodology towards a thermostat controller was assessed. The findings
indicate that the DQN-enabled intelligent controller surpassed the baseline controller. In
the simulated setting, this advanced controller enhanced thermal comfort by approximately
15% to 30% while concurrently achieving a reduction in energy expenses ranging from 5%
to 12%. The DQN algorithm in residents was also evaluated in [32], where a data-driven
approach was aimed at managing split-type inverter HVACs, factoring in uncertainties.
Data from similar AC units and homes were merged to balance out data disparities, and
Bayesian convolutional neural networks (BCNNs) were employed to estimate both the ACs’
performance and the associated uncertainties. Subsequently, the Q-learning RL mechanism
was established to perform informed decisions about setpoints, using insights derived from
the BCNN models. According to the outcome, the novel approach achieved slightly lower
energy consumption (19.89 kWh) and discomfort (1.44 °C/h) compared to the rule-based
controller [32].

In [33], a DDPG framework was tailored to regulate HVAC and energy storage sys-
tems without relying on a building’s thermal dynamics model. This approach took into
account a desired temperature bracket and various uncertain parameters. Comprehensive
simulations grounded in real-world data attest to the potency and resilience of the sug-
gested algorithm in comparison to the baseline ON/OFF control policy. According to the
results, the proposed energy management algorithm was able to reduce the mean value
of total energy cost by 15.21% compared to the baseline controller while also achieving a
lower mean value of total temperature deviation, indicating improved thermal comfort.
Similarly, in [34], researchers employed a dual-focused control strategy for HVAC systems
that balanced energy costs with user comfort. By addressing such objectives simultaneously,
an optimization model was structured toward energy cost predictions, past usage trends,
and external temperatures. Utilizing the DDPG method, an optimal control strategy was
achieved that was able to harmonize cost and comfort. According to the results, different
weighting factor prices balancing energy cost saving and comfort provided different re-
sults. For instance, when the weighting factor reached 0.5, 38.5% energy cost saving was
achieved. Increasing the weighting factor to 0.55, energy cost savings reached a 50% im-
provement in comparison to a predefined temperature schedule control approach. Thermal
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Comfort Improvement Factor ranged from 42.75% to −28.7% across different weighting
factor values.

A comparative analysis between DQN and DDPG methodologies was also carried
out to control multi-zone residential HVAC systems in [35]. The concerned optimization
objective was twofold: cut down energy expenses and ensure occupant comfort. By using
the DDPG method, they effectively learned from continuous interactions in a simulated
building setting, even without prior model insights. Their findings reveal that this DDPG-
guided HVAC management surpassed the leading DQN, slashing energy costs by 15% and
decreasing comfort breaches by 79%. Impressively, when pitted against a conventional
RBC method, the DDPG approach reduced comfort infractions by a staggering 98%.

The PPO approach was evaluated in [36] to fine-tune the operation of a building’s
HVAC system, aiming to enhance energy efficiency, uphold thermal comfort, and meet set
demand response targets. Simulated results showcased that leveraging RL for standard
HVAC management was sufficient to achieve energy savings of nearly 22% in weekly
energy consumption in comparison to a conventional baseline controller. Furthermore,
during periods requiring demand response, employing a controller attuned to demand
response with RL can lead to power fluctuations of about 50% over a week, in comparison to
a conventional RL controller, all the while ensuring the thermal comfort of the inhabitants.

To assess the effectiveness of deep reinforcement learning (DRL)-based control systems,
the researchers conducted evaluations of both PPO and A2C controllers. This evaluation
focused on summer cooling performance over one month, followed by a test in the sub-
sequent month using the pre-trained models [37]. Findings indicated that A2C generally
outperformed the PPO methodology, particularly with medium-sized network estimation
models, except in cool and humid climates, where a PPO control proved more effective.
According to the outcome, the A2C control methodology delivered 4% and 22% lower
energy consumption concerning the RBC methodology in cooling mode, all while ensuring
thermal comfort.

The SAC methodology was evaluated in [38], where the combination of an RL with
Long Short-Term Memory (LSTM) neural networks was aimed to steer heat pumps and
storage systems across four buildings. Their simulation framework incorporates LSTM
models, trained on an artificial dataset from EnergyPlus, to gauge indoor temperature
dynamics. The engineered controller effectively sustained comfortable indoor conditions
across various buildings, achieving a cost reduction of approximately 3% against the
baseline RBC approach. Furthermore, this DRL controller facilitated a peak demand
reduction by 23% and decreased the Peak-to-Average Ratio (PAR) by 20%. Additionally,
the DRL controller successfully harnessed interactions among diverse sources of flexibility,
enhancing the flexibility factor by 4%. Moreover, in [39], the SAC approach was also
utilized to efficiently control the thermal storage of a four-building cluster with unique
energy profiles. The goal was to optimize individual building energy usage while leveling
the overall energy load. When compared to a traditionally set RBC, the novel methodology
achieved 4% cost savings, reduced peak demand by up to 12%, and led to a 10% drop in
daily average peak, showcasing the benefits of SAC in energy management.

1.3. Novelty

Current work stands out for its comprehensive analysis, exploration of energy and
comfort trade-offs, performance evaluation against international standards, user-centric al-
gorithm selection, and detailed characterization of each algorithm. These facets collectively
contribute to the novelty and value of our research in advancing the field of residential
energy management.

Grounded in a comprehensive analysis of several prominent RL algorithms, namely
SAC, PPO, A2C, DDPG, and DQN, within the context of residential energy management,
current research evaluates each algorithm’s ability to balance energy efficiency and occupant
comfort—a critical consideration in modern living spaces. A key aspect of the current effort
lies in exploring the intricate trade-offs between energy reduction and thermal comfort.



Energies 2024, 17, 581 5 of 33

Such attributes have been achieved by implementing specific weighting parameters—a
novel approach that allows us to gauge each algorithm’s performance meticulously. Such
attributes not only assess the algorithms based on established criteria, but also factor
in user preferences in line with international standards. This approach yields valuable
insights into the general trends and performance nuances of the five algorithms under
scrutiny, especially regarding how alterations in weight factors and user preferences impact
their effectiveness. Moreover, additional emphasis has been given to the scalability and
adaptability of these algorithms in different residential settings. Contrary to the majority of
the literature, current efforts explore how these RL schemes may be effectively scaled up or
down, catering to a wide range of residential environments, from small apartments to large
houses, thus broadening the applicability and impact of findings.

Another interesting attribute highlighted in this study concerns the fact that some
particular algorithmic schemes, like DQN, may not be directly comparable with others
due to their intrinsic mechanisms. Conversely, it is observed that the PPO algorithm
consistently maintains lower Predicted Percentage of Dissatisfied (PPD) values, illustrating
its adaptability in shifting priorities between objectives. Such observations highlight the
necessity of understanding the unique characteristics of each RL algorithm, underscoring
the importance of selecting the most appropriate one for specific applications. To this end,
contrary to the majority of existing literature approaches, current research does not merely
provide a comparative analysis of these algorithms but also delves deep into their traits
and suitability for varied applications in residential energy management.

Moreover, current effort enables a user-centric selection of algorithms to empower
users to customize algorithmic control and align with their specific comfort needs and
energy efficiency objectives. Such attributes pave the way for choosing the most suitable
algorithm for each category of thermal comfort, thereby offering personalized solutions.
The integration of dynamic user feedback into algorithm performance evaluation is a
significant advancement. Unlike traditional static assessments, this approach allows for a
more realistic and adaptable evaluation, considering how user preferences can evolve. To
this end, current work reflects real-world scenarios accurately, where occupant preferences
and comfort levels are not constant but change in response to various factors.

The environmental impact of the current research also concerns a critical aspect. By
focusing on energy efficiency and sustainable living, the current study directly contributes
to the broader goals of reducing carbon footprints and promoting eco-friendly practices in
residential settings. This aligns with global environmental objectives and demonstrates
the societal relevance of your work. Last but not least, the potential for real-world imple-
mentation and commercialization of these algorithms portrays a fruitful prospect. Current
research efforts pave the way for developing new products or services that integrate these
advanced algorithms into smart home systems, offering tangible benefits to consumers and
industry stakeholders.

1.4. Paper Structure

The paper is structured as follows. In Section 1: Introduction, the motivation of the
current work is assessed and the related previous work and the novelty of the current work
are elaborated. Section 2: Joint Materials and Methods delivers the general mathematical
overview of the RL methodology while providing the conceptual background of the algo-
rithms concerned—PPO, DDPG, DQN, A2C, and SAC—regarding the implementation in
HVAC. Section 3: Testbed Description elaborates on the aspects of the concerned simulative
testbed description, while Section 4: Results and Discussion illustrates a thorough com-
parative analysis of RL algorithms’ performance in energy saving and comfort measures.
Last but not least, Section 5: Conclusions and Future Work concludes the outcomes of the
current study and describes the future work generated by the current research effort.
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2. Joint Materials and Methods

This section provides the mathematical description as well as the particularities of RL
applications in HVAC control applications. Providing the generalized concept of the RL
approach as well as the concept of the individual RL algorithms, the current work aims
to establish the landscape of the concerned RL concepts, familiarizing the reader with the
current state of the art and highlighting the relevance of the study at hand.

The General Reinforcement Learning Conceptual Background

In RL, an agent interacts with an environment over discrete time steps to achieve a
certain objective. At each time step, the agent observes the current state of the environment,
which provides a snapshot of all pertinent information about the environment at that
moment. Based on this state, the agent selects an action according to its policy. The policy
is essentially the strategy or behavior that the agent follows, and it can be deterministic
(always giving the same action for a given state) or stochastic (providing a distribution
over possible actions) [23,40].

Once the action is taken, the environment transitions to a new state and provides
feedback to the agent as a reward (Figure 1). This reward offers a numerical value indicating
how good or bad the action was in achieving the agent’s objective. Over time, the agent
aims to learn a policy that maximizes its expected cumulative reward, often referred to
as the return. To aid in this learning, the agent often estimates a value function, which
predicts the expected return from a given state when following a particular policy. This
value function helps the agent to judge the long-term consequences of its actions, enabling
it to favor actions that lead to higher cumulative rewards in the future [23,40].

Figure 1. The general reinforcement learning framework, with an autonomous agent acting in an
environment.

More specifically:

• State: The state, denoted as s, encapsulates the current environmental and system-
specific conditions that are pertinent to the decision-making process of HVAC control.
In the context of HVAC control, the state can be formally represented as [23]:

s = [Troom, Tsetpoint, Texternal, noccupants, t, . . .] (1)

where Troom is the current room temperature; Tsetpoint is the desired temperature;
Texternal denotes the external temperature; noccupants is the number of occupants; t
represents the current time or time of day.

• Action: The action space encompasses the set of all feasible actions that the HVAC
system can take at any given state. Let a denote an action taken by the RL agent. In
the HVAC context, this is represented as:

a ∈ {ON, OFF, ∆Tsetpoint, ∆airflow} (2)

where ON and OFF denote the operational status of the HVAC; ∆Tsetpoint repre-
sents the adjustment to the temperature setpoint; ∆airflow signifies changes in the
airflow rate.

• Reward: The reward function provides a quantitative measure of the quality of an
action taken by the agent in a particular state. For HVAC systems, the reward function
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aims to strike a balance between energy efficiency and occupant comfort. Formally,
the reward r(s, a) can be defined as:

r(s, a) = −αEconsumed + βCcomfort − δ|Troom − Tsetpoint| (3)

where α, β, and δ are weighting parameters; Econsumed is the energy consumed by the
HVAC system; Ccomfort quantifies the comfort level of occupants.

• Policy: The policy, denoted as π, provides a mapping from states to actions. It repre-
sents the strategy that the RL agent employs to act in the environment. Depending
on the RL approach, this policy can be deterministic or stochastic. In deep RL con-
texts, this policy is often parameterized by a neural network, leading to a functional
representation:

a = πθ(s) (4)

where θ represents the parameters of the neural network.
• Value Function: The value function offers a prediction of the expected cumulative

reward from a given state when following a particular policy. For a policy π, the value
function Vπ(s) is defined as:

Vπ(s) = Eπ

[
∞

∑
t=0

γtr(st, at)|s0 = s

]
(5)

Here, γ is a discount factor that ensures future rewards are discounted to reflect their
temporal delay.

In the context of HVAC control, the goal is twofold: achieve energy saving while
maintaining occupant comfort. The state typically captures variables that influence HVAC
decisions, such as current room temperature, desired temperature setpoint, external tem-
perature, and the number of occupants. This comprehensive state representation ensures
that the RL agent has enough information to make informed decisions. The reward func-
tion is designed to balance energy efficiency and comfort. For instance, the agent could
receive a positive reward for keeping room temperatures within a comfortable range and a
negative reward proportional to the energy consumed. This way, the agent is encouraged
to maintain comfort while using as little energy as possible [23,41].

The policy in this scenario maps from the rich state information to HVAC control
actions, such as turning the system on/off or adjusting temperature setpoints. As the agent
interacts with the environment (the residence and its HVAC system), it refines this policy
to better achieve the dual objectives. The value function in the HVAC context provides
insights into the long-term benefits of current actions. For instance, turning off the HVAC
system might save energy now but could lead to discomfort later, resulting in a lower value.
By considering such long-term consequences, the agent is adequate to provide decisions
that balance immediate energy savings against future comfort levels [41].

3. Testbed Description

In this study, the simulative testbed concerned a four-floor residential building in
Tarragona, Spain, with diverse equipment like thermostats and a central geothermal heat
pump, which was integrated into the Energym open-source building simulation library.
The setup employed the Stable Baselines3 Python library, creating an environment where the
RL agent interacts with the building model, and adjusts thermostat setpoints, while other
settings are fixed. The agent’s actions influence the building’s thermal zones, with the envi-
ronment providing feedback in terms of temperature, humidity, and energy consumption
data. A multi-objective reward function guides the agent, balancing energy efficiency and
thermal comfort, modifiable by adjusting weight parameters. The setup was benchmarked
against a classic temperature control system, fostering a sufficient evaluation of the RL
algorithms’ effectiveness in optimizing residential energy management while maintaining
occupant comfort.
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3.1. Energym Framework

Energym [42] is a Python-based open-source library that is based on both Energy-
Plus and Modelica, providing different benchmark building models that are interfaced
using the Functional Mockup Interface (FMI) standard. This building framework con-
sists of 11 simulation models providing diverse equipment installments (thermostat, heat
pump, battery, air handling unit, electric vehicle, photovoltaic), distinct building us-
ages (apartments, houses, offices, seminar center, and mixed-use), and different meth-
ods in the control settings (controlling thermostat setpoints and controlling the equip-
ment directly). In this work, the ApartmentsGrid-v0 case is adopted. This is a residen-
tial building located in Tarragona, Spain, consisting of four floors, each of them be-
ing an apartment, and there are eight thermal zones (two per floor). The thermal sys-
tem of the building has a central geothermal heat pump (HP) directly connected to
hot water tanks (one per apartment) used only for domestic hot water (DHW) con-
sumption, and to a heating loop providing heat to the entire building. Therefore, re-
garding the equipment that is present in the building, there are four controllable ther-
mostats (one per floor), a non-controllable heat pump, one battery, and one electric ve-
hicle (EV). The simulation inputs (11 in total) involve thermostat setpoints for the four
floors (P1_T_Thermostat_sp, . . . , P4_T_Thermostat_sp), heat pump temperature setpoint
(Bd_T_HP_sp), temperature setpoints for each tank (P1_T_Tank_sp, . . . , P4_T_Tank_sp),
battery charging/discharging setpoint rate (Bd_Pw_Bat_sp), and EV battery charging set-
point rate (Bd_Ch_EVBat_sp). The output part consists of an extensive set (69 in total)
of measurements with respect to the behavior of the building for a given input vector.
These simulation outputs provide temperature (Z01_T . . . Z08_T), humidity, and appli-
ance energy measurements in different zones of the building, supply and return tem-
perature for the heat pump, total energy consumption and HVAC energy consumption
(Fa_E_HVAC), outdoor temperature (Ext_T), and other outputs related to the batter-
ies. For more information about the building ApartmentsGrid-v0, including its thermal
zones, components, inputs, and outputs, please refer to the Energym documentation https:
//bsl546.github.io/energym-pages/sources/apg.html (accessed on 28 November 2023).

3.2. Building Simulative Testbed

The overall workflow contains two gym-based environments which work in conjunc-
tion with the well-known Python library, Stable Baselines3 [43]. The chosen model from
the Energym framework, i.e., the ApartmentsGrid-v0, serves as a building model that re-
sponds with 69 output measurements for a given set of 11 input signals each time, whereas
the second gym-based environment, named IntermediateEnv, establishes the interaction
between the ApartmentsGrid-v0 and the RL agent implementations of Stable Baselines3.
Sections 3.3 and 3.4 describe the encapsulated operation within IntermediateEnv. Thus, the
RL agent is encountered with IntermediateEnv with a Markov property interacting constantly.
The overall workflow is depicted in Figure 2. More specifically, the Energym simulation
model operates at a fine granularity, running for 480 time steps per day, with each step
representing a 3 min interval. This detailed time scale allows for a nuanced simulation
of the building environment’s dynamic responses. In contrast, the IntermediateEnv, which
facilitates the interaction between the RL agent and the Energym simulation, operates on
a coarser time scale. It runs for 48 time steps per day, with each step corresponding to a
30 min interval. This difference in time step granularity is critical for the application of
RL actions. Actions determined by the RL agent in the IntermediateEnv are applied to the
Energym simulation model and held constant (clamped) for a duration of 10 Energym time
steps, cumulatively amounting to 30 min. This approach ensures that each action has a
sustained impact on the building environment, allowing the system enough time to reach
a more stable state in response to the action. Also, it ensures that the system’s response
is not merely a transient reaction to the changes but rather a reflection of a more settled
state. Such a setup is important in evaluating the effectiveness of the RL algorithms over a

https://bsl546.github.io/energym-pages/sources/apg.html
https://bsl546.github.io/energym-pages/sources/apg.html
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realistically significant duration, accurately capturing the implications of each action on
energy consumption and thermal comfort in the simulated building.

Figure 2. Operational scheme for the residential energy saving and comfort management application,
coupling Energym, IntermediateEnv, and Stable Baselines3 library.

As mentioned, Energym includes a wide set of input and output measurements on
this specific building. The utilized input and output signals are depicted in Tables 1 and 2,
respectively. Note that we change the notation of these measurements. To enhance the
comprehensibility of the actions and states within our experimental setup, we have opted
to use descriptive names that differ from the original Energym nomenclature. This decision
was made to ensure clarity and ease of understanding for readers not familiar with the
specific terminologies of the Energym platform.

Table 1. Action signals of the RL agent.

Parameter Description Parameter Description Symbol in Energym Symbol in This Work

Thermostat setpoints for floors 1
to 4 (°C) [16, 26] P{X}_T_Thermostat_sp Thermostat{X}

Heat pump temperature setpoint
(°C) [35, 55] Bd_T_HP_sp Heatpump

Temperature setpoints for tanks
1 to 4 (°C) [30, 70] P{X}_T_Tank_sp, Tank{X}

Battery charging/discharging
setpoint rate [−1, 1] Bd_Pw_Bat_sp Batteryrate

EV battery charging setpoint rate [0, 1] Bd_Ch_EVBat_sp EVBatteryrate

Table 2. Subset of output measurements (state signals) from the building model that are inserted in
the IntermediateEnv.

Parameter Description Parameter Description Symbol in Energym Symbol in This Work

Zone temperatures for zones 1 to
8 (°C) Z0{X}_T [10, 40] Tempzone{X}

Outdoor temperature Ext_T [−10, 40] Tempext
HVAC energy consumption

(Wh) Fa_E_HVAC [0, 2000] Econs

3.3. Actions and State

The ongoing interaction between the agent and the environment involves the agent
selecting actions, to which the environment responds by providing rewards and introducing
new states for the agent to consider. The action is of the following form:
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action =
{
(Thermostat1 . . . Thermostat4), Heatpump, · · ·
· · · , (Tank1 . . . Tank4), Batteryrate, EVBatteryrate

} (6)

where (Thermostat1 . . . Thermostat4) represent the thermostat setpoints for each floor,
Heatpump is the heat pump temperature setpoint that constantly takes a mean value in
its operating bounds, (Tank1 . . . Tank4) are the tank temperature setpoints for each floor
constantly taking a mean value of their operating bounds, Batteryrate stands for the battery
charging/discharging setpoint rate that is constantly zero, and EVBatteryrate is the EV
battery charging setpoint rate that is also zero every time. The action variables that are left free
to be adjusted/trained by the agent are the four thermostats, while the remaining setpoints
for the tanks and the heat pump constantly take a mean operating value. In this work, we
leave aside the electrical parts of the battery and EV battery, so these values will constantly be
zero throughout the interaction with the building model. Thus, the action space is completely
aligned with the input space of the ApartmentsGrid-v0 building model. As mentioned, the
building model returns 69 measurements for a given action vector. The observation space is a
subset of those building responses. The state variables are defined as follows:

state = {(Tempzone1 . . . Tempzone8), Tempext, Econs} (7)

where (Tempzone1 . . . Tempzone8) and Tempext represent the temperature measurements in
degrees Celsius for the eight different building zones and outdoor conditions, respectively,
and Econs stands for the HVAC energy consumption, which is also measured continuously.

3.4. Reward Function

The objective here is to reduce energy consumption while sustaining thermal comfort
for occupants controlling solely the thermostats of the building. Indeed, two contradictory
factors together formulate the multi-objective reward function. Thus, the reward function
is defined as:

reward = {α[Econs(t)]− β[Thcom(t)]} (8)

where Econs(t) is the HVAC energy consumption that is straightforwardly measured from
the building at each time instance, while Thcom(t) is directly connected with the thermal
comfort index. The emerging trade-off between HVAC energy consumption and thermal
comfort is shifted into the tuning process of parameters α and β in reducing the first
factor as much as possible while sustaining acceptable levels of comfort with minimum
penalty. Different weights between the two tuning parameters present different results in
favoring either the first or the second reward sub-term. In this work, we keep β = (1 − α),
considering three weight sets {0.1, 0.5, 0.9} towards testing three different operational
modes. The intermediate scenario (weight = 0.5) induces a balance between the two reward
factors, while the other two cases maintain slightly extreme cases that focus on either
reducing electricity bills with a large thermal comfort penalty or increasing high levels of
thermal comfort regardless of energy consumption.

3.5. Baseline Classic Controller Description

To evaluate the effectiveness of the adopted RL controllers, it is essential to compare
their performance against a traditional, established control system. For this purpose, we
utilize a classic controller, as implemented in the Energym framework, to serve as our
baseline. This controller operates on a simple yet effective principle; it maintains a specified
indoor temperature within a defined tolerance range. The operational mechanism of this
classic controller is straightforward. It requires a set temperature and a tolerance limit.
Whenever the indoor temperature deviates from the set value by more than the tolerance
(in absolute terms), the controller activates to restore the temperature to the predetermined
level. For our comparative analysis, we have set the average indoor temperature to
20.375 °C. This setpoint is coupled with a tolerance of 0.3 °C to allow for minor fluctuations
without triggering the control mechanism unnecessarily.
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During the operation of the classic controller, we observed an average PPD index
of 5.9%. This metric provides insight into the level of thermal comfort experienced by
occupants and is crucial for assessing the practicality of the control strategy from a human-
centric perspective. In terms of energy efficiency, the classic controller showed an average
energy consumption of 430.183 Wh per time step. This consumption rate is a critical
benchmark for evaluating the energy performance of our RL controllers under identical
conditions. By comparing the performance of the RL controllers with this classic controller,
we aim to ascertain not only their relative energy efficiency but also their ability to maintain
occupant comfort, thereby determining their viability for practical applications in building
energy management.

3.6. Thermal Comfort Metrics

The energy consumption of buildings is significantly influenced by various factors,
such as indoor environmental conditions (including temperature, ventilation, and lighting)
and the design and operation of the building and its systems. Simultaneously, these indoor
conditions have a profound impact on the well-being, performance, and overall satisfaction
of occupants within the built environment. It has been established that maintaining high-
quality indoor environmental conditions can enhance work and learning performance,
reduce absenteeism, and increase overall comfort. In addition, occupants who experience
discomfort are more inclined to take actions to enhance their comfort, which might have
implications for energy usage. Consequently, there is an increasing demand for well-defined
criteria to guide building design and energy assessments [44]. To address these concerns, a
series of indices have been developed, rigorously tested, and implemented to evaluate and
optimize the indoor thermal environment. The wide set of international standards in this
area include (i) ASHRAE 55 [45]—thermal environment conditions for human occupancy;
(ii) ISO 7730 [46]—ergonomics of the thermal environment and analytical determination
and interpretation of thermal comfort using calculation of the Predicted Mean Vote (PMV)
and Predicted Percentage of Dissatisfied (PPD) and local thermal comfort effects; (iii) EN
16798 [47]—specification of criteria for measurements and methods for long-term evaluation
of the indoor environment obtained as a result of calculations or measurements.

Thermal comfort assessment is a multifaceted process that takes into account several
critical factors and aims to predict how a group of individuals perceives their thermal
environment. This involves considering environmental parameters, including relative
humidity (RH) and dry-bulb air temperature (tdb), and individual variables such as total
clothing insulation (Icl) and metabolic rate (M). The PMV is the established reference for
assessing thermal comfort in mechanically conditioned buildings, serving as a tool to
anticipate individuals’ perceptions of their thermal environment. For naturally conditioned
buildings, the adaptive models of EN and ASHRAE are utilized. The PPD index provides
insight into the percentage of people likely to feel too warm or too cool. Figure 3 illustrates
the thermal sensation scale and the representation of PPD as a function of PMV [48,49].
The PMV values correlate with the PPD index, highlighting the balance between thermal
comfort and dissatisfaction.

The application of these comfort models in practical scenarios is detailed in Table 3.
The table categorizes levels of thermal comfort expectation, delineating the acceptable PMV
ranges and corresponding PPD percentages, which formulate the assessment metrics for
building thermal comfort. These categories range from Category I, which signifies a high
level of thermal comfort expectation suitable for sensitive groups (expectation with less
than 6% predicted dissatisfaction), to Category IV, indicating a lower expectation that is
considered acceptable for only part of the year.
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(a) (b)
Figure 3. Thermal sensation scale and representation of PPD as function of PMV. (a) Thermal comfort
variables and PMV range: https://www.dexma.com/wp-content/uploads/2022/10/Predicted-
Mean-Vote-index-Dexma.png (accessed on 28 November 2023). (b) Correlation between PMV and
PPD indices.

Table 3. Different levels of criteria regarding thermal comfort based on EN 16798-2 standard [47].

Category PPD % PMV Description

I <6 −0.2 < PMV < +0.2 High level of expectation and also recommended for spaces occupied by very
sensitive and fragile persons with special requirements like some disabilities,
sick, very young children, and elderly persons, to increase accessibility.

II <10 −0.5 < PMV < +0.5 Normal level of expectation.

III <15 −0.7 < PMV < +0.7 An acceptable, moderate level of expectation.

IV <25 −1.0 < PMV < +1.0 Low level of expectation. This category should only be accepted for a limited
part of the year.

4. Results and Discussion

This section delves deeper into the comparative performance of various RL algorithms
in the context of a multi-objective reward function focusing on energy consumption and
thermal comfort. In the context of the classic controller, with an average energy con-
sumption of 430.183 Wh per time step and an average PPD of 5.9%, these RL algorithms
demonstrate a range of performances. This comparative analysis highlights the strengths
and limitations of each RL algorithm in balancing energy efficiency and occupant comfort.
Such insights are vital for selecting the most suitable algorithm for specific building envi-
ronments and occupant needs, ultimately contributing to more intelligent and sustainable
building management systems. The performance of these algorithms, as shown in Table 4,
is evaluated under different weight scenarios (w = 0.1, w = 0.5, and w = 0.9) that prioritize
either energy reduction or thermal comfort to varying degrees. The average values for
each algorithm presented in Table 4 are derived from five distinct evaluation runs for
generalization purposes. For metrics such as Predicted Percentage Dissatisfied (PPD), the
average is computed across the building’s eight zones, providing a comprehensive view
of the occupant’s comfort throughout the entire building. This methodical approach to
averaging ensures that the reported values accurately reflect the overall performance of the
algorithms in varying spatial contexts within the simulated environment. Note that the
architecture and hyper-parameter configuration of the utilized RL algorithms are presented
in Appendix B, i.e., Tables A1–A5.

In Appendix C, we provide a comprehensive collection of supplementary results
(see Figures A1–A15) that encapsulate the extensive simulations conducted across various
algorithmic cases. For each RL algorithm examined, we present detailed visual data under
different weight scenarios, including (a) the Predicted Percentage Dissatisfied (PPD) for
each thermal zone within the building, offering insights into the thermal comfort levels
achieved; (b) the measured temperature for each building zone, which illustrates the algo-
rithms’ performance in maintaining the desired thermal conditions; (c) the HVAC energy
consumption throughout the day, providing a quantitative measure of the algorithms’

https://www.dexma.com/wp-content/uploads/2022/10/Predicted-Mean-Vote-index-Dexma.png
https://www.dexma.com/wp-content/uploads/2022/10/Predicted-Mean-Vote-index-Dexma.png
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energy efficiency. This ensemble of 45 images serves to augment the empirical findings
discussed in the main text, allowing for a granular assessment of each RL algorithm’s ability
to navigate the trade-offs between thermal comfort and energy consumption. By presenting
these data visually, we aim to facilitate a deeper understanding of the nuanced performance
characteristics of each algorithm within a residential building energy management context.

Table 4. Performance comparison after 5 distinct runs for each algorithm.

Weight Case RL Algorithm Average HVAC Energy
Consumption (Wh) Average PPD (%) Average Power Diff (%)

w = 0.1

SAC 119.0829 25.11 72.32
PPO 307.7933 6.54 28.45
A2C 82.4841 34.91 80.83

DDPG 191.3231 24.40 55.53
DQN 318.9417 7.78 25.86

w = 0.5

SAC 258.8230 9.63 39.83
PPO 297.7426 6.8 30.79
A2C 320.5797 7.04 25.48

DDPG 214.5196 25.15 50.13
DQN 507.4004 7.27 −17.95

w = 0.9

SAC 258.6270 8.68 39.88
PPO 314.7583 6.50 26.83
A2C 301.9630 6.92 29.81

DDPG 199.7418 25.08 53.57
DQN 467.2232 6.30 −8.61

4.1. Weight Implications on Performance

The weight factor in the reward function plays a crucial role in balancing between
reducing energy consumption and maintaining thermal comfort, specifically:

Weight 0.1: This weight setting places a higher emphasis on energy reduction. Algo-
rithms operating under this weight are expected to minimize energy usage, potentially at
the expense of occupant comfort.

Weight 0.5: Represents a balanced approach, giving equal importance to both energy
savings and maintaining a satisfactory PPD level.

Weight 0.9: Prioritizes thermal comfort, aiming to achieve a PPD level close to 6%, akin
to the performance of the classic controller, and aligning with the standards of Category I,
which represents a high level of thermal comfort expectation.

4.2. Analysis of RL Algorithms

Each RL algorithm demonstrates unique characteristics under the aforementioned
weight settings:

Soft Actor-Critic (SAC): Under weight 0.1, SAC significantly reduces energy con-
sumption but with a higher PPD, indicating a compromise in comfort. As the weight
shifts towards thermal comfort (w = 0.9), SAC shows a balance, maintaining lower energy
consumption while keeping the PPD close to the desired 6%. This performance makes SAC
particularly suitable for environments that require normal levels of thermal comfort. Its
ability to achieve a relatively low PPD while also providing substantial energy savings
exemplifies its applicability in scenarios where both comfort and energy efficiency are
important, but a perfect balance is not critical (like Category II).

Proximal Policy Optimization: PPO demonstrates moderate energy consumption
across all weight settings, with consistently lower PPD values, indicating a steady perfor-
mance in balancing energy efficiency and comfort. One of PPO’s strengths is its ability to
achieve lower PPD values, which is indicative of higher occupant thermal comfort. This is
particularly significant in settings where maintaining a comfortable indoor environment
is as important as energy efficiency. PPO shows a commendable adaptability to varying



Energies 2024, 17, 581 14 of 33

weights in the reward function. Whether the focus is on energy efficiency or thermal
comfort, PPO adjusts its strategy accordingly, showcasing its flexibility. Perhaps the most
notable aspect of PPO is its balanced approach to energy efficiency and occupant comfort.
Unlike some algorithms that may excel in one aspect but fall short in the other, PPO pro-
vides a harmonious balance, making it a versatile choice for a wide range of applications.
Another aspect is related to the reliability it offers. In terms of operational predictability
and reliability, PPO presents fewer fluctuations in performance metrics, which is beneficial
for long-term planning and consistent building management operations. However, it is
crucial to recognize that due to its intrinsic algorithmic design, PPO inherently lacks the
granularity to precisely adjust the equilibrium between energy saving and thermal comfort
objectives in this formulated problem. PPO is influenced by the reward function’s design,
neural network architecture, and entropy term. Adjustments to these factors can help fine-
tune the algorithm’s policy, potentially improving adherence to desired comfort levels. This
limitation subtly guides its performance to align more closely with scenarios characteristic
of Category I, irrespective of the weight variations in the reward function. PPO’s opera-
tional framework, therefore, inherently favors occupant comfort optimization, a trait that
becomes increasingly apparent under diverse reward function conditions. This inclination
towards maintaining lower PPD values, despite shifts in prioritization, highlights PPO’s
aptness for environments where thermal comfort is paramount, yet also underscores a
potential limitation in settings where a distinct emphasis on energy efficiency, with a more
flexible balance, is essential.

Advantage Actor-Critic: At a weight of 0.1, A2C demonstrates the lowest energy
usage among all tested algorithms, highlighting its strong inclination towards energy con-
servation, but with the highest PPD, suggesting a strong bias towards energy saving over
comfort. As the weight shifts towards prioritizing thermal comfort (such as at weight 0.9),
A2C shows a slight improvement in maintaining comfort levels. However, this improve-
ment is marginal, suggesting that while A2C can adapt to different priorities, its strength
lies predominantly in energy saving with a small fraction of penalty in thermal comfort.
A2C’s performance profile makes it a decent candidate for energy-critical applications,
especially in scenarios where energy budgets are tight, and slight compromises in comfort
can be tolerated. One of A2C’s advantages is its predictability in energy-saving outcomes,
making it a reliable option for long-term energy management strategies where consistent
low energy usage is paramount.

Deep Deterministic Policy Gradient: DDPG’s performance in terms of PPD and
energy consumption remains relatively consistent across different weight settings, as
indicated by its PPD values ranging from 24.4% to 25.15%. However, it is important to note
that these PPD values, hovering around 25%, signify a lower level of occupant thermal
comfort, aligning more with Category IV standards (Low Expectation, PPD < 25%). While
DDPG demonstrates a certain level of stability in its performance, it does so at a relatively
lower standard of thermal comfort. This aspect is crucial for applications where higher
thermal comfort is a priority.

Deep Q-Network: The performance of the DQN algorithm across different weights
suggests a tendency towards higher energy consumption without proportionate gains
in thermal comfort with an exception to w = 0.1, where it provides an adequate energy
reduction with a small penalty on thermal comfort. Even at a weight of 0.9, where the focus
is more on comfort, DQN consumes considerably more energy compared to the classic
controller (−8.61%), while achieving only marginally better PPD values (6.3%). This trend is
more pronounced at weights 0.5 and 0.9, where DQN’s energy consumption far exceeds the
baseline set by the classic controller, indicating inefficiency. This suggests that DQN, despite
its potential to achieve lower PPD values, does so at a significant energy cost, making
it less suitable for applications where energy efficiency is a priority or where a balance
between energy consumption and thermal comfort is desired. The inherent design of DQN,
particularly its approach to discretizing the action space, might be a contributing factor to
its performance characteristics. Non-continuous discretization can limit the algorithm’s
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ability to fine-tune its actions for optimal performance, potentially leading to higher energy
consumption and only marginal improvements in thermal comfort.

4.3. Overall Comparison and Implications

The analysis reveals a diverse range of responses from each RL algorithm to the
prioritization of energy reduction versus thermal comfort. PPO and A2C exhibit a more
balanced approach across different weights, suggesting their suitability for scenarios where
both energy efficiency and comfort are equally prioritized. SAC and A2C are the most
energy-efficient but they heavily compromise comfort in the w = 0.1 scenario. On the
other hand, these two algorithms produce the desired performance on the other two
weighting scenarios in both objective metrics. DDPG and DQN appear more inclined
towards optimizing comfort, especially at higher weights, leading to degraded models.

However, it is essential to identify the best-performing algorithm for each thermal
comfort category based on the results to provide clear guidance on which RL algorithms are
most suitable for different levels of thermal comfort expectations, from the most strict (Cate-
gory I) to the least (Category IV). Thus, the best-performing RL algorithms for each thermal
comfort category, considering both energy consumption and PPD values, as follows:

Category I (High Expectation, PPD < 6%): For this category, where a high level
of thermal comfort is expected, the algorithm that maintains PPD closest to 6% with the
lowest energy consumption is ideal. In our results, PPO and A2C stand out as the most
suitable choices, balancing energy efficiency while maintaining a high level of comfort.
More specifically, the lowest achieved PPD values are 6.5% and 6.92% for PPO and A2C,
respectively, under weight case w = 0.9, providing energy reduction of 26.83% and 29.81%.
Both PPO and A2C demonstrate their capability to operate effectively in scenarios demand-
ing stringent comfort requirements, as defined by Category I. Their performances suggest
that they can achieve near-optimal thermal comfort levels while also contributing to energy
savings, making them well-suited for applications where occupant comfort is a paramount
concern, but energy efficiency cannot be overlooked.

Category II (Normal Expectation, PPD < 10%): Here, the acceptable level of discom-
fort is slightly higher but still lies within the normal level of expectation. Thus, algorithms
that can maintain PPD below 10% while optimizing energy consumption are preferred.
SAC demonstrates a commendable balance between energy efficiency and thermal comfort.
In our results, under the weight case w = 0.9, SAC achieved a PPD of 8.68%, which is
within the acceptable range for Category II. Moreover, it managed to reduce energy con-
sumption by nearly 40% (39.88%), indicating its effectiveness in optimizing energy usage
while maintaining a reasonable level of occupant comfort. This performance makes SAC
particularly suitable for environments that require normal levels of thermal comfort. Its
ability to achieve a relatively low PPD while also providing substantial energy savings
exemplifies its applicability in scenarios where both comfort and energy efficiency are
important, but a perfect balance is not critical.

Category III (Moderate Expectation, PPD < 15%): Based on the produced results, no
case lies within the PPD range of [10%, 15%), so the selected algorithm would still be SAC.
We should select an algorithm that keeps the PPD within this threshold while optimizing
energy consumption. Looking at the data, SAC with weight 0.9 could be a better fit for
Category III, as it has a PPD of 8.68%, which is within the threshold, and offers a reasonable
energy reduction of 39.88%.

Category IV (Low Expectation, PPD < 25%): This category allows for a higher level
of discomfort in favor of energy savings, but the PPD still needs to be below 25%. DDPG
with weight 0.1 might be a suitable option for Category IV, as it has a PPD of 24.4%, which
is within the threshold, and an average HVAC power of 191.3231 Wh, indicating high
energy efficiency (55.53% consumption reduction with respect to classic controller).

Figure 4 provides a visualized representation of Table 4 to easily compare the trade-offs
between energy savings and thermal comfort provided by each algorithm under different
preference weightings, giving a clear picture of which algorithms are more suitable for
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certain comfort categories and energy efficiency objectives. The data points are color-coded
and shape-coded for each RL algorithm across three different weight conditions (w = 0.1,
w = 0.5, and w = 0.9). The lines with arrows are intended to depict the trajectory from
energy reduction towards thermal comfort for each RL algorithm as the weighting factor
changes from w = 0.1 to w = 0.9. This way, the arrows represent the direction of increasing
weight on the PPD in the reward function, moving from right to left on the graph.

Figure 4. Visualized version of Table 4 incorporating thermal comfort categories. Dotted lines with
arrows show the direction of each algorithm from energy saving to thermal comfort case based on
reward function weights.

This categorization approach allows for a targeted selection of RL algorithms based
on specific thermal comfort requirements and energy efficiency goals. It enables the
implementation of more nuanced and effective building management strategies, catering
to the varying needs of building occupants and operational efficiency mandates. In the
broader context of multi-objective optimization in building management, these insights are
critical. They not only inform the selection of appropriate algorithms for specific building
environments but also highlight the inherent trade-offs between energy efficiency and
occupant comfort. This understanding is pivotal for developing intelligent and sustainable
building management systems that align with various occupant needs and environmental
sustainability goals.

5. Conclusions and Future Work

The current study presents a comprehensive analysis of five prominent RL algorithms—
PPO, DDPG, DQN, A2C, and SAC—in the context of residential energy management,
with a focus on balancing energy efficiency and occupant comfort. The research stands
out for its in-depth evaluation of these algorithms’ performance in maintaining energy
efficiency while ensuring thermal comfort, taking into account different occupant comfort
expectations and energy efficiency goals. It should be noted that the study does not merely
advance the perception of different RL applications in residential energy and comfort
management but also serves as a guide for implementing RL algorithms in real-world
scenarios. It underscores the potential of these algorithms to create more energy-efficient
and comfortable living environments, while also emphasizing the importance of aligning
algorithm selection with specific user preferences and comfort requirements

The current study quantified thermal comfort using the PPD, aligned with interna-
tional standards, categorizing levels of thermal comfort expectations into four categories
based on the PMV range. The results demonstrated that SAC and A2C are particularly ef-
fective in scenarios emphasizing energy savings, presenting minimal deviations in thermal
comfort from the ideal thermal comfort category. PPO maintained a balanced performance
in energy efficiency and thermal comfort irrespective of the weighting factors in the re-
ward function. DDPG provided a lower level of occupant thermal comfort, leading to a
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degraded performance, whereas DQN offered an adequate energy reduction with a small
penalty on thermal comfort. However, DQN’s tendency to increase energy consumption
when prioritizing thermal comfort was evident. This analysis underscored the nuanced
capabilities and limitations of each algorithm, suggesting that the optimal choice is highly
dependent on specific energy and comfort goals. To this end, the study highlighted the
importance of tailored algorithm selection in intelligent building management systems and
offered insights for future applications aimed at harmonizing energy conservation with
occupant comfort.

The future work generated from the current study is primarily focused on the real-life
implementation of RL algorithms in residential energy management. This will provide
invaluable data on their performance and robustness in diverse real-world environments,
where variables such as varying weather conditions, different architectural designs, and
fluctuating occupant behaviors play significant roles. Additionally, integrating user feed-
back mechanisms to refine the algorithms’ responsiveness to dynamic comfort preferences
portrays another essential aspect for the continuation of the work. Moreover, the integra-
tion of renewable energy sources (RESs) and the algorithms’ adaptability to smart grid
technologies may also significantly enhance their applicability and efficiency, aligning with
broader sustainability goals. Such real-world application and continuous refinement will
validate the research findings in real life, while also contributing to the evolution of more
intelligent, adaptive, and user-centric home energy management systems (BEMS).
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Appendix A. Reinforcement Learning Algorithm Background

Appendix A.1. DQN Conceptual Background

The DQN methodology [50] was introduced in 2015, igniting the field of deep RL and
replacing the need for a table to store the Q-values. Deep neural networks are used to ap-
proximate the Q-function for each state–action pair in a given environment, by minimizing
the mean squared error between actual and predicted Q-values. The contributions of DQN
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are as follows. (i) Policies can be learned directly utilizing a design of an end-to-end RL
approach. (ii) The training of action value function approximation is stabilized with the
adoption of deep neural networks that use the core ideas of experience replay (removes
the correlations in the observation sequence and smoothes over changes in the data distri-
bution) and target network. (iii) It has an iterative update that adjusts the action values
(Q) towards target values that are only periodically updated, thereby reducing correlations
with the target. (iv) A flexible network is trained using the same algorithm, architecture,
and hyperparameters, performing well in diverse applications. The pseudo-code of DQN
is presented in Algorithm A1.

Algorithm A1 DQN [50]
Initialize replay memory D
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with weights θ− = θ

1: for episode = 1 to M do
2: Initialize sequence s1 = {x1} and preprocessed sequence ϕ1 = ϕ(s1)
3: for t = 1 to T do

4: Following ϵ-greedy policy, select at =

{
a random action, with probability ϵ

arg maxa Q(ϕ(st), a; θ), otherwise
5: Execute action at in emulator and observe reward rt and image xt+1
6: Set st+1 = st, at, xt+1 and preprocess ϕt+1 = ϕ(st+1)
7: Store transition (ϕt, at, rt, ϕt+1) in D ▷ Store the experience in replay buffer
8: Sample random minibatch of transitions (ϕj, aj, rj, ϕj+1) from D

9: Set yj =

{
rj, if episode terminates at step j + 1
rj + γ maxa′ Q̂(ϕj+1, a′; θ−), otherwise

10: Perform a gradient descent step on (yj −Q(ϕj, aj; θ))2 with respect to the network parameters θ ▷ Update the
Q-network by minimizing the loss

11: Every C steps reset Q̂ = Q, i.e., set θ− = θ ▷ Periodic update of target Q-network
12: end for
13: end for

Appendix A.2. DDPG Conceptual Background

Deep Deterministic Policy Gradient (DDPG) [51] provides a combination of DQN
and deterministic policy gradient (DPG) [52] in an actor-critic and model-free approach
for continuous action spaces. In contrast with DQN, which tries to predict the Q-values
for each state–action pair at every time step, obtaining a greedy policy, DDPG is an actor-
critic method. DDPG adopts the ideas of experience replay (store past transitions and
off-policy learning) and separate target network (stabilize learning) from DQN. Another
issue for DDPG is that it seldom performs exploration for actions. Additionally, in the
DDPG implementation, the update frequency of the target networks is modified, keeping a
slower track of the trained networks compared with DQN. Thus, the updates in the target
network weight parameters are being updated after each update of the trained network
using a sliding average for both the actor and the critic; thus, θ : θ′ ← τθ + (1-τ)θ′ with
τ ≪ 1. Using this update rule, the target networks are always “late” concerning the trained
networks, providing more stability to the learning of Q-values. The next-state Q-values are
calculated with the target value network and target policy network. The key idea borrowed
from DPG is the policy gradient for the actor. The critic is learned using regular Q-learning
and target networks minimizing the mean squared loss between the updated Q-value
and the original Q-value (the original Q-value is calculated with the value network, not
the target value network). For the actor, to calculate the policy loss, the derivative of the
objective function concerning the policy parameter is taken. The actor network in DDPG
simply uses the negative average Q-value generated by the critic model as the loss for it.
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This way, the actor network learns to generate actions to maximize the Q-value in each
state. The general pseudo-code of the DDPG algorithm is represented in Algorithm A2.

Algorithm A2 DDPG [51]

Randomly initialize critic network Q(s, a | θQ) and actor µ(s | θµ) with weights θQ and
θµ

Initialize target network Q′ and µ′ with weights θQ′ ← θQ , θµ′ ← θµ

Initialize replay buffer R
1: for episode = 1 to M do
2: Initialize a random process N for action exploration sequence
3: Receive initial observation state s1
4: for t = 1 to T do
5: Select action at = µ(st | θµ) + Nt according to the current policy and exploration

noise
6: Execute action at and observe reward rt and observe new state st+1
7: Store transition (st, at, rt, st+1) in R ▷ Store the experience in replay buffer
8: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
9: Set yi = ri + γQ′(si+1, µ′(si+1 | θµ′) | θQ′)

10: Update critic by minimizing the loss: L = 1
N ∑i(yi −Q(si, ai | θQ))2

11: Update the actor policy using the sampled policy gradient:

∇θµ J(θ) ≈ 1
N ∑

i
[∇aQ(s, a | θQ) |s=si ,a=µ(si)

∇θµ µ(s | θµ) |s=si ]

12: Update the target networks:

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

13: end for
14: end for

Appendix A.3. PPO Conceptual Background

The PPO methodology [53] has gained prominence for its stability and efficiency
in training agents to perform tasks within diverse environments. PPO is classified as
a policy optimization method and operates as an on-policy algorithm. The algorithm’s
distinguishing feature is its utilization of a trust region approach, which constrains policy
changes to avoid large deviations from the existing policy. This trust region is enforced
through a clipped objective function, which curbs excessive policy adjustments. PPO often
combines value function estimation to reduce variance, performs multiple optimization
epochs, and employs exploration strategies for efficient learning. With its versatility
and proven track record, PPO has been widely applied to tackle complex tasks across a
variety of domains, making it a valuable tool in the field of RL. The PPO consists of two
neural networks belonging to the actor-critic family of approaches. The policy network is
represented by the actor determining the policy function πθ(s, a). The critic part provides
the evaluation of the selected policy utilizing the estimation of state value function V̂π

ϕ (s)
or R̂t. The parameters of the actor (θ) and critic (ϕ) are optimized in a separate way
using mini-batch stochastic gradient descent. The critic parameters are updated utilizing
a value loss function, while the policies from the policy network side are clipped using
a hyperparameter ϵ, so that the probability ratio r(θ) = πθ(a|s)

πθold
(a|s) is constrained within

the interval (1 − ϵ, 1 + ϵ). The latter means that the policy function is restricted from
potentially large policy updates, providing enhanced stability during the training phase.
The pseudo-code of PPO is given in Algorithm A3.
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Algorithm A3 PPO [53]
Initialize policy parameters θ0 and value function parameters ϕ0

1: for k = 0, 1, 2, . . . do
2: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environ-

ment
3: Compute rewards-to-go R̂t
4: Compute advantage estimates, Ât based on the current value function Vϕk
5: Update the policy by maximizing the PPO-Clip objective:

θk+1 = arg max
θ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

min

(
πθ(at | st)

πθk (at | st)
Aπθk (st, at), g(ϵ, Aπθk (st, at))

)

6: Fit value function by regression on mean squared error:

ϕk+1 = arg min
ϕ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

(
Vϕ(st)− R̂t

)2

7: end for

Appendix A.4. SAC Conceptual Background

Soft Actor-Critic (SAC) [54] is an off-policy maximum entropy actor-critic algorithm
known for its effectiveness in training agents to perform tasks in challenging and continuous-
action environments. SAC is capable of reusing collected data efficiently for training. It
leverages an entropy-regularized objective function to encourage exploration while opti-
mizing the policy. One notable feature of SAC is its ability to balance between maximizing
expected cumulative rewards and maximizing entropy, promoting both efficiency and
exploration. SAC also incorporates a critic network to estimate the value function, reducing
variance in policy updates and enhancing stability. The algorithm typically involves a target
value network, and it employs a form of the soft Bellman backup, which helps maintain
smooth policy updates. SAC is highly regarded for its robust performance and adaptability
across a wide range of tasks, making it a valuable asset in the field of RL.

Soft Actor-Critic (SAC) distinguishes itself from conventional actor-critic methods
by emphasizing the maximization of information entropy in addition to cumulative re-
wards. SAC favors stochastic policies, achieved by augmenting the objective function
with an extra component representing the expected entropy of the policy. An adaptive
temperature parameter (α) is introduced to regulate the trade-off between entropy and
expected return. This parameter allows the agent to automatically adjust exploration
based on the task’s difficulty. More specifically, the temperature or trade-off coefficient
is tuned automatically through minimizing the J(α) throughout the training (in every
step), with J(α) = Eat∼πt [− α ln(πt(at | st)) − αH0] leading to α← α − λ∇̂α J(α), where
H0 equals −dim(A1) and A1 is the dimensions of action. The significance of entropy
maximization in SAC is rooted in its ability to promote policies that exhibit substantial
exploration, thereby capturing multiple modes of near-optimal strategies. Furthermore, the
augmentation of entropy acts as a protective measure against the premature convergence
of policies to undesirable local minima. The Q-function parameters are updated using
ϕi ← ϕi − λQ∇̂ϕi JQ(ϕi) for i ∈ {1, 2} while for the policy weights as θ ← θ − λπ∇̂θ Jπ(θ)
and finally the target network parameters are updated using ϕ′i ← τϕi + (1 − τ)ϕ′i for
i ∈ {1, 2}. The pseudo-code of the SAC algorithm is presented in Algorithm A4.
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Algorithm A4 Soft-Actor-Critic (SAC) [54]
Initialize policy parameters θ, Q-function parameters ϕ1, ϕ2 and empty replay buffer D
Set target parameters equal to main parameters ϕ′1 ← ϕ1, ϕ′2 ← ϕ2

1: repeat
2: Observe state s and select action a ∼ πθ(· | s)
3: Execute a in the environment
4: Observe next state s′, reward r, and done signal d to indicate whether s′ is terminal
5: Store (s, a, r, s′, d) in replay buffer D
6: if it is time to update then
7: for j in range (however many updates) do
8: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} from D
9: Compute targets for the Q functions:

y(r, s′, d) = r + γ(1− d)

(
min
i=1,2

Qϕ′i
(s′, ã′)− α log πθ(ã′ | s′)

)
, ã′ ∼ πθ(· | s′)

10: Update Q-functions by one step of gradient descent using

∇ϕi

1
|B| ∑

(s,a,r,s′ ,d)∈B

(
Qϕi (s, a)− y(r, s′, d)

)2
for i = 1, 2

11: Update policy by one step of gradient ascent using:

∇θ
1
|B| ∑

s∈B

(
min
i=1,2

Qϕi (s, ãθ(s))− α log πθ(ãθ(s) | s)
)

12: where ãθ(s) is a sample from πθ(· | s) which is differentiable wrt θ via the
reparametrization trick

13: Update target networks with:

ϕ′i ← τϕi + (1− τ)ϕ′i for i = 1, 2

14: end for
15: end if
16: until convergence

Appendix A.5. A2C Conceptual Background

The A2C method is a derivative of the more general actor-critic methods, which
have been studied for several decades in RL. The specific formulation of A2C, especially
in the context of DRL, was popularized by its asynchronous version, the Asynchronous
Advantage Actor-Critic (A3C) [55]. Such techniques utilize two neural networks: the
actor, which proposes actions based on the current environment state, and the critic, which
evaluates these actions. To this end, while traditional Q-learning focuses on learning the
Q-values directly, in the A2C method, the critic is trained to learn the advantage values
instead of the Q-values. By emphasizing the advantage, the algorithm assesses actions not
just by their intrinsic value, but also by their superiority relative to other possible actions.
As a consequence, the algorithm reduces the high variance often seen in policy networks,
leading to a more stable model.

In the HVAC framework, A2C illustrates a promising approach to curb energy wastage.
Balancing energy efficiency with occupant comfort is a challenging problem, making it an
ideal candidate for sophisticated RL techniques like A2C. By continuously learning and
adapting to changing conditions, A2C is adequate to dynamically adjust HVAC parameters,
such as temperature setpoints or airflow rates, aiming for an optimal trade-off between
energy conservation and user comfort. Algorithm A5 illustrates the pseudo-code of A2C.
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Algorithm A5 Advantage Actor-Critic

1: Initialize Actor network with random weights θ
2: Initialize Critic network with random weights ϕ
3: Initialize empty experience buffer D
4: for episode = 1 to M do
5: Initialize sequence s1
6: for t = 1 to T do
7: Use Actor to get policy π(a|st; θ)
8: Sample action at from π
9: Execute action at in environment and observe reward rt and next state st+1

10: Store transition (st, at, rt, st+1) in D
11: Sample random minibatch of transitions (sj, aj, rj, sj+1) from D
12: Use Critic to get value estimates V(sj; ϕ) and V(sj+1; ϕ)
13: Compute advantage A(sj, aj) = rj + γV(sj+1; ϕ)−V(sj; ϕ)
14: Update Actor using gradient ascent on log π(aj|sj; θ)× A(sj, aj)

15: Update Critic by minimizing (rj + γV(sj+1; ϕ)−V(sj; ϕ))2

16: end for
17: end for

Appendix B. Architecture and Hyperparameter Configuration of RL Algorithms

This appendix is dedicated to ensuring the reproducibility of the results presented
in this study. It details the specific hyperparameter configurations for each RL algorithm
evaluated. Providing this information is essential for transparency and allows other re-
searchers and practitioners to replicate the experiments, verify the findings, and extend the
work if desired. For each RL algorithm—A2C, DDPG, DQN, SAC, and PPO—we include
tables that list the parameters utilized along with their default values. These parameters
encompass learning rates, neural network architectures, discount factors, and other key
settings that significantly influence algorithm performance (see Tables A1–A5).

Table A1. A2C hyperparameter configuration.

Parameter Default Value

Learning Rate 7× 10−4

Number of Steps per Rollout 5
Discount Factor (γ) 0.99

Neural Network Architecture 2 layers, 64 neurons each
Entropy Coefficient 0.01

Table A2. DDPG hyperparameter configuration.

Parameter Default Value

Learning Rate 1× 10−3

Batch Size 100
Discount Factor (γ) 0.99

Neural Network Architecture 2 layers (400, 300 neurons)
Replay Buffer Size 1,000,000

Polyak Coefficient (Tau) 0.005
Exploration Noise (Std Dev) 0.2

Noise Clip 0.5
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Table A3. DQN hyperparameter configuration.

Parameter Default Value

Learning Rate 1× 10−4

Batch Size 32
Discount Factor (γ) 0.99

Neural Network Architecture 2 layers, 64 neurons each
Replay Buffer Size 1,000,000

Exploration Strategy (Epsilon) Start: 1.0, End: 0.05
Target Network Update Frequency 1000 steps

Learning Starts 5000 steps

Table A4. SAC hyperparameter configuration.

Parameter Default Value

Learning Rate 3× 10−4

Batch Size 256
Discount Factor (γ) 0.99

Neural Network Architecture 2 layers, 256 neurons each
Polyak Coefficient (Tau) 0.005

Table A5. PPO hyperparameter configuration.

Parameter Default Value

Learning Rate 3× 10−4

Batch Size 64
Discount Factor (γ) 0.99

Neural Network Architecture 2 layers, 64 neurons each
Number of Epochs 10

Clip Range 0.2
GAE Lambda 0.95

Value Function Coefficient 0.5
Entropy Coefficient 0.01

Number of Steps per Rollout 2048

Appendix C. Analytical Results for Each RL Algorithm

This appendix provides a visual compendium of the simulation results for various
RL algorithms applied within the scope of residential building energy management (see
Figures A1–A15). The following visual data are presented for each algorithm under multiple
weight scenarios:

• Predicted Percentage of Dissatisfied Measurements: Illustrations of the PPD across different
building zones, reflecting the occupant comfort levels attained during the simulations.

• Zone Temperature Measurements: Temperature readings for each building zone, demon-
strating the algorithms’ effectiveness in maintaining thermal conditions.

• HVAC Energy Consumption Profiles: Graphs depicting the energy consumed by the
HVAC system throughout the day, showcasing the algorithms’ energy performance.

Each of the 45 images within this appendix is integral to the comprehensive evaluation
of the algorithms’ performance, providing an empirical basis for the analysis discussed in
the main body of the paper. These images offer readers an opportunity to visually assess the
impact of RL-driven control on both the micro-scale (zone-specific comfort and temperature)
and macro-scale (overall energy consumption) aspects of building management.
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Figure A1. SAC under weight case w = 0.1. (Upper left): PPD for each building zone; (Upper right):
Temperature for each building zone; (Lower): HVAC energy consumption within day.

Figure A2. PPO under weight case w = 0.1. (Upper left): PPD for each building zone; (Upper right):
Temperature for each building zone; (Lower): HVAC energy consumption within day.
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Figure A3. A2C under weight case w = 0.1. (Upper left): PPD for each building zone; (Upper right):
Temperature for each building zone; (Lower): HVAC energy consumption within day.

Figure A4. DDPG under weight case w = 0.1. (Upper left): PPD for each building zone; (Upper
right): Temperature for each building zone; (Lower): HVAC energy consumption within day.



Energies 2024, 17, 581 26 of 33

Figure A5. DQN under weight case w = 0.1. (Upper left): PPD for each building zone; (Upper right):
Temperature for each building zone; (Lower): HVAC energy consumption within day.

Figure A6. SAC under weight case w = 0.5. (Upper left): PPD for each building zone; (Upper right):
Temperature for each building zone; (Lower): HVAC energy consumption within day.
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Figure A7. PPO under weight case w = 0.5. (Upper left): PPD for each building zone; (Upper right):
Temperature for each building zone; (Lower): HVAC energy consumption within day.

Figure A8. A2C under weight case w = 0.5. (Upper left): PPD for each building zone; (Upper right):
Temperature for each building zone; (Lower): HVAC energy consumption within day.
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Figure A9. DDPG under weight case w = 0.5. (Upper left): PPD for each building zone; (Upper
right): Temperature for each building zone; (Lower): HVAC energy consumption within day.

Figure A10. DQN under weight case w = 0.5. (Upper left): PPD for each building zone; (Upper
right): Temperature for each building zone; (Lower): HVAC energy consumption within day.
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Figure A11. SAC under weight case w = 0.9. (Upper left): PPD for each building zone; (Upper right):
Temperature for each building zone; (Lower): HVAC energy consumption within day.

Figure A12. PPO under weight case w = 0.9. (Upper left): PPD for each building zone; (Upper right):
Temperature for each building zone; (Lower): HVAC energy consumption within day.
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Figure A13. A2C under weight case w = 0.9. (Upper left): PPD for each building zone; (Upper right):
Temperature for each building zone; (Lower): HVAC energy consumption within day.

Figure A14. DDPG under weight case w = 0.9. (Upper left): PPD for each building zone; (Upper
right): Temperature for each building zone; (Lower): HVAC energy consumption within day.
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Figure A15. DQN under weight case w = 0.9. (Upper left): PPD for each building zone; (Upper
right): Temperature for each building zone; (Lower): HVAC energy consumption within day.
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