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Abstract: Economic Dispatch Problems (EDP) refer to the process of determining the power output
of generation units such that the electricity demand of the system is satisfied at a minimum cost
while technical and operational constraints of the system are satisfied. This procedure is vital in
the efficient energy management of electricity networks since it can ensure the reliable and efficient
operation of power systems. As power systems transition from conventional to modern ones, new
components and constraints are introduced to power systems, making the EDP increasingly complex.
This highlights the importance of developing advanced optimization techniques that can efficiently
handle these new complexities to ensure optimal operation and cost-effectiveness of power systems.
This review paper provides a comprehensive exploration of the EDP, encompassing its mathematical
formulation and the examination of commonly used problem formulation techniques, including
single and multi-objective optimization methods. It also explores the progression of paradigms
in economic dispatch, tracing the journey from traditional methods to contemporary strategies in
power system management. The paper categorizes the commonly utilized techniques for solving
EDP into four groups: conventional mathematical approaches, uncertainty modelling methods,
artificial intelligence-driven techniques, and hybrid algorithms. It identifies critical research gaps, a
predominant focus on single-case studies that limit the generalizability of findings, and the challenge
of comparing research due to arbitrary system choices and formulation variations. The present paper
calls for the implementation of standardized evaluation criteria and the inclusion of a diverse range
of case studies to enhance the practicality of optimization techniques in the field.

Keywords: economic dispatch; conventional optimization; probabilistic algorithms; artificial intelligence;
metaplastic algorithms; hybrid approaches

1. Introduction

Power grids, involving conventional thermal power plants that run on fossil fuels, play
a vital role in energy generation. They are responsible for producing a significant proportion
of the electricity energy mix. This is despite the fact that several alternative energy sources
such as renewable energies are available to power system operators. Two main characteris-
tics of thermal power plants, namely, reliability and affordability, cause thermal plants to
hold a prominent position among other sources of electricity in electricity generation.

According to the U.S. Energy Information Administration (EIA) [1], fossil fuels have
been the largest sources of energy for electricity generation from 1950 to 2021. Table 1,
depicts the contribution of various energy sources in billions of kilowatt hours (kWh),
thereby showcasing the significant role of fossil fuels in meeting the electricity demand in
the United States. Natural gas and coal were shown to constitute about 38% and 22% of the
total generation, respectively, and were reported as the two largest sources of electricity
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generation in the U.S. in 2021. Additionally, thermal plants powered by fossil fuels have
generated about 60% of the total electricity generation in 2022 [1]. The data of US energy
sources in 2022 [1], have been utilized to create Figure 1, illustrating the distribution of
these energy sources.

Table 1. Comparison of Energy Generation Sources.

Generation Source Billion kWh

Natural Gas 1689
Coal 828

Petroleum (total) 23
Petroleum liquids 16

Petroleum coke 7
Other gases 12

Nuclear 772
Wind 435

Hydropower 262
Photovoltaic 143
Solar thermal 3

Biomass (total) 53
Geothermal 17

Other sources 11

60.28% Fossil Fuels

18.16% Nuclear
10.28% Wind

5.99% Hydro

3.39% Solar

1.2% Biomass
0.4% Geothermal

0.3% Other Sources

Figure 1. Composition of electricity generation by different sources in percentages.

Population and urbanization growth, along with the growth of industries, have con-
tributed to continuous increments in electricity consumption. The scarcity of fossil fuels
and the adverse environmental impacts of thermal power plants are the major driving
forces with respect to efficiently managing the power network and obtaining the optimal
power generation schedule for the power system. It is noteworthy that power networks
are vast in size and include multiple generators and transmission networks that span huge
geographical areas. Hence, the management of the electricity grid is a complex task that in-
volves several challenges [2]. One of the major challenges that power system operators face
when managing the electricity grid is maintaining the balance between electricity demand
and generation. It is a technically difficult task to store electricity on a large scale; therefore,
it is highly significant to retain the supply and demand equilibrium in the power networks.

Moreover, in order to have an economically feasible power system, the network must
meet the electricity demand while minimizing the operation cost. The economic challenge
stems from the fact that the generation cost varies from one generator to another one. This is
because the cost of generated electricity at a specific generator is affected by several factors
such as local fuel cost, the availability of the generator, and the plant’s maintenance cost [3].
Hence, to efficiently run the power system, it is vital to address the above-mentioned
techno-economic constraints while operating electricity grids.

The EDP refers to the process of calculating the output power of each available genera-
tor to meet the total network demand while minimizing operation costs and/or generators’
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carbon dioxide emissions [4]. Essentially, the EDP involves identifying the most efficient
scheduling of generators while considering various economic and technical limitations
associated with both the committed generators and the power grid. The primary concept in
the EDP is to prioritize the generators with the lowest marginal costs for operation, and the
marginal cost of the overall system is determined by the generator with the highest cost.

Economic dispatch offers several advantages, including lower operating costs, in-
creased efficiency, and reduced emissions. By optimizing the output of each generator,
economic dispatch can help to minimize the overall cost of electricity production. Ad-
ditionally, it can help to maximize the efficiency of the power system and reduce its
negative environmental impact by utilizing the most cost-effective and least-polluting
generators first.

The assistance of economic dispatch greatly facilitates the optimization of electricity
network operation, thereby making it an essential tool for achieving efficient operation of
the power grid. System operators can reap a multitude of benefits from economic dispatch,
including economic, technical, health, and climate advantages [5]. By enhancing system
efficiency and reducing greenhouse gas emissions, economic dispatch can have a positive
impact on health and the climate. Additionally, it can lead to increased reliability and
more effective utilization of power sources for the electricity grid. Therefore, it is of utmost
importance to define and solve the EDP precisely.

The EDP has been a persistent issue in the literature since 1920, thereby leading to
extensive research in this area [6].

While numerous review papers on the economic dispatch problem (EDP) exist in the
literature, most tend to focus narrowly on specific aspects. For instance, several existing
reviews focus exclusively on narrow categories of optimization techniques or specific theo-
retical approaches [7–10]. Others limit their scope to particular optimization strategies or
theoretical frameworks, with each addressing only a fragment of the broader EDP land-
scape [11]. Additionally, certain reviews target specific types of power systems [12,13].
In contrast, the present research provides a comprehensive examination of the EDP, thus
tracing its evolution from traditional to modern power systems. We systematically catego-
rize research studies based on the type of problem formulation and subsequently analyze
the array of methods used for solving the EDP, thereby encompassing a wide range of
approaches from conventional to advanced techniques. This approach provides an exten-
sive, in-depth overview of the EDP, thereby offering researchers in the field a holistic and
detailed perspective of the subject matter. Furthermore, this paper makes a significant
contribution by focusing exclusively on publications from 2018 to 2023, thereby providing
a current and relevant perspective on economic dispatch. This approach ensures that it
serves as an authoritative guide for future research, thus highlighting recent trends and
fostering new explorations and developments in the field:

1. We conduct a critical analysis of the existing literature that assesses the performance,
advantages, and drawbacks of the algorithms used in prior research studies.

2. We establish the current state of the art by providing an up-to-date and innovative
classification of EDP formulations, objective functions, and optimization algorithms.

3. We synthesize the existing literature to offer a useful starting point for future research
work in the field of the EDP.

4. We identify gaps in the existing literature and highlight areas that require further
investigation.

The paper is structured as follows: Section 2 outlines the research methodology
employed to conduct the present review. Section 3 discusses the evolution of paradigms
in economic dispatch, thus detailing the shift from conventional techniques to modern
strategies in power system management. Sections 4 and 5 classify the EDP formulation and
optimization techniques, respectively. Section 6 discusses the findings in detail. Finally,
Section 7 summarizes the conclusions of the paper.
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2. Research Methodology

The present research employs a systematic literature review that utilizes Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The
PRISMA guidelines involve four primary steps. First, the research scope is identified by
the researcher. Next, proper keywords are selected by the researcher to search databases
for the most relevant studies. The third step is focused on eligibility analysis, while the
fourth step deals with data analysis [14].

The scope of the research in this review paper is the formulation and optimization
of economic dispatch. The Scopus database was selected for the literature search, articles
that were considered irrelevant were excluded, and those that were relevant underwent a
full-text review. The formulation and optimization techniques utilized in each article were
carefully recorded, along with their contributions to the field. The backward referencing
approach was also employed to identify additional related papers. The fourth step of
the PRISMA guidelines was completed by classifying the collected papers based on their
problem formulation and optimization techniques employed.

The database was searched using the keywords “Optimization”, “Economic Dispatch”,
“Virtual Power Plants”, and “Multi Energy Systems” with a search of article titles, abstracts,
and keywords, thereby resulting in 5070 articles retrieved. Economic dispatch has been
extensively researched in the power systems literature due to its long-standing relevance,
but the emergence of smart grids has renewed interest in this topic. To ensure a focus on
contemporary research, this review paper restricted the publication years to 2018–2023.
This was to exclude studies that revolve around traditional power systems, thus resulting
in a selection of 4481 documents. Additionally, research studies with irrelevant keywords
such as heat and hydrogen storage, reactive power, thermoelectric power systems, fore-
casting, economic and social effects, digital storage, model predictive control, economics,
cogeneration plants, electric load flow, and commerce were excluded to ensure a focused
approach on the main topic of interest. Papers written in non-English languages were also
excluded. As a result, 889 relevant documents were obtained. Furthermore, nonrelevant
subject areas such as social science, business management and accounting, medicine, art
and humanities, and others were excluded. This resulted in a total of 288 documents.
Subsequently, these articles underwent screening based on their abstract and title. As a
result, 175 papers were further evaluated through a full article assessment and included in
this comprehensive review.

3. Evolving Paradigms in Economic Dispatch: From Conventional Techniques to
Modern Power System Strategies

In this section, we discuss the evolution of economic dispatch, thereby tracing its
progression from established conventional power systems to innovative contemporary
models. We begin with an analysis of the traditional economic dispatch, thereby detailing
the foundational principles and strategies employed in earlier power system optimiza-
tion. The focus then shifts to the application of economic dispatch in the realm of virtual
power plants (VPPs), thereby emphasizing the transformative role of these technologies in
introducing decentralization and advanced management techniques to the field. Finally,
the discussion extends to the utilization of economic dispatch within multienergy systems
(MESs), thus underscoring the significance of integrating various energy sources to optimize
efficiency and promote environmental sustainability. Each subsection presents a distinct,
yet interconnected aspect of the ongoing progression in economic dispatch strategies.

3.1. Foundations of Economic Dispatch in Conventional Power Systems

Economic dispatch problems (EDPs) represent a fundamental optimization challenge
within traditional power systems. The principal aim of the EDP is to optimize the cost-
efficiency of electricity generation, thereby concurrently ensuring adherence to the plethora
of constraints associated with power system operations. Achieving this objective requires
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the formulation of the EDP as an optimization problem that incorporates an objective
function and a set of constraints.

The EDP in its most fundamental form is commonly known as the classic EDP. The
primary objective of this problem is to minimize the generation cost of electricity in a power
system, with the cost function typically defined as a quadratic equation. The optimization
problem involves constraints related to the generation load balance, power loss, and
generation limits for each power plant. The conventional mathematical formulation of the
EDP is represented by the following equation [15]:

Ct =
m

∑
i=1

αi + βiPi+ + γiP2
i ,

m

∑
i=1

Pi = Pd + Pl ,

Pimin ≤ Pi ≤ Pimax .

(1)

The total generation cost in Equation (1) is represented by Ct, with the cost coefficients
for the ith generator denoted by αi, βi, and γi. The electricity demand and loss are denoted
by Pd and Pl , respectively. The output limits for the ith generator are shown as Pimin
and Pimax .

The classical economic dispatch formulation often falls short in real-world scenarios,
especially as traditional power systems, once dominated by fossil fuels and thermal gen-
erators, have evolved. Modern power networks now incorporate a variety of renewable
energy sources, thereby altering system components and necessitating new approaches in
economic dispatch problem solving. These changes have spurred advancements in the EDP,
with studies proposing innovative objective functions and formulations. Building on this,
the next section explores the EDP within VPPs, thereby showcasing advanced solutions for
these modern, complex power systems.

3.2. VPP-Based Economic Dispatch

In contrast to traditional power systems, which predominantly consist of conventional
thermal generators, contemporary power systems are increasingly inclusive of renewable
energy sources dispersed throughout the network. While these renewables offer consid-
erable environmental and economic advantages, their integration into the power system
presents a myriad of challenges [16]. These challenges encompass aspects such as grid
stability, variable energy output, and demand–supply management. This complex land-
scape has been a driving force behind the inception of the concept of virtual power plants
(VPPs). A virtual power plant (VPP) is comprised of a heterogeneous array of distributed
energy resources (DERs) that are controlled in a centralized manner [17]. VPPs represent
a strategic response to these challenges, thereby providing an innovative framework for
the efficient and effective integration of diverse energy resources into the power grid. This
innovative approach reflects the transition from classic power systems to VPPs, thereby
signaling a shift towards more decentralized and flexible energy management [18–20].

This transformation has led to a notable shift in the economic dispatch problem (EDP),
thereby resulting in a significant deviation from traditional EDP approaches. The inte-
gration of diverse renewable energy sources within virtual power plants (VPPs) presents
unique challenges, thus driving this change. These complexities require redefining tradi-
tional EDP strategies to effectively manage the variable and intermittent nature of renew-
ables, thereby ensuring efficient and reliable energy management in a sustainable power
generation landscape [21].

The formulation of the EDP for VPPs can be categorized into two distinct approaches:
centralized and distributed. In the centralized approach for EDP formulation in VPPs,
control and decision making are centralized at one point. All distributed energy resources
(DERs) within the VPP network transmit real-time data, including energy generation
and constraints, to this central controller. The controller processes this data to solve the
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EDP, thereby aiming to maximize the overall system efficiency. The formulated dispatch
strategy is then communicated back to the DERs for execution. This approach involves the
aggregation of data and operational commands from various distributed energy resources
(DERs) within the VPP network to a central control unit [22].

This approach facilitates harmonized operations across the network, thereby po-
tentially enhancing the overall system efficiency. However, it necessitates a substantial
communication infrastructure due to the continuous exchange of extensive data between
the main controller and DERs dispersed over a vast network. Another challenge is main-
taining the privacy of DERs owners, as sensitive operational data are transmitted to the
central operator. Additionally, the centralized processing model introduces the risk of a
single-point failure, which could potentially lead to a systemic collapse [23].

In contrast to the centralized paradigm, the distributed approach to economic dispatch
in VPPs represents a fundamentally different strategy. In this methodology, DERs are each
equipped with individual intelligence, thereby enabling autonomous decision making.
Each DER utilizes real-time data and specific constraints to achieve the most locally optimal
operation for its subproblem. This objective is accomplished through communication and
information exchange with neighboring units, thereby ensuring a coordinated approach
while maintaining individual operational autonomy [24].

The theoretical foundation and practical applications of the distributed approach in
VPPs have been explored in recent research [25–36]. These studies provide valuable insights
into the intricacies of implementing such systems, addressing key challenges such as com-
munication technology requirements, system resilience, and the complex interplay between
local and global objectives. Such coordination necessitates advanced communication and
control technologies. However, unlike centralized systems, this approach is not prone
to single-point failures, as each DER can operate independently, enhancing the system’s
overall resilience. While the distributed approach offers these advantages, it faces the
complexity of balancing local and global objectives, requiring sophisticated optimization
algorithms [37]. A summarized overview of these key research works, including their
methodologies, findings, and contributions, is presented in Table 2 for a comprehensive
comparative analysis.

Table 2. Comprehensive summary of distributed EDPs in VPPs.

Ref. Solution Approach Objectives Constraints Case Study

[25]
Alternating Direction
Method of Multipliers
(ADMMs)

Minimize generation cost Network power balance IEEE 30-bus and 300-bus
test cases

[26] NCS-based attack-robust
distributed strategy

Minimize the total cost of
generation and privacy
breach

Active power output
bounds of distributed
generations

IEEE 123-bus test feeder

[27] ADMMs-based Distributed
Algorithm

Minimize cost of
generation and maximize
the utilities of controllable
loads

Network constraints,
voltage Limitations

Modified version of a
33-bus system

[28] Deep Reinforcement
Learning

Minimize VPP operation
cost

Power balance among
DERs, limits on maximum
interruptible load
percentage

Offline data sets obtained
from [38,39]

[29] Model Predictive Control
Algorithm

Minimum VPP operation
cost

Dynamic lower bound
constraints on energy
storage, network power
balance, voltage limitations

VPP with load, 5G station,
PV power, energy storage,
control center, connected to
grid
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Table 2. Cont.

Ref. Solution Approach Objectives Constraints Case Study

[30]
Distributed Primal–Dual
Subgradient Method
(DPDSM)

Maximize quality of
voltage profile and
minimize operation cost

Bus voltage limit
constraint, limit on DER
current injection from each
bus, current flow limit on
critical lines at risk of
congestion

A 14-bus DC distribution
feeder and 6-bus radial DC
distribution feeder

[31] DPDSM-based Nonideal
Communication Network

Minimize operation cost
function

Power output constraints
of DERs, transmission
constraints of power lines

Modified IEEE 34- and
IEEE 123-bus test VPP
systems

[32] Distributed Randomized
Gradient-Free Algorithm

Maximize the total income
of the VPP

Valve-point loading effects,
prohibited operating zones

Modified IEEE-34 bus test
system

[33] Improved Light Robust
Optimization Method Minimize operation costs

Supply–demand balance,
battery capacity change
constraints, storage, battery
rated capacity limits,
natural gas unit power
output constraints

Data center–VPP system
using HOMER and
MATLAB

[34]

Scenario-Based Robust
Optimization and
Receding Horizon
Optimizations

Maximize VPP profit
Power flow constraints,
active and reactive branch
power flow are constrained

South Australia network

[35]
Two-Stage Stochastic
Programming,
Multiobjective PSO, PSO

Maximizing daily net profit
and minimizing daily
emissions of VPP

Constraints on DER
Operation, thermal
capacity limits of
distribution lines

A total of 3 scenarios on
4-plant VPP

[36] DLs Aggregation-Based
Multi-Timescale Strategy

Minimizing operational
cost

Power flow and network
constraints, limits on DERs,
storage systems, and
reserve balance, aggregator
constraints

Southern China
distribution system

3.3. MES-Based Economic Dispatch

Building upon the advancements presented in VPPs, the concept of multienergy
systems (MESs), also known as integrated energy systems, emerges as an even more
integrative approach in modern energy management. These systems integrate a diverse
array of energy carriers, such as electricity, heat, and gas, into a unified framework, thus
resulting in a significant advancement in creating a more efficient energy system [40,41]. In
this context, the EDP for MESs plays a crucial role in optimizing the allocation of various
energy resources, thereby ensuring the most efficient use of the integrated energy mix. The
literature reveals extensive research on economic dispatch planning—EDP—for MESs, with
78 papers meeting our search criteria described in Section 2. In the following paragraphs,
we will briefly discuss the key and most influential papers among these, particularly
focusing on those which have garnered 80 or more citations. This approach allows us to
highlight the most significant contributions and emerging trends in the realm of the EDP
for MESs, thereby emphasizing studies that have had a substantial impact and recognition
in the field.

The concept of economic emission dispatch for an MES comprising combined heat
and power has been explored in [42]. This study introduces a two-stage technique to
address EDP challenges within this system. Initially, a novel metaheuristic algorithm,
the θ Dominance-Based Evolutionary Algorithm (θ-DEA), was employed to tackle the
multiobjective problem. Subsequently, fuzzy C-Means (FCM) clustering was applied to the
Pareto optimal solutions, followed by the use of a gray relation projection (GRP) on these
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clusters to identify the most balanced compromise solutions. This proposed methodology
was tested across three distinct case studies of varying complexity, wherein the results
underscore its effectiveness and efficiency.

The optimal scheduling of a comprehensive regional integrated system in Tianjin,
China was examined in [43]. This system encompasses a variety of components, including
combined cooling, heating, and power (CCHP), thermal energy storage, electric energy
storage, electric boilers, wind turbines, and photovoltaic systems. The study considered
constraints like energy balance and external network transmission power, with the pri-
mary goal of minimizing the system’s total cost. This included energy transaction costs,
operational expenses, energy storage costs, and environmental impact costs. To solve this
EDP, the fruit fly optimization algorithm was employed. The study explored three different
operational modes: “Following Power Load”, “Following Heat Load”, and an “Optimal
Scheduling” mode—which integrates both power and heat loads. The findings indicate
that the optimal scheduling solution significantly outperformed the scenarios focusing
solely on either heat or power load.

The study in [44] investigated the impact of various storage technologies, including
lithium-ion, vanadium redox, ice, and phase change material thermal storage, on multi-
energy systems (MESs). Utilizing mixed integer quadratic programming, it conducted a
sensitivity analysis for optimal dispatch problems (ODPs) in MESs and also determined
the optimal dispatch strategy using the in-house developed simulation tool known as
©E-OPT. This methodology was applied to two distinct case studies: the first connected to
the national electricity network and the second operating in island mode. The case studies
catered to electricity and peak cooling demands of 1600 kWe and 3000 kWc, respectively.
The results indicate that the island mode, particularly due to higher fuel prices, benefits
significantly from incorporating energy storage technologies, thereby achieving a 23%
reduction in CO2 emissions.

In [45], a novel multiplayer harmony search (MPHS) algorithm was developed to
address nonconvex, nonlinear, large-scale EDPs for combined heat and power (CHP)
systems. The core principle of the proposed MPHS method involves improvising harmonies
through the collective experiences of multiple players to achieve the optimal solution for the
CHPED. This approach was tested on two case studies: a 24-unit case study and an 84-unit
case study, thus representing a large-scale scenario. The results demonstrate significant cost
savings amounting to over 17 million dollars annually and exhibited superior performance
compared to other algorithms such as the gravitational search algorithm, improved group
search optimization ,cuckoo optimization algorithm, crisscross optimization algorithm, and
improved PSO.

4. Economic Dispatch Problem (EDP) Formulation

The optimization techniques used for EDPs can be classified into two distinct groups
depending on the type of their objective function—single- vs multiobjective optimization—
as illustrated in Figure 2. This section presents an overview of these two categories and the
objective functions used in the field of the EDP. Additionally, the research studies carried
out from each perspective are briefly discussed in the following subsections.

4.1. Single Objective Optimization

Single-objective optimization is a category of optimization problems in which a single
objective function is optimized. The fundamental aim of single-objective optimization is to
determine the optimal solution that minimizes or maximizes the objective function while
complying with certain constraints.

This type of optimization is extensively utilized to solve the EDP. While the classical
EDP is primarily focused on minimizing the generation cost, power system operators
may have other objectives of interest in practical scenarios. In the academic literature, the
most commonly investigated objectives for the EDP encompass minimizing the cost of
generating electricity and reducing emissions, as well as maximizing the reliability and
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profitability of power systems. The subsequent paragraphs explore research studies carried
out on single-objective optimization for the EDP.

 
ECONOMIC DISPATCH PROBLEM 

FORMULATION 

Single Objective Optimization Multi-Objective Optimization 

Generation Cost Minimization 

Carbon Emission Minimization   

Reliability Maximization 

Minimizing Power Loss 

Generation Cost Minimization 

Carbon Emission Minimization 

Reliability Maximization 

   

 

Generation Cost Minimization 

Utilization of Available Renewables Maximization 

Reliability Maximization 

   

 

Generation Cost Minimization 

Composite demand peak Minimization   

 

Generation Cost Minimization 

Water Consumption Minimization   

 

Figure 2. Classification of EDP Formulation.

In the context of EDP, various costs must be minimized, including the generation cost,
fuel costs, start-up costs, and transmission costs. Numerous research studies considered
formulating the EDP as a single optimization problem by developing models that capture
the various costs involved [46–51].

In addition to the costs mentioned earlier, carbon emission trading costs are also
becoming an increasingly important factor in EDP. Carbon emission trading costs represent
the financial implications of a power plant’s carbon footprint and thus must be included
in the objective function of the cost minimization problem. By incorporating carbon
emission trading costs, power companies can accurately estimate the financial burden of
their carbon footprint and take proactive measures to reduce it. A number of research
studies have examined the inclusion of carbon emission trading costs in the objective
function of the EDP [52–55]. However, other research methodologies involve integrating
emission constraints into the optimization problem and managing the trade-offs between
minimizing emissions and costs [56–58]. This approach strives to identify the optimal
dispatch solution that satisfies electricity demand while minimizing the environmental
impact of power generation.

Another critical objective function in economic dispatch is the maximization of power
system reliability. Ensuring an uninterrupted and consistent supply of electricity to con-
sumers is a crucial aspect of power system operations. To achieve this goal, power com-
panies must design and operate their systems in a manner that can withstand unforeseen
disturbances and events, such as equipment failures, natural disasters, and demand fluc-
tuations [59]. Several research studies have addressed the significance of the objective
function in maximizing power system reliability in economic dispatch. This objective is
accomplished by integrating constraints related to power loss into the optimization prob-
lem while solving the EDP [60–64]. Table 3 presents a comprehensive summary of single
objective function approaches in EDPs.
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Table 3. Comprehensive summary of single objective function approaches in EDPs.

Ref. Objective Utilized Method Performance Indicator Case Study

[46] Minimize generation cost
Lambda Iteration
Algorithm, ANN,
Levenberg Marquardt

Percentage error in lambda A 9-generating-unit system

[47] Minimize generation cost Hybrid PSO and Termite
Colony Optimization

Average execution time
and cost function value

Total of 5-, 10-, and 30-unit
power systems

[48] Minimize generation cost
Memory-Based
Gravitational Search
Algorithm

Cost function value versus
iterations IEEE 37-bus system

[49] Minimize generation cost
Hybrid Mixed-Integer
Linear Programming and
IPM

Cost function value and
CPU time

Total of 5- and 10-unit
power systems

[50] Minimize generation cost
Macroscopically
Semiempirical Degradation
Cost Modeling

- Zimbabwe and Northern
Ireland power systems

[51] Minimize generation cost PSO Cost reduction Two microgrids, including
RES and 4 generators

[52] Minimize generation and
carbon emission cost Very relaxed ADMM Convergence speed and

Cost reduction
A 6-bus system and IEEE
118-bus system

[53] Minimize operational cost
and emission levels

Improved mayfly
algorithm

Convergence speed and
Cost reduction

Microgrid comprising three
conventional generators,
solar, and wind units

[54]

Minimize the total
operation, carbon
tax-based emission, and
energy balance cost

CCP-based two-stage
stochastic programming

Allocation of carbon quota
and cost reduction

Six-bus power system and
six-node natural gas
system

[55]
Minimize thermal and
CCPP generation cost and
produced CO2 emission

Fuzzy decision making Minimum fuzzy
membership degrees

Modified IEEE 24-bus test
system

[56] Minimize operation cost
and emission Improved TLBO algorithm Mutation probability and

cost reduction

Total of 6 and 400 thermal
units, as well as a system of
thirteen solar units, forty
wind turbines, six thermal
units

[57] Minimize operational cost
of IENGSs

Mixed-integer linear
programming

Permissible emission limit
and CO2 price

A 6-bus power system and
7-node natural gas system;
Jing–Jin–Ji economic circle

[58] Minimize cost and flue gas
emission Game theory Deregulation and cost

reduction
A 62-bus system of Indian
utility

[59] Minimizing total system
failure

Reliability assessment
using ETAP

Failure, hazard rate, and
reliability parameters

Power system of Tehran
metro

[60] Minimize cost
Comparative and
analytical study of
approximation errors

Dispatch approximation
error and cost reduction

Total of 2-bus and 2383-bus
test systems

[61] Minimize cost Mixed-integer linear
programming

CPU time and cost
reduction

Total of 6-, 13-, 20-, 40-, and
140-bus power systems

[62] Minimize total fuel cost
Improved competitive
swarm optimization
algorithm

CPU time and cost
reduction

Total of 10-, 40-, and
120-unit systems
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Table 3. Cont.

Ref. Objective Utilized Method Performance Indicator Case Study

[63] Minimize cost Discrete dynamic
programming

Computational efficiency
and cost reduction

Total of 15- and
53-generating-unit systems

[64] Minimize cost IL-SHADE algorithm Wilcoxon sign rank test
and cost reduction

IEEE 6-, 40-, and 140-unit
test systems

4.2. Multiobjective Optimization

In addition to the commonly used single-objective functions in the EDP, there are also
research studies that explore the integration of multiple objectives into the optimization
problem. In the EDP, the multiobjective optimization problem involves considering two or
more objectives simultaneously. One category of the multiobjective EDP is the environmen-
tal EDP, which aims to minimize both generation-related costs and environmental-related
costs as objectives. Specifically, this involves minimizing fuel costs and emission costs. The
literature contains a significant number of papers that address this type of problem [65–71].

Researchers have employed different combinations of single objectives to solve the
EDP. For instance, a multiobjective optimization approach was developed to conduct
economic dispatch for a hybrid microgrid system in Sweden [72]. The objective was to
minimize operating costs and emissions while maximizing system reliability.

Similarly, the EDP was solved for a microgrid that includes electric vehicles, renewable
energies, and transferable electricity load [73]. The problem was formulated as a multi-
objective optimization that aims to minimize costs, maximize the utilization of available
renewable energies, and enhance microgrid security by reducing power fluctuations caused
by interactions between the microgrid and the main grid.

In addition to the studies discussed above, researchers have also investigated multiob-
jective EDPs in other contexts. For example, a multiobjective EDP was presented where a
test system consisting of renewable energy sources and energy storage systems was consid-
ered in previous research [74]. The study aimed to determine the optimum scheduling of
the test system by simultaneously minimizing two objective functions: the generation cost
and the composite demand peak. To solve the problem, the authors employed a multiobjec-
tive optimization approach that generated a set of Pareto optimal solutions representing
the trade-offs between the two objectives.

Another example of the multiobjective EDP was where a dynamic system consisting
of wind power and energy storage systems was considered in previous research [75]. The
study aimed to solve the EDP by employing a multiobjective optimization approach that
took into account the trade-offs between two objectives: the operational cost and the
water consumption in the power production process. The objective was to minimize the
total generation cost while simultaneously optimizing water consumption. The research
constructed a multiobjective optimization that generated a set of Pareto optimal solutions
representing the trade-offs between the two objectives. Table 4 depicts a comprehensive
summary of the multiobjective function approaches in EDPs.

Table 4. Overview of multiobjective function strategies in EDPs.

Ref. Objective Utilized Method Performance Indicator Case Study

[65] Minimize cost and
emission

Improved shuffled frog
leaping algorithm IGD index IEEE 30-bus test system

[66] Minimize cost and
emission Lagrangian duality Normalized diversity

metric Six-generating-unit system

[67] Minimize cost and
emission level

Multiobjective Harris
hawks optimization

Crossover rate and
mutation factor IEEE 30-bus system
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Table 4. Cont.

Ref. Objective Utilized Method Performance Indicator Case Study

[68] Minimize cost and total
amount of pollutants

Niching penalized chimp
algorithm p value and RMSE

IEEE 30-bus with six
generators and a ten-unit
system

[69] Minimize cost and total
quantity of emissions Duality theory approach Normalized diversity

metric
Total of 6-, 11-, and
40-generator-unit systems

[70] Minimize fuel and
emission cost

Hybrid FA-GA
multiobjective algorithm Voltage stability index A 39-bus IEEE system

[71] Minimize cost and
emission

Multiobjective gray
prediction evolution
algorithm

Average satisfactory degree
IEEE 30-bus
6-generator-unit test
system

[72] Minimize cost and
emission PSO

Loss of power supply
probability, cost of
electricity, renewable factor,
and capital recovery factor

Sweden electricity network

[73]
Minimize total cost and
fluctuation of the
interaction power

Multiobjective seeker
optimization algorithm Overall satisfactory degree China microgrid

[74] Minimize cost and
composite demand peak Probabilistic models

Loss of load probability
and expected unserved
energy

Texas power system

[75] Minimize cost and water
consumption

Whale optimization
algorithm

CPT time and cost
reduction IEEE 40-unit test system

5. EDP Optimization Techniques

Various optimization techniques have been used in the literature for solving economic
dispatch problems. These techniques can be divided into four categories based on the
mathematical algorithm used for finding a solution: conventional, probabilistic, artificial
intelligence (AI), and hybrid. This classification is demonstrated in Figure 3. The conven-
tional techniques include Newton’s method, the lambda iteration algorithm, the interior
point method (IPM), and quadratic programming (QP). The uncertainty modeling methods
involve stochastic, chance constraints programming (CCP), and robust optimization. AI
methods include artificial neural networks (ANNs), deep learning (DL), reinforcement
learning (RL), fuzzy logic, and metaheuristic algorithms. Hybrid techniques combine two
or more of the aforementioned methods to enhance their performance. This section presents
a review of the most commonly used techniques in each category for solving economic
dispatch problems.

5.1. Conventional Mathematical Methods

The conventional optimization algorithms for solving EDPs were commonly employed
in early studies, where the problem formulation of the system was designed to be simple
and only included the generation cost as the objective function, with the power balance,
generation limits, and transmission loss as constraints. The subsequent paragraphs discuss
the early studies that employed classical optimization techniques to provide effective
solutions for the EDP.

5.1.1. Newton’s Method

This method is one of the well-known classic optimization methods, which is an
iterative technique. This method employs the second derivative of the objective function
and updates an initial probable solution in several iterations in order to find the root of the
derivatives of the objective function that are associated with the optimal solution of the
problem [76]. This algorithm has been widely used in the context of the EDP [77–83].
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Figure 3. Classification of EDP formulation.

Although Newton’s method is a prevalent optimization algorithm, it presents certain
drawbacks when utilized for solving EDPs. To begin with, the method can become compu-
tationally expensive and time-consuming when handling large-scale systems. Secondly,
the computation and inversion of the Hessian matrix required by the method may lead to
numerical instability and accuracy issues. Another limitation of Newton’s method is its
susceptibility to converging towards local optima instead of the global optimum, especially
if the initial solution is insufficiently proximate to the true solution. Consequently, while
Newton’s method may be effective for certain EDPs, it may not always represent the most
efficient or dependable method.

Given the limitations of Newton’s method, recent studies have sought to address these
issues by combining the method with other optimization techniques [84] or developing
revised variants of Newton’s method [85,86]. Alternatively, the problem formulation may
be approximated in a manner that renders Newton’s method suitable for solving the
problem [87,88].

5.1.2. Lambda Iteration Algorithm

This technique, also referred to as the Lagrange multiplier method, is an approach that
is usually utilized for solving optimization problems. The technique entails the introduction
of a series of Lagrange multipliers, which act as coefficients that enable the constraints to
be integrated into the objective function [89]. The technique then optimizes the augmented
function, which encompasses both the original objective function and the added constraints
represented by the Lagrange multipliers.

The lambda optimization technique has extensive applications in various fields, includ-
ing, but not limited to, economic dispatch. While some research studies employed the con-
ventional lambda iteration algorithm to solve classic economic dispatch problems [90–93],
more contemporary investigations have developed advanced variants of the method that
are better suited to handle real-world systems [94–99]. This approach is adopted to obtain
the optimal dispatch while accounting for prohibited operating zones and effectively mit-
igating the oscillatory behavior that is commonly observed in the conventional lambda
iteration method. Furthermore, the literature documents several research studies that have
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integrated the lambda iteration method with other optimization techniques to mitigate
its limitations. The present study classifies these research efforts as hybrid methods and
presents them in Section 5.

The lambda iteration technique exhibits several advantages over Newton’s method in
optimization problems. Firstly, it is generally more robust and less sensitive to the initial
guess, thereby resulting in a higher probability of convergence to the global optimum
as opposed to local optima. Additionally, as it does not necessitate the computation and
inversion of the Hessian matrix, it is less computationally expensive and does not encounter
accuracy issues as is the case with Newton’s method. While the lambda iteration technique
has advantages over Newton’s algorithm, it may not be able to obtain the global optimum
solution in the presence of nonsmooth or nonconvex objective functions or constraints.

5.1.3. Interior Point Method (IPM)

The interior point method (IPM) was initially developed in 1984 [100]. This technique
consists of an iterative process where an interior point is identified, which is a feasible point
located inside the feasible region defined by the constraints, and then gradually moved
towards the optimal solution [101]. In the literature, some research studies have utilized
the IPM and its variations for solving the EDP [69,102–104].

In comparison to other traditional optimization techniques, IPMs are known for their
ability to handle a wide range of constraints. However, these methods are vulnerable to the
issue of yielding infeasible solutions, especially when solving nonlinear objective functions,
if the step size is not carefully selected. This is because the selection of the step size in the
interior point method can greatly affect the convergence and feasibility of the solution [105].
Therefore, careful consideration of the step size is crucial in ensuring the effectiveness of
the interior point method when solving nonlinear optimization problems.

5.1.4. Quadratic Programming (QP)

Quadratic programming is a nonlinear programming method that was developed in
the 1940s [106]. It is usually utilized to solve an optimization problem where the objective
function is quadratic and subject to linear constraints. In the scope of the EDP, QP is applied
to minimize the cost of the power generation when subject to various constraints such as
generator output limits, transmission line limits, and demand requirements.

This optimization algorithm has demonstrated its effectiveness in solving the EDP
with a quadratic cost function and linear constraints. The efficacy of QP in solving EDPs
has motivated many researchers to utilize this technique [107–109]. It is noteworthy that
QP is a more versatile and robust than other conventional optimization techniques. This is
attributed to its ability to handle nonconvex functions and linear constraints. Nonetheless,
QP requires the optimization problem to be formulated in a specific format consisting of
a quadratic objective function and linear constraints. This may limit its feasibility when
applied to real-world power systems, which often involve complex nonlinear constraints.

As elaborated previously, traditional optimization techniques have their own strengths
and limitations. Additionally, these techniques are limited to solving the simplest form of
the EDP. However, in practical power systems, EDPs are much more complex and involve
additional constraints beyond those found in classic EDP formulations, such as valve-point
effects and prohibited operating zones for generators.

Such constraints result in a highly nonlinear and discontinuous feasible region, which
poses significant challenges to optimization. Conventional solution methods, such as linear
programming, Lagrange relaxation, nonlinear programming, quadratic programming, dy-
namic programming, and the interior point method, may encounter difficulties due to their
strict requirements for continuity, convexity, the differentiability of the objective functions,
and sensitivity to initial values of the optimized variables. Hence, it is crucial to employ
more advanced techniques to obtain optimal solutions for EDPs in real-world scenarios.
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5.2. Uncertainty Modelling Methods

Modern power systems are distinguished by the extensive integration of renewable
energy sources, such as wind power and photovoltaic systems, which introduce significant
uncertainties due to the volatile nature of their primary sources. Additionally, the electricity
load of the system exhibits intermittent behavior, thereby resulting in the incorporation of
several probabilistic variables in the economic dispatch problem for modern power systems.

Uncertainty modeling methods involve accounting for uncertain and variable inputs
and parameters to identify a solution that performs optimally across a range of possible
scenarios. Hence, these techniques have garnered considerable attention as a means of
solving the EDP for modern power systems.

Uncertainty modeling method algorithms applied to solve the EDP can be categorized
into three groups, namely, stochastic optimization, chance constraints optimization, and
robust optimization. This subsection presents a discussion of some of the commonly
employed uncertainty modelling techniques for solving the EDP. Additionally, recent
research studies that employ these techniques for solving EDP are also discussed. This will
provide insights into the effectiveness of different uncertainty modeling methods and their
potential for solving complex EDPs in modern power systems.

5.2.1. Stochastic Optimization

Stochastic optimization is a class of optimization methods that are well suited for
stochastic problems, where the objective function and/or constraints incorporate random
variables. These algorithms aim to determine the optimal solution for stochastic prob-
lems by representing the intermittencies in the problem formulation with established
distributions [110].

A stochastic optimization approach for the multiobjective EDP aiming to minimize
operation cost and maximize renewable energy penetration was presented [111]. To rep-
resent the uncertainties associated with renewable energy sources, all possible dynamic
scenarios were generated, and a scenario reduction technique was employed to mitigate
the computational complexity. The feasibility of the developed stochastic method was
evaluated by applying it to IEEE 118-bus and IEEE 30-bus test systems. The results show
that the proposed stochastic optimization algorithm enables a high level of renewable
energy penetration compared to deterministic techniques.

Some previously presented approaches [111,112] have proposed a multistage stochas-
tic optimization algorithm for minimizing the total cost in power systems. The algorithm
employs a scenario tree to account for the uncertainty of renewable energy reserves and the
feasible output of each generation unit. Subsequently, stochastic dual dynamic program-
ming (SDDP) is employed to obtain the most optimal solution. The effectiveness of the
proposed approach has been verified by applying it to an IEEE 118-bus power system, and
the results demonstrate its effectiveness.

A study [113] proposed the use of a nested sparse grid-based stochastic collocation
method for solving the EDP in the presence of renewable energy sources. The method
approximates the random variables in the system using finite-order expansion. Two IEEE
test systems of different sizes (1009- and 39-bus) were used to evaluate the proposed
method. The results indicate that the method is effective in finding the optimal solution
regardless of the size of the system.

5.2.2. Chance Constraint Programming (CCP)

CCP is an uncertainty modeling technique employed to tackle optimization problems
that have constraints with a possibility of being violated [114]. These types of problems
are common in the field of renewable energy, where the availability of energy sources
can be uncertain. These models differ from conventional optimization problems, which
face challenges when solving problems where the inequality functions are not distinctly
presented in the problem formulation. Furthermore, they aim to find solutions that satisfy
the constraints with a certain degree of confidence [115].
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Several studies reported in the literature utilized the CCP to solve EDPs [116,117].
The objective of such studies is to find the optimal solution for an electricity–gas power
system’s EDP by minimizing the cost of carbon emissions trading and the risk associated
with renewable energy output [54]. The problem formulation considers various risks,
such as transmission line overload risk and the loss of load risk. To obtain the optimal
dispatch for the case study, a CCP method was employed. The results obtained from [54]
demonstrate the effectiveness of the utilized method.

In contrast to the approach that utilizes the conventional CCP [54], a novel CCP-based
method was introduced [118] for solving the EDP. This method addresses the limitation of
the conventional CCP in managing the fast increase in the integration rate of renewable
sources. Besides minimizing the generation cost, the proposed approach utilizes curtailment
strategies to determine the generation and curtailment plan sequentially. The effectiveness
of this method was evaluated by comparing it with a scenario-based algorithm, and its
superior performance was validated.

5.2.3. Robust Optimization

The origins of the development of robustness optimization can be traced back to the
1950s [119]. This method is a type of optimization that aims to identify a solution that is
not only optimal but also resilient to variations and uncertainties in the input parameters.
It involves the consideration of worst-case scenarios in the decision-making process and
the formulation of constraints to ensure that the system remains within a feasible region
under all possible variations [120]. The suitability of robust optimization for solving the
EDP in modern power systems with a large-scale integration of renewable energies is
attributed to its inherent characteristics. These properties of robust optimization make it a
viable technique for addressing the EDP in contemporary power systems that feature the
extensive integration of renewable energy sources.

A novel self-adaptive step size robust optimization method for an efficient solution of
EDP involving flexible electricity resources was developed [121]. This study accounted for
the uncertainties associated with load and renewable energy resources, as well as practical
constraints related to power line congestion. The proposed approach solved multiple
subproblems in parallel, thereby ensuring information security.

In a similar manner, distributional robust optimization was employed to address the
uncertainties arising from the integration of wind power into the electricity grid in an
EDP [122]. The proposed approach generated the worst-case probability distribution using
a data-driven generative adversarial network. Furthermore, the level of robustness of the
technique can be adjusted by modifying the number of auxiliary data.

As elaborated in this section, the approaches consider the stochastic nature and vari-
ability of input parameters, including load demand and renewable energy generation,
thereby rendering them more effective when addressing the requirements of modern power
systems in contrast to the classical optimization techniques expounded in Section 4.

This characteristic of uncertainty modeling methods results in a more robust and flexi-
ble solution that can adapt to changing conditions and minimize the likelihood of violating
operational constraints. Additionally, despite conventional mathematical algorithms, un-
certainty modeling techniques can incorporate risk management and mitigation strategies,
which can help improve the economic and environmental performance of power systems.

Despite the aforementioned advantages of uncertainty modeling techniques, their
computational complexity, limited accuracy, and scalability remain significant challenges,
especially when handling large-scale complex power systems with numerous variables and
constraints. To overcome these limitations, researchers have developed and implemented
AI techniques for solving the EDP. The succeeding subsection elaborates on the commonly
utilized AI-driven techniques in the domain of the EDP.



Energies 2024, 17, 550 17 of 31

5.3. AI-Based Techniques

These optimization techniques refer to a category of optimization algorithms that
employ AI principles to optimize a system or process. Such optimization techniques are
designed to learn from data, identify patterns, and make intelligent decisions to achieve
optimal outcomes for a given system or process [123].

AI optimization techniques have been developed and employed by researchers in
the field of economic dispatch to overcome the shortcomings of conventional and uncer-
tainty modeling methods, which include not only limited scalability and computational
complexity but also limited accuracy, the inability to handle nonlinear and nonconvex prob-
lems, and sensitivity to initialization and local optima. The most frequently used AI-based
optimization methods for solving the EDP encompass a variety of algorithms, including
artificial neural networks (ANNs), support vector machines (SVMs), reinforcement learning
(RL), deep learning (DL), fuzzy logic (FL), and metaheuristic algorithms, which have been
developed and employed by researchers in the field of economic dispatch. These methods
are discussed in the subsequent subsection.

5.3.1. Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) are a type of AI-based algorithm that take inspira-
tion from the structure and functioning of the human brain. ANN models are composed of
interconnected nodes or neurons that perform mathematical operations to process infor-
mation [124]. The basic architecture of an ANN typically consists of an input layer, one or
more hidden layers, and an output layer. Input data are fed into the ANN via the input
layer, and the learning process occurs in the hidden layers, where activation functions are
applied to the input data to produce the output. The final output data are provided by the
output layer [125].

In the domain of economic dispatch, ANN models can be trained using historical data
to learn the mapping between input variables, such as the generators’ output, renewable
energy availability, the electricity load profile, and the optimal dispatch solution, which are
set as output neurons.

ANN-based optimization techniques offer several advantages when solving EDPs.
They are able to handle nonlinear and complex relationships among input and output
variables, thereby making them highly accurate in predicting optimal solutions. ANN
models can also adapt to changing conditions and update the solution for online schedul-
ing, thereby providing a flexible and robust approach to economic dispatch. In addi-
tion, these models can be trained using historical data, which simplifies the optimization
process and reduces the need for detailed system information. Such advantages have
encouraged researchers to use them for solving economic dispatch problems. Various
types of neural networks are available, each with distinct architectures and activation
functions. Artificial neural networks (ANNs) [126–129], convolutional neural networks
(CNNs) [130–132], recurrent neural networks (RNNs) [133–135], and Hopfield neural net-
works (HNNs) [136–138] are commonly employed in economic dispatch applications.

5.3.2. Deep Learning Techniques

Another class of AI-based algorithms is deep learning (DL). This technique belongs
to the group of machine learning algorithms and employs neural networks consisting of
multiple layers to extract high-level features from large and complex datasets [139]. DL-
based methods excel in optimization tasks by effectively modeling complex and nonlinear
relationships among input and output variables. Hence, they have been broadly used in
the EDP [140–143].

In a study, a DL-based optimization algorithm was employed to solve a security-
constrained EDP in a smart grid scenario where the clearing frequency is continuously
increasing [144]. The proposed method provides a fast solution for the EDP by initially
identifying the active constraints of the problem using DL. A transfer learning approach
is then used to fine-tune the parameters of the DL model. The results of the experiments
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conducted on two IEEE test systems validated the efficiency of the proposed technique in
terms of computational efficiency [144].

While the aforementioned research study applied DL techniques to provide efficient
solutions for a security-constrained EDP, another study [145] utilized DL for a multiregion
EDP considering interconnected tie lines. The proposed DL-based method employs a
hierarchical structure and utilizes historical data sets for performing the optimization task
online. The effectiveness of the proposed method was demonstrated through its application
to a large-scale IEEE test system [145].

5.3.3. Reinforcement Learning (RL)

These techniques involve an agent learning to make decisions in an environment by
maximizing a reward signal. This learning procedure occurs through trial and error and
can be mathematically formulated as a Markov decision process (MDP) [146].

Researchers have employed reinforcement learning techniques in economic dispatch
tasks [147,148]. This is due to the fact that RL is proficient in managing the stochastic
nature of variables and is capable of learning optimal decisions through trial and error in
intricate and dynamic environments. Additionally, RL can improve its performance over
time through continuous learning and adaptation to changing conditions, thereby making
it a promising optimization technique for EDPs.

A research study [149] proposed a novel optimization framework for an EDP in a
smart grid environment by employing the DL technique. The approach involves three
main steps. The first step utilizes DL to determine the optimal output of the generators.
In the second step, an improved consequent algorithm, is applied to the optimal outputs
obtained from step one to achieve an efficient solution for the EDP. Finally, the proposed
method’s efficiency was evaluated by applying it to two different test systems.

While some studies assumed that the cost function of the generations is known [149],
other studies [150] have applied a DL technique for an EDP in a smart grid where the objec-
tive functions of the generation units are not mathematically formulated. To address this
issue, a novel DR-based algorithm has been developed. The proposed algorithm consists
of two methods: state action value function approximation and distributed optimization
based on multiplier splitting. This approach effectively handles the lack of prior knowledge
of the system. The proposed DL-based model was evaluated by applying it to several case
studies, thereby demonstrating its effectiveness [150].

5.3.4. Fuzzy Approaches

Fuzzy logic is a widely recognized method for performing reasoning and decision-
making tasks when dealing with uncertain or imprecise input information. This technique
employs a fuzzifier that can handle a high level of tolerance for uncertainties and impreci-
sion. Fuzzy optimization allows for the incorporation of imprecise or uncertain data, which
is common in real-world energy systems [151]. This technique is based on fuzzy set theory,
which uses membership functions to represent uncertain data. Several fuzzy techniques
have been developed, as exemplified in [152,153]. The basic stages of the fuzzy process are
illustrated in Figure 4.
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In economic dispatch, Fuzzy optimization is a popular technique that has been used to
improve the efficiency of the dispatch process by incorporating the uncertainties associated
with load forecasting, fuel prices, and other factors [154–156]. An EDP that involves uncer-
tainties in wind generation and electricity loads was considered in a research study [157].
These uncertainties ere modeled using the Dubois possibility and probability consistency
principle. Fuzzy second extension theory was then utilized to obtain the optimal output
of each generator. To validate the effectiveness of the proposed technique, the model was
applied to an IEEE 30-bus system.

In a similar manner, another research study [73], employed fuzzy optimization tech-
niques to obtain the optimal solution for a multiobjective EDP in a microgrid. The study con-
sidered the influence of the charging–discharging behavior of electric vehicles and demand-
side response resources on the economic operation of a photovoltaic grid-connected micro-
grid system. Four distinct scenarios were examined, with each corresponding to a specific
charging behavior of electric vehicles and transferable load. The results obtained from the
study demonstrated that an orderly electric vehicle charging behavior, coupled with the
participation of transferable load in the electricity market, led to the most efficient solution
for the EDP.

Building upon the foundation of fuzzy optimization in the EDP, the Adaptive Neuro-
Fuzzy Inference System (ANFIS) emerges as a groundbreaking approach [158]. The ANFIS
extends the capabilities of traditional fuzzy logic by integrating neural network learn-
ing, thereby offering enhanced adaptability and precision in handling the multifaceted
challenges of economic dispatch.

EDPs for modern power systems operate in a dynamic environment, which is char-
acterized by several variables such as electricity load, fuel prices, and renewable energy
sources, all of which are prone to sudden fluctuations. Such rapid changes necessitate a
system capable of quick adaptation. While traditional fuzzy systems may lack the required
responsiveness, the ANFIS stands out for its ability to learn and adapt to new patterns and
conditions over time, thereby significantly enhancing decision-making accuracy [159–161].
Furthermore, a major challenge in fuzzy systems is parameter tuning, which involves
manually adjusting algorithm parameters and membership functions. This process is time-
consuming and does not always guarantee optimal results. However, the ANFIS effectively
addresses this issue by automating the tuning process through its learning mechanism,
thereby continuously optimizing these parameters to achieve enhanced performance [162].
While fuzzy approaches excel in managing uncertainty, they often lack precision in com-
plex scenarios with multiple conflicting objectives. The ANFIS, equipped with advanced
learning capabilities, enhances the precision of solutions while still effectively managing
uncertainties [163]. As power systems grow in size and complexity, the efficiency and
scalability of traditional fuzzy systems often prove to be insufficient. In contrast, the ANFIS,
enhanced by its neural network components, is more adept at efficiently handling larger
and more complex systems. Additionally, the ANFIS’s adaptive learning feature helps to
avoid overfitting to specific scenarios or datasets, thereby providing superior generalization
across a variety of EDP scenarios.

Based on the aforementioned advantages of the ANFIS over traditional fuzzy sys-
tems for the EDP in modern power systems, this algorithm has garnered significant at-
tention from researchers in the field. Numerous studies have employed the ANFIS to
address the EDP in power system optimization, thereby demonstrating its superior perfor-
mance and adaptability [164–167]. This widespread adoption of the ANFIS in academic
and practical research underscores its effectiveness and potential in advancing energy
management solutions.

5.3.5. Metaheuristic Algorithms

Metaheuristic is a class of optimization techniques in AI that is commonly used in
the literature for solving complex problems like economic dispatch. These techniques
employ an efficient search strategy for exploring the vast solution space in order to obtain
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an optimal solution [168]. These algorithms are typically engineered to tackle complex
and multi-dimensional problems, such as the EDP in power systems, by systematically
exploring a wide range of potential solutions through iterative search processes [169].

Metaheuristic optimization techniques are advantageous for solving EDPs due to
their ability to efficiently explore complex and nonlinear search spaces. Additionally,
these techniques are capable of handling constraints and uncertainties and can provide
near-optimal or optimal solutions within a reasonable time frame.

Metaheuristic algorithms (MAs) can be classified into four distinct categories, which in-
clude evolutionary algorithms (EAs), swarm intelligence (SI) methods, approaches based on
natural phenomena, and algorithms inspired by human behavior [170]. Over a few decades,
numerous MAs have been developed, among which genetic algorithm (GA) [129,171–175],
particle swarm optimization (PSO) [176–181], ant colony optimization (ACO) [182–185],
and artificial bee colony (ABC) [186–191] and their variants have been extensively applied
to solve the EDP. The main feature of these nature-inspired algorithms is their reliance on
searching the space of potential solutions to find optimal or near-optimal outcomes. This
search is carried out iteratively, and in each iteration, the search space is narrowed down
based on the calculated cost function of each potential solution within the space. Moreover,
they aim to balance exploration and exploitation in each search iteration to ensure that
existing solutions are refined, and new feasible solutions are discovered.

Although MAs are powerful tools for solving complex optimization problems such as
economic dispatch, their usage comes with certain drawbacks. A significant limitation of
MAs is their inability to ensure the discovery of the global optimum, particularly when
the search space is extensive and the problem exhibits high nonlinearity. Moreover, these
algorithms often necessitate substantial parameter optimization and could be extremely
vulnerable to initial conditions, which can result in suboptimal solutions.

5.4. Hybrid Algorithms

In the context of economic dispatch, research studies have explored the develop-
ment of hybrid optimization algorithms to identify optimal solutions. These research
efforts propose combining hybrid metaheuristic algorithms like GA [192], PSO and its
variants [193–197], ant lion optimization algorithm [198], slap swarm [199], crow search
algorithm [200], and firefly [201], along with traditional optimization techniques such as
Lambda iteration algorithm [202], with AI-based techniques such as neural networks, fuzzy
systems, and DL. This is due to the primary limitation of AI-based techniques, which
require parameter tuning. As discussed earlier, choosing the best parameters for these ap-
proaches is a challenging task for researchers, as they significantly impact the performance
of these techniques. Hybrid optimization algorithms have shown the ability to mitigate this
drawback of AI-based techniques when applied to EDPs. The utilization of optimization
algorithms in conjunction with AI-based methods allows for fine-tuning the parameters,
thereby resulting in more efficient solutions.

From another perspective, researchers have combined metaheuristic algorithms to
achieve more efficient optimization techniques, thus resulting in hybrid approaches. This
integration aims to mitigate the disadvantages of individual metaheuristic algorithms
discussed previously. Some of these hybrid techniques, utilized for solving the EDP,
include the PSO-bat algorithm [203,204], PSO-ACO [205], PSO-ant lion optimization [206],
PSO-Imperialist competitive algorithm [207], and slab-simulated annealing algorithm [208].

6. Discussion

The optimization of the EDP is a fundamental task in power systems, which can
result in considerable economic and environmental impacts. The primary objective of
economic dispatch is to minimize the cost of power generation, which is subject to power
demand and system constraints. Due to the rising demand for energy and the integration of
renewable sources, the EDP has become more complex. Consequently, discovering precise
and efficient solutions to this problem is essential for researchers, policymakers, and power
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system operators. Effective economic dispatch can lead to substantial cost savings, reduce
greenhouse gas emissions, and enhance the stability and reliability of the power grid.

The objective of this review paper is to provide an up-to-date overview of the latest
advancements in problem formulation and optimization techniques used for solving EDPs,
with a particular focus on conventional techniques, uncertainty modelling methods, AI-
based techniques, and hybrid methodologies. This section highlights the key findings
of the review and discusses their potential implications for future research and practical
applications in the field of energy management.

Conventional optimization techniques, including Newton’s method, the lambda itera-
tion algorithm, the interior point method (IPM), and quadratic programming (QP), were
widely used in early studies of economic dispatch due to their ability to handle the classic
EDP. These techniques are known for their accuracy in obtaining optimal solutions, easy
implementation, and well-established theoretical foundations. However, they may not
be suitable for complex and nonlinear problems and can suffer from high computational
costs, especially for large-scale power systems. Additionally, they assume perfect knowl-
edge of input data, which may not reflect real-world uncertainties and variations in the
power system.

Uncertainty modeling approaches such as robust optimization, chance constraint
programming, and stochastic optimization have also been discussed in the literature as
potential solutions to the EDPs. These techniques consider the uncertainties and variations
in the input parameters and constraints of the optimization problem to provide solutions
that are robust and dependable. The robust optimization approach aims to find a solution
that is feasible under the worst-case scenario, whereas the CCP method incorporates
uncertainty constraints to ensure that the probability of satisfying constraints is above a
predefined threshold. Stochastic optimization methods utilize probability distributions to
model the uncertain parameters and generate solutions that are optimally average over
the distribution.

AI-based algorithms such as ANN, Fuzzy, RL, DL, and metaheuristic algorithms
are frequently employed as optimization techniques for the EDP. These techniques are
recognized for their capability to handle nonlinear and complex problems. Furthermore,
they have been demonstrated to reduce computational complexity and enhance efficiency
when compared to classical or uncertainty modeling methods. However, their performance
is significantly impacted by model parameters, thereby necessitating careful parameter
tuning to achieve optimal results.

All of the aforementioned optimization techniques possess distinct advantages and
disadvantages, and there is no definitive guidance for selecting the appropriate optimiza-
tion technique. To leverage the benefits of multiple approaches while overcoming their
limitations, researchers have proposed hybrid models that integrate two or more primary
models. For example, some studies have combined AI-based techniques with metaheuristic
techniques to enhance the optimization technique. Furthermore, metaheuristic techniques
can be combined to achieve better performance when applied to the EDP. After examining
the research studies discussed in this paper, two primary limitations were identified. These
limitations are briefly summarized in the following paragraph.

After analyzing the existing literature, it was observed that the majority of research
studies focus on the evaluation of optimization approaches using a single case study.
Nonetheless, it is of great importance to evaluate the optimization method performance by
applying it to diverse case studies. This is due to the fact that an optimization technique
that performs well on smaller or medium-sized systems (in terms of the number of buses
in the power system or the number of constraints of the problem) may fail when applied
to larger-scale systems that represent real-world scenarios. Therefore, it is advisable for
researchers to include a diverse range of case studies with varying sizes and conditions to
improve the practicality and feasibility of their optimization techniques.

The choice of the system to be investigated is arbitrary, and researchers can choose any
system with any combination of constraints. The problem formulation can vary significantly



Energies 2024, 17, 550 22 of 31

according to the components of the power system. That is to say, different components
in microgrids will result in different formats of the objective function and constraints.
Furthermore, due to varying perspectives among system operators, the objective function
and constraints used in solving EDPs can differ significantly from one researcher to another.
As a result, comparing research studies in this field can be challenging.

7. Conclusions

This review comprehensively analyzes a broad range of optimization algorithms
in the context of EDPs, with a dual categorization framework. Initially, we discuss the
evolution of economic dispatch, thus charting its development from classic, established
power systems to cutting-edge, modern frameworks. Following this, the optimization
techniques are classified into four distinct categories—conventional mathematical models,
uncertainty-based, AI-based, and hybrid techniques—based on the algorithms utilized by
each technique.

Our analysis begins by examining the finer details of problem formulations in EDPs,
thereby highlighting the significant effect these classifications have on the selection of
optimization algorithms. The efficiency and computational complexity inherent in each
optimization technique category are thoroughly assessed. It is observed that the simpler the
formulation of the EDP, the more straightforward the optimization algorithms employed.
In the context of single objective optimization, there is a tendency towards straightfor-
ward implementation, often seen in conventional methods. However, in multiobjective
optimization, more sophisticated approaches, such as AI-based and uncertainty modeling
methods, are utilized. Although these advanced algorithms are efficient in dealing with
complex problems, they also carry the drawback of higher computational requirements.
An additional key finding from this review is the noticeable performance superiority of
hybrid models. These models combine various optimization techniques, thereby efficiently
utilizing the strengths of each to achieve enhanced efficiency and robustness.

For future research endeavors, it is recommended to conduct a comprehensive as-
sessment of the efficacy of optimization techniques for EDPs across varied case studies,
including power systems of various sizes and complexities. This approach will facilitate a
comprehensive assessment of the scalability and practical relevance of these optimization
techniques in real-world scenarios, thereby enhancing our insight into their performance
under various circumstances. Additionally, the development of a standardized framework
for EDP problem formulation is of great importance. Such a framework would facilitate
meaningful comparisons and benchmarking across studies, accommodating the diversity
in power system components and operational objectives. Collectively, these efforts will
significantly contribute to advancing efficient and universally applicable optimization
solutions in energy management.
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environmental/economic dispatch problem using the hybrid FA-GA multi-objective algorithm. Energy Rep. 2022, 8, 13766–13779.
[CrossRef]

71. Hu, Z.; Li, Z.; Dai, C.; Xu, X.; Xiong, Z.; Su, Q. Multiobjective Grey Prediction Evolution Algorithm for Environmental/Economic
Dispatch Problem. IEEE Access 2020, 8, 84162–84176. [CrossRef]

72. Azaza, M.; Wallin, F. Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden. Energy
2017, 123, 108–118. [CrossRef]

73. Hou, H.; Xue, M.; Xu, Y.; Xiao, Z.; Deng, X.; Xu, T.; Liu, P.; Cui, R. Multi-objective economic dispatch of a microgrid considering
electric vehicle and transferable load. Appl. Energy 2020, 262, 114489. [CrossRef]

74. Alamri, A.; AlOwaifeer, M.; Sakis Meliopoulos, A.P. Multi-Objective Unit Commitment Economic Dispatch for Power Systems
Reliability Assessment. In Proceedings of the 2020 International Conference on Probabilistic Methods Applied to Power Systems
(PMAPS), Liege, Belgium, 18–21 August 2020; pp. 1–6. [CrossRef]

75. Azizivahed, A.; Karandeh, R.; Cecchi, V.; Naderi, E.; Li, L.; Zhang, J. Multi-Area Dynamic Economic Dispatch Considering Water
Consumption Minimization, Wind Generation, and Energy Storage System. In Proceedings of the 2020 IEEE Power & Energy
Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 17–20 February 2020; pp. 1–5. [CrossRef]

76. Alvarado, F.L. Penalty Factors From Newton’s Method. IEEE Trans. Power Appar. Syst. 1978, PAS-97, 2031–2040. [CrossRef]
77. Han, S. A Globally Convergent Method for Nonlinear Programming; Technical Report 75-257; Department of Computer Science,

Cornell University: Ithaca, NY, USA, 1975.
78. Ferrero, R.W.; Shahidehpour, S.M. Dynamic Economic Dispatch in Deregulated Systems. Electr. Power Syst. Res. 1997, 19, 433–439.

[CrossRef]
79. Chen, J.F.; Chen, S.D. Multi objective power dispatch with line flow constraints using the fast Newton-Raphson method. IEEE

Trans. Energy Convers. 1997, 12, 86–93. [CrossRef]
80. Barcelo, W.; Rastgoufard, P. Control area performance improvement by extended security constrained economic dispatch. IEEE

Trans. Power Syst. 1997, 12, 120–128. [CrossRef]
81. Lin, C.; Chen, S.; Huang, C.L. A direct Newton-Raphson economic dispatch. IEEE Trans. Power Syst. 1992, 7, 1149–1154.

[CrossRef]
82. Chen, S.D.; Chen, J.F. A direct Newton–Raphson economic emission dispatch. Int. J. Electr. Power Energy Syst. 2003, 25, 411–417.

[CrossRef]
83. Ramanathan, R. Fast economic dispatch based on the penalty factors from Newton’s method. IEEE Trans. Power Appar. Syst. 1985,

PAS-104, 1624–1629. [CrossRef]
84. Xu, T.; Wu, W.; Zheng, W.; Sun, H.; Wang, L. Fully Distributed Quasi-Newton Multi-Area Dynamic Economic Dispatch Method

for Active Distribution Networks. IEEE Trans. Power Syst. 2018, 33, 4253–4263. [CrossRef]
85. Qin, J.; Wan, Y.; Yu, X.; Kang, Y. A Newton Method-Based Distributed Algorithm for Multi-Area Economic Dispatch. IEEE Trans.

Power Syst. 2020, 35, 986–996. [CrossRef]
86. da Costa, G. Modified Newton method for reactive dispatching. Int. J. Electr. Power Energy Syst. 2002, 24, 815–819. [CrossRef]
87. Chaiamarit, K.; Nuchprayoon, S. Economic dispatch solution considering demand and wind speed uncertainties based on

Newton’s method. In Proceedings of the 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC),
Hong Kong, China, 8–11 December 2013; pp. 1–6. [CrossRef]

88. Abouheaf, M.I.; Lee, W.J.; Lewis, F.L. Dynamic formulation and approximation methods to solve economic dispatch problems.
IET Gener. Transm. Distrib. 2013, 7, 866–873. [CrossRef]

89. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: New York, NY, USA, 2004.
90. Zhan, J.P.; Wu, Q.H.; Guo, C.X.; Zhou, X.X. Fast λ-Iteration Method for Economic Dispatch with Prohibited Operating Zones.

IEEE Trans. Power Syst. 2014, 29, 990–991. [CrossRef]
91. Muda, H.; Othman, A.; Julai, N. Economic Dispatch Strategy for Solar Hybrid System using Lambda Iteration Method. J.

Telecommun. Electron. Comput. Eng. JTEC 2017, 9, 85–89.
92. Adhinarayanan, T.; Sydulu, M. Efficient Lambda Logic Based Optimization Procedure to Solve the Large Scale Generator

Constrained Economic Dispatch Problem. J. Electr. Eng. Technol. 2009, 4, 301–309. [CrossRef]
93. Hemamalini, S.; Simon, S.P. Dynamic economic dispatch using Maclaurin series based Lagrangian method. Energy Convers.

Manag. 2010, 51, 2212–2219. [CrossRef]
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