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Abstract: Investigating the stability of and fluctuations in the energy market has long been of interest
to researchers and financial market participants. This study aimed to analyze the Chinese energy
market, focusing on its volatility and response to financial tensions. For this purpose, data from
eight major financial companies, which were selected based on their market share in Shanghai’s and
Shenzhen’s financial markets, were collected from January 2014 to December 2023. In this study,
stock prices and trading volumes were used as the key variables to build bootstrap-based minimum
spanning trees (BMSTs) using ratio mutual information (RMI). Then, using the sliding window
procedure, the major network characteristics were derived to create an anomaly-detection tool using
the multivariate exponentially weighted moving average (MEWMA), along with the Brent crude oil
price index as a benchmark and a global oil price indicator. This framework’s stability was evaluated
through stress testing with five scenarios designed for this purpose. The results demonstrate that
during periods of high oil price volatility, such as during the turbulence in the stock market in 2015
and the COVID-19 pandemic in 2020, the network topologies became more centralized, which shows
that the market’s instability increased. This framework successfully identifies anomalies and proves
to be a valuable tool for market players and policymakers in evaluating companies that are active in
the energy sector and predicting possible instabilities, which could be useful in monitoring financial
markets and improving decision-making processes in the energy sector. In addition, the integration
of other macroeconomic factors into this field could strengthen the identification of anomalies and be
considered a field for possible research.

Keywords: energy market dynamics; anomaly detection; ratio mutual information (RMI); financial
network analysis; bootstrap-based minimum spanning trees (BMSTs); multivariate exponentially
weighted moving average (MEWMA)

1. Introduction
1.1. Motivations

The stock market of companies active in the field of energy and its effects on the
economies of countries have always been popular topics for researchers and activists
in this field. In most studies, analysis of the stock market is mainly conducted based
on examining the stock prices of companies [1]. However, this approach comes with
challenges; for example, the price of a stock may increase over a certain period of time,
while its trading volume does not change. Therefore, any analysis of financial markets
that does not simultaneously consider the role of price time series and the volume of
transactions seems incomplete. In one research work, Khoojine and Dong investigated
the Chinese stock market crisis in 2015 and, in this analysis, they both considered the
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time series of prices and the trading volume in order to achieve a more comprehensive
understanding of the market dynamics [2].

The stock market of companies that play a role when assessing the energy market
status of a country can be considered an important indicator when examining its economic
and financial condition from a macroeconomic perspective [3]. Thus, taking a closer look
at the situation and movements in this type of market can be considered to be a solution
to many ambiguous issues in economic and financial problems and for making informed
decisions that aid countries’ economies [4]. This study discusses this topic within a new
and creative framework in order to provide an appropriate tool for investigating and
monitoring this type of financial market, as well as comprehensively scrutinizing the
behavior of financial markets in special situations.

In the analysis of financial markets, numerous challenges arise due to the inherently
complex and multifaceted structure of these systems. One of the challenges in network
analysis of financial markets is that most studies attempt to implement linear methods
to model the distance between nodes, which, given the nonlinear dynamics of financial
phenomena, can lead to a misunderstanding of the performance of these types of markets;
therefore, it is necessary to overcome this issue through the use of nonlinear methods.
Methods based on entropy or information theory can be an appropriate way to address
nonlinearity in the real world. For example, in one study, Khoojine et al. investigated the
turbulence of the U.S. financial market using a method based on mutual information, and
in their article, they investigated the difference between linear and nonlinear methods [5].
Meanwhile, in this study, we attempt to use the ratio mutual information (RMI) method to
find the distances between companies, as this method aids us in normalizing the weight of
the edges and capturing the nonlinear nature of financial turbulence.

Another noteworthy aspect that can be observed in the study of financial markets is
the use of a fixed period of time to analyze the behavior of financial markets. Although
this type of study has recently been on the decline, the majority of studies have been based
on considering fixed and long-term time periods [6]. In one article, Wu et al. investigated
the relationships between international commodity future prices. A static dependency
network for a vector of variables was constructed using partial correlations; the results
were analyzed alongside another constructed dynamic network, and the findings were
compared. The results obtained showed similarities to real-world oil price movements [7].
Therefore, in this study, we decided to apply a dynamic method instead of a static one.

China’s economy is one of the economies that has made significant progress in recent
decades and has been able to gain a major part of the global economy [8]. China, one of
the largest suppliers in the global supply cycle, has a significant impact on the state of
regional and even global financial markets. Considering the massive volume of production
in this country and its dependence on energy supply, this study aims to analyze its energy
financial market and measure the effects of o0il price fluctuations on this market [9]. China,
as an emerging economy, is a good input for modeling the energy market while taking
the fluctuations in the global oil supply into account. Fang et al. analyzed the Chinese
energy market by developing an analytical model to scrutinize the external factors affecting
China’s energy market [10]. Another study by Abdullah and Huo was conducted to analyze
the time-varying relationships between the Chinese equity market, commodity markets,
and international oil prices, and they emphasized that there is a robust correlation between
the Chinese stock market and the oil market [11]. Chien et al. studied the relationship of
external effects with the energy markets of the three countries of the U.S., the UK., and
China using wavelet-based Granger causality tests [12]. Gong et al. examined the complex
interplay between geopolitical risks and the international energy market, focusing on how
extreme events influence risk contagion across these networks. Using empirical data on
crude oil prices and geopolitical risk indices, this study reveals that traditional energy
markets exhibit stronger risk spillovers than clean energy markets, with Russia being
identified as a primary risk contributor during shocks and geopolitical tensions, amplifying
contagion in global energy markets [13]. Filipovic et al. introduced a comprehensive energy
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security index (ESI) that integrates economic, environmental, political, and social factors
to provide a more nuanced measurement of energy security. Using principal component
analysis, their study found that GDP per capita, country risk, carbon intensity, and energy
intensity are among the most influential factors, while renewable energy share and energy
dependence have weaker impacts on the index values [14]. All the above studies show
that there is a strong relationship between external factors, such as oil price movement,
and the energy market’s behavior [15]. The need to monitor energy markets to understand
their effects on the overall economy—at both the national and global levels—inevitably
arises [16]. Therefore, this study aims to develop a reliable framework for comprehending
the volatility of energy markets while addressing the previously mentioned challenges and
considering earlier findings.

The focus of this study is addressing the existing research gap in the limited use of
dynamic network analysis to understand the stability of China’s energy market, especially
under financial instability. Traditional anomaly-detection methods do not have sufficient
ability to show changes and interactions between companies in response to external shocks
such as oil price fluctuations. In addition, advanced measures, such as information theory
indicators [2] and bootstrap-based minimum spanning trees (BMSTs) [17], have had limited
application in this field, and few studies have used more complex models, such as the mul-
tivariate exponentially weighted moving average (MEWMA), for anomaly detection [18].
This research attempts to fill these gaps and more accurately identify financial anoma-
lies by developing a new framework that combines BMSTs, the MEWMA, and dynamic
network criteria.

To handle the research gap mentioned earlier, the methodology used in this study
consists of three main steps: data collection and network construction, anomaly detec-
tion, and multivariate weighted moving average (MEWMA) monitoring. Initially, data
such as stock prices, trading volume, and Brent crude oil prices were collected for eight
energy companies. Then, a dynamic network was constructed for each company using
the bootstrap-based minimum spanning tree (BMST) approach. This method, which is
based on bootstrap sampling, allows us to calculate the reliability of network connections
and confidence levels and to observe changes in dependence and interactions between
firms over time. In the second step, network variables such as the node degree, strength,
centrality, and connection scores were used to detect anomalies and were measured using
the ratio mutual information (RMI) distance to identify nonlinear relationships between
firms’ performance and periods of critical volatility. Finally, in the third step, we used the
MEWMA statistic to track the temporal changes in the BMST network characteristics with
respect to global oil price trends. This tool is designed to identify outliers and significant
market changes while, at the same time, proving its strength and stability through stress
tests in simulated conditions. The objectives of this study are as follows:

e  The identification and analysis of sensitive and unstable periods in the Chinese energy
market, especially periods that are affected by global oil price fluctuations.

¢ The design of an algorithm that uses network features and oil price data to detect
market anomalies early.

This analysis offers valuable insights into the influence of network structures on
market behavior and decision-making within the energy sector. By examining the inter-
dependencies among companies and tracking the flow of information across the market,
we can develop a nuanced perspective that highlights both the operational efficiency and
competitive positioning of major players. This comprehensive view not only identifies the
firms that are pivotal to market stability but also sheds light on how these companies adjust
to economic fluctuations, deepening our understanding of overall market dynamics.

1.2. Background

With the expansion of network theory and its applications in various fields over the
last three decades, this theory began to be deployed in financial markets [19]. The idea of
examining complex systems by considering the main members of a system as agents and
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finding internal connections between them, as well as finding their common effects on each
other based on network theory, is used in different scientific fields [20,21]. In these fields,
such as chemistry, genetics, neuroscience, and engineering, which include a wide range of
applications of network theory, defined networks can be utilized in order to analyze the
components of complex systems with tools derived from complex network theory [22].

One of the early works in the field of using network theory in financial markets was
the work of Mantenga, who opened a new window for the analysis of financial markets by
means of network theory tools for financial market researchers [23]. Many articles were
written in this field, each of which highlighted an aspect of this new field of science [24]. This
method was used on various data, and it was able to prove two characteristics of financial
networks: the small-world and power law properties [25]. Various methods were tested to
define the agents, which are referred to as nodes in network theory [26]. However, in order
to find the relationship between these components and their relationships with each other,
various methods were used, each of which had its own advantages and disadvantages; for
more details, the reader can refer to [27,28].

The formation of financial networks has been studied from various perspectives by
researchers in this field, and algorithms, which are mainly borrowed from graph theory,
have been designed and implemented to improve their methods [29]. Additionally, Pearson
correlation has been employed in numerous studies to determine the distance between
network nodes. However, this approach has caused challenges for some researchers;
various methods from different fields of mathematics have been utilized to handle this
approach [30-32]. Some of this research includes the use of Granger causality, partial
correlation, and distances based on a copula [33,34].

Studying the behavior of energy markets from the perspective of complex networks
is one of the topics discussed in the field of financial markets, and various methods have
been used to investigate it [35]. Li et al. investigated the effects of turbulence in the US
financial market by selecting ten stock companies related to energy markets in NASDAQ
and forming a network from them [36]. As an example of the creative formation of financial
networks, Huajiao Li et al., choosing the main shareholders of energy companies as network
nodes and common shares between them as links between the nodes, were able to analyze
the behavior of shareholders in China’s energy markets [37]. In another example of the
application of complex networks in the analysis of energy markets, Gu et al. selected eight
energy financial markets and collected their data between 2010 and 2020 to scrutinize the
mutual effect of energy markets and the impacts of sustainability. This study shows the
importance of studying the effects of different factors on energy financial markets [38]. A
different study on energy markets by Huang et al. showed flexibility in building financial
networks using various mathematical modeling tools, and they applied wavelet theory
and network theory to create a network for bivariate oil price time series [39].

Other studies have been conducted on energy financial markets from different per-
spectives; for example, Restrepo et al. dealt with the spread of systemic risk in a financial
market by forming a network of energy companies [40]. A further study from the point of
view of forming a network of financial indicators of energy markets was implemented by
Xian Xi et al. In this study, the structural features of the indicator network and its clustering
were analyzed [41]. In another article, Liu et al. investigated the structural changes in the
Chinese new energy market by constructing interaction networks between energy share
companies by utilizing network theory tools [42]. In an additional study, Huang et al. used
data from Chinese energy companies between 2013 and 2018 and employed the entropy
method to form a network of energy companies and identify the influential members within
this network [39].

Anomalies in financial markets are a topic that has always attracted the attention
of financial market researchers [43]. Therefore, paying attention to how financial market
anomalies are formed and making appropriate decisions when they occur can be a solu-
tion for many economic activists and governments. Among the studies that have been
performed in the field involving the investigation of financial market turbulence through
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creating networks of agents of these markets, we can mention the work carried out by
Khoojine and Dong. In this study, the financial fluctuations in the Chinese stock market
in 2015 were investigated, and it was indicated that there were topological changes in the
network and its characteristics before and after the financial turmoil [17]. Another study
by Millington and Niranjan indicated similar findings by analyzing the returns of three
stock markets: the DAX 30, S&P 500, and FTSE 100 (U.K.), from Germany, the U.S., and the
U.K,, respectively. In this study, a network of interconnected components of these stocks
was created, and the shifts in the network over time were analyzed [44]. Ahelegbey and
Giudici created a network of stock prices and then constructed an indicator of transmitting
risk and its relationship with financial crises; after that, they analyzed the major crises in
recent years, such as COVID-19, using this indicator [45].

The framework of this study is organized as follows: In Section 2, we discuss the
data collection and methodology used in this study. In Section 3, we present the results of
the analysis, and in Section 4, the robustness of the procedure for monitoring the Chinese
energy market is discussed. Finally, in the closing section, we conclude the study and offer
directions for further research.

2. Methodology

In this section, we create a structure to analyze the dynamic behavior of the bivariate
energy market and use it to find potential anomalies.

2.1. Data Collection

The stock prices and traded volume of eight energy-related companies were collected
from the Shanghai and Shenzhen stock markets within the period of 2014 to 2023 from
the official websites of these markets (www.sse.com.cn and www.szse.cn). The companies
selected for this study are among the eight largest energy companies in China due to their
high market share and extensive influence on China’s energy sector. These companies
play major roles in the energy market and cover a wide range of industries, including oil,
gas, and renewable energy. The strong performance and prominent financial position of
these companies, especially in response to changes in global oil prices, make them suitable
options for analyzing network dynamics and identifying market anomalies. The names
and tickers of these companies are shown in Table 1.

Table 1. List of the selected Chinese energy market companies and their tickers.

No Company Name Ticker City Province
1 Shanxi Meijin Energy Co., Ltd. 000723 Taiyuan Shanxi
2 Qianjiang Resources Development Co., Ltd. 600283 Wuhan Hubei
3 Hengli Petrochemical Co., Ltd. 600346 Dalian Dalian
4 Tongwei Co., Ltd. 600438 Chengdu  Sichuan
5 Shanxi International Energy Group Co., Ltd. 600546 Taiyuan Shanxi
6 Huadian Energy Co., Ltd. 600726 Harbin China
7 LONGi Energy Technology Co., Ltd. 601012 Xi'an Shaanxi
8 PetroChina Co., Ltd. 601857 Beijing Beijing

Let the datasets for the crude oil prices and energy market indices be given as follows:

Pi(t) = {p1(t), pa(t), ..., ps(t)}, Vi(t) = {ov1(t),va(t), ..., vs(t)} 1)

where p;(t) and v;(t) represent the time series of stock prices and traded volumes of stock
i, respectively, t denotes the time index, and p;(t) and v;(t) denote the vectors of the
companies’ stock prices and traded volumes, respectively.


www.sse.com.cn
www.szse.cn

Energies 2024, 17, 5852

6 of 22

To reduce the effect of scale differences and make the data comparable, we normalize
both the stock price and traded volume indices as follows:

Ri(t) = - )

where R;(t) is the vector of the price-volume ratio for stock 7 at time ¢. To avoid zeros in
the data, we add a small constant € = 0.01 to any value that would be zero.

In this section, we outline the procedure of the analysis conducted using Algorithm A1.

Figure 1 depicts the stock prices and traded volumes of the selected eight companies
from 2014 to 2023. As shown in these two graphs, volatility in both stock prices and trading
volumes is evident in 2015, 2020, and 2021; however, they do not exhibit a consistent
co-movement pattern. Therefore, an aggregate index of these two metrics is necessary. The
stock price graph shows a minor fluctuation in 2015, but a major volatility began in 2019,
peaked in 2020, and then declined steadily. In contrast, the trading volume graph reveals a
significant spike in trading activity in 2015 and another surge in 2020. Thus, we can expect
market turbulence during the aforementioned periods.

Stock Prices

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Date

— 000723
— 600028
— 600346

— 600438
1000 — 600546
— 600726
£ s00 1t ‘ 601012

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Figure 1. Time series of stock prices and the traded volumes of the eight energy-related companies in
the Chinese stock market from 2014 to 2023.

2.2. Sliding Window Procedure

To create a dynamic time series of the distance constructed in (2), we use the sliding
window method. To build the dynamic time series, we split the time series of each company
i for overlapping windows as follows.

Let T be the number of entries, w be the size of the window (i.e., the number of entries
within a time window), and 1, be the number of windows. In the scenario of a one-day
interval for the sliding window, we have

npg=T—w+1 3)

Let R indicate the set of stock—volume ratios in the selection; then, for companies
i and j, the k-th windows are Wiy = (7i, Tif+1,---/Tiktw—1) for k = 1,2,...,ny and
Wik = (rj,k, Tiktlr-- - r]-,k+w_1), where the vector W) indicates the collection of observa-
tions of stock declines in the k-th time window, while the small r;  refers to the k-th entry
in the time series for stock i. Afterward, we construct the distance matrices d4, ..., o, of
correlations between companies for each window constructed above. For instance, the

distance matrix of the k-th windows is as follows:
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k k
5711 5712 T 0

where (55‘]- is the distance between companies 7 and j in the k — th window.

2.3. Dynamic Measure Construction

Mutual information (MI) is a nonlinear metric that captures the dependency between
two variables. In this study, we use the MI to encapsulate the dependencies among the
companies in the aggregated sample constructed using the sliding window procedure. The
Ml is defined as follows:

MIW W) = Y Y p(w,w; log<pr(7(w)l;(‘;]u)/)> (5)

EWZUGW

where W, and W; ; represent the two time series of stock-volume ratios, p(w;, w;) represent
the joint probability distribution, and p(w;) and p(w;) denote the marginal probability
distributions.

In this study, to standardize the measures created using mutual information (MI), we
apply the ratio mutual information (RMI), which is constructed as follows:

RMI(Wy W) MI(Wi i Wig) )
ik Lk max{E(Wix), E(Wjx)}

where E(W; ) and E(W;) represent the entropy of the two variables W; ; and W, respec-
tively. The entropy E(W; is given by

EWix) = — ) p(w;)logp(w;) 7)

w;eW

To establish a metric distance between the nodes, we create the normalized distance
using the following:
d(Wig; Wix) =1 — RMI(W;y; Wig) (8)
Using the computed distance values between each pair of market indices, we construct
a dynamic network where

*  Each node represents an energy market or crude oil price.
*  The edges between nodes are weighted by the distance values.

The adjacency matrix A(k) at time window k is given by

©)

A(k) _ d(wi,k/ ij,k) lfd( iks ]k) > €
4 0 otherwise

where W; , and W are included.
Now, we use three matrix norms to find the difference between two consecutive J;
values. We define dq (k), do(k), and d3(k) as follows fork = 1,...,ny,.

n
di(k) =|| 0 — 0k—1 lleo= max Y (G = 0] (10)

da (k) =| 6 — k-1 l|2= Omax (O — dk—1) (11)
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Z =01 1]| ) (12)

After finding the time windows with high volatility, we analyze the characteristics
of their constructed networks by bootstrap-based minimum spanning trees (BMSTs). To
create the BMSTs of the volatile windows, in this approach, we construct 10,000 matrices.
The columns of these matrices are the resampling of the dataset of the adjacency matrix for
a time window with a replacement. Then, for each edge, we calculate the reliability score
and then construct a BMST based on these scores. With this method, it is not necessary
to know the distribution of the scores. After constructing the BMSTs of the critical time
windows, we can analyze the key network metrics, such as the node degree, node strength,
closeness centrality, eigenvalue centrality, and communicability scores of the constructed
BMSTs. The definitions of these metrics are summarized in Table 2.

d3(k) =|| 6k — 01 |lF= (

I

Table 2. Summary of network metrics: node degree, node strength, eigenvalue centrality, closeness
centrality, and communicability score.

Metric Definition Mathematical Formula
Node Degree Number of edges connected to a node, representing direct connec-  k; = }; A;;
tions to other nodes.
Node Strength Sum of edge weights connected to a node; this applies to weighted  s; = }_; w;
graphs.
Eigenvalue Centrality Measurement of node influence based on connections to highly x; = % Y Aijx;

Closeness Centrality

Communicability Score

connected nodes.
Reciprocal of the sum of the shortest path distances to all other  C.(i) = #01)
nodes. T

Measurement of communication potential. G(i,j) = (eA)i]» =Yoot

2.4. Multivariate Exponentially Weighted Moving Average (MEWMA) Procedure

To monitor the impact of oil price movement on the energy market, we use a tool to
detect the anomalies of the multivariate time series of the oil price and the characteristics
of the constructed BMSTs, namely the node degree, node strength, eigenvalue centrality,
closeness centrality, and communicability score. The MEWMA statistic at time ¢, which is
denoted as Z;, is computed recursively as follows:

Zi =M+ (1—-N)Z; 4 (13)

Here, x; is the vector of BMST characteristics (x1, ..., x5) at time f, with x1 representing
the node degree, x; representing the node strength, x3 representing the eigenvector cen-
trality, x4 representing closeness, and x5 representing the communicability score. Z; is the
MEWMA statistic from the previous time step, and A is a smoothing parameter such that
0 < A < 1. The parameter A controls the weight assigned to the most recent observation;
smaller values of A emphasize past data more, while larger values give greater weight to
recent data.

The covariance matrix of Z;, X7, changes over time, and after an initial transient phase,

it converges to
A

—2

2-A7F

where X, is the covariance matrix of the BMST characteristic vector x; and the oil prices
defined above. If T? exceeds a determined control limit, the process is supposed to be
out of control, which means that there is high volatility in the energy market. The overall

procedure of the methodology for detecting the anomalies in the energy market is shown
in Algorithm Al.

T, =
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3. Results

In this section, we outline the results from energy companies” data by applying the
procedure detailed in Algorithm A1. Figure 2 depicts the price-volume ratio of the stock
prices and traded volumes of eight selected companies calculated using Equation (2). From
the figure, it is evident that there was significant volatility in 2015, as well as some other
fluctuations around 2020. This standardized measure provides a better understanding of
the co-movement between the stock prices and traded volumes of the companies.

Stock-Volume Ratio

Companies
— 000723

600028
—— 600346
—— 600438
—— 600546
— 600726

601012
5 — 601857

Ratio

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Date

Figure 2. Price—volume ratios of the eight selected companies from 2014 to 2023.

Examination of the status of stock returns and purchase volumes in Figure 3 shows
that during critical periods of stock turbulence, buyers reacted to these changes, which
influenced their decisions to buy or sell. Three stocks—600346, 600546, and 601012—
have a significant relationship in the co-movement of the stock price and transaction
volume. However, stocks such as 601857 and 600283 are relatively more stable in the face
of high purchase volumes. We apply these facts in the following sections to interpret the
volatility results.

After creating the dynamic windows, we construct the adjacency matrix for each
window using the RMI, which was defined in Equation (6). The minimum, maximum, and
mean of the RMI and related distances for the created windows are mentioned in Table 3.

Table 3. Summary statistics of the ratio mutual information (RMI) and distance for the constructed
dynamic windows.

Ratio Mutual Information (RMI) Distance
Minimum Maximum Mean Minimum Maximum Mean
0.007 0.74 0.33 0.26 0.98 0.67

After creating the distance matrices, as defined in Equation (9), we applied three
different norms, as outlined in Equations (10)—(12). Each norm represents the difference
between two consecutive time windows. Figure 4 illustrates the aggregated stock price and
volume for eight selected energy market companies. This figure shows that the d; norm
fluctuates within the range of 0 to 0.4, with occasional peaks approaching 1, demonstrating
moderate fluctuations across the time windows with few deviations. The middle plot, dy,
ranges from 1 to 2.5, with a few windows exceeding a norm value of 2.5. The third plot, d3,
fluctuates between 1.5 and 2.5, with some windows being more than 2.5. The comparison
reveals that d; exhibits the least variability, dy displays a wider range of deviation, and d3
shows the most extreme changes, with a higher number of outliers.
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Figure 3. Stock returns and traded volumes for the eight companies from 2014 to 2023.

The common critical windows are identified by analyzing the calculated norms across
all 1750 generated windows, where each window was assessed using three distinct norms:
norm dq, norm dy, and norm ds. Consequently, comparing the results from all three norms,
we were able to isolate the windows that exhibit outlier behavior consistently across all
three measures. The results of this analysis that showed the windows common to all norms
are summarized in Table 4.

Table 4. Common critical windows across all three norms (dy, d», and d3).

Window Norm dy Norm d, Norm d3
29 1.196 2.473 3.641
59 0.766 2.055 2.754
850 0.677 2.183 2.837
880 1.152 2.860 3.711
953 0.807 2912 3.479

Having isolated the critical common windows of the three norms—d;, d», and dz—we
now analyze the characteristics of the constructed networks based on these windows. As
mentioned earlier, we constructed BMSTs using the critical windows, and reliability scores
were obtained through a bootstrapping method involving 10,000 iterations. Following the
construction of these BMSTs, we derived four network metrics—the node degree, node
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strength, eigenvalue centrality, and closeness centrality—for each window. The results of
these metrics are displayed in bar plots in Figure 5.
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Figure 4. Fluctuations in the dq, dp, and d3 norms in stock prices and volumes of the eight selected
energy companies from 2014 to 2023.

The network metrics—the node degree, node strength, eigenvector centrality, closeness,
and communicability score—reveal various dimensions of connectivity and influence in
the financial network and provide a deeper understanding of market stability and possible
paths of contagion. The degree and strength of a node are indicators of the concentration of
activity in the market to identify stocks or systemically important sectors, and high values
indicate the systematic importance of these elements. Any shock in these nodes can have
significant effects on the market and make these nodes the key actors that can be observed
in times of instability. The eigenvector centrality, however, determines the importance of a
node based on its relationship with other important nodes. Higher eigenvector centrality
of assets can amplify market shocks through chain effects. This feature provides valuable
information for policymakers and investors seeking to manage systemic risk. In addition,
the communicability score shows the flow of information transfer across the network.
Additionally, higher communicability scores mean faster information diffusion and market
reactions in volatile conditions; this allows traders and fund managers to assess a market’s
reaction speed and respond to sudden changes in a timely manner.

After analyzing the results of the three different norms, we derive the common critical
windows among them. The comparative analysis of critical windows 29, 59, 850, 880,
and 953 reveals both consistent patterns and shifts in the network dynamics of the eight
companies over time. In addition, 000723 and 600726 emerge as key central figures across
multiple windows, frequently leading in various centrality measures, such as the degree,
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node strength, eigenvalue centrality, and closeness; 000723 holds a dominant position in
the earlier windows 29 and 850, while 600726 gains influence in the later windows 880 and
953, especially in terms of the degree and closeness centrality. Additionally, the leading
companies in eigenvalue and closeness centrality shift across windows, reflecting changing
levels of influence and network importance over time; these changes suggest that while
certain companies maintain central roles, the structure of the network adapts, with different
companies becoming more prominent in different periods.
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(e) Window 953
Figure 5. Bar plot illustrating the network characteristics—node degree, node strength, eigenvalue
centrality, and closeness centrality—of the BMSTs constructed from the critical windows.

According to Figure 6, in Windows 29, 59, 850, 880, and 953, the connection points for
the eight companies show how connected each company is in the network. In all critical
windows, 000723 has a high connectivity index, and this shows the importance of this
company in the built network. However, companies 600028 and 600726 maintain high
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connectivity in many windows, which indicates the effective communication of these two
companies with other companies in the networks in critical periods of time. In Window
59, companies such as 600028 and 601857 show significant scores, indicating a balanced
distribution of communication roles, unlike other windows, where one or two companies
dominate. In contrast, some firms, such as 600546 and 600726, show low connectivity in
some windows, implying weaker connections or more isolated roles. However, 600546,
which initially had average scores, becomes stronger in later windows such as 880 and
953, indicating improved connectivity in the network. Figure 6 shows that while some
firms maintain strong and central communication roles over several windows, others show
fluctuating levels of influence, reflecting dynamic changes in their connectivity across the
network during different critical windows. This analysis helps to identify which companies
act as important communication hubs and may need to improve their network participation.
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Figure 6. Bar plot illustrating the communicability scores of the BMSTs constructed from the five
critical windows: 29, 59, 850, 880, and 953.

Figure 7 shows the BMSTs built in five critical windows. Topological analysis of these
windows can give us useful information about critical periods. As can be seen in Window
29, a hub with 000723 as its center was formed. This pattern can also be seen in Windows
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880 and 953 with a focus on other companies, but in the other two windows, a more linear
mode can be seen. In times of financial turbulence, it seems that companies tend to form a
hub centered on one company. In Window 880, the network topology undergoes subtle
changes that reflect changes in connection strengths or node relationships. Finally, Window
953 shows a more compact structure with fewer clusters, suggesting potentially optimized
paths or reduced connections between nodes.
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Figure 7. Bootstrapped-based Minimum Spanning Trees of the critical Windows 29, 59, 850, 880, and

0

953, with reliability scores as edge weights.

After examining the topological behavioral similarities of networks that are in critical
periods, in order to analyze the behavior of these networks compared with networks with
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fewer fluctuations, we compare the structure of Window 29, which is known as an outlier
window in all three norms, with that of its surrounding windows, 28 and 30. In Figure 8,
it is clearly seen that in Window 29, a hub is formed around a specific company, and
the network has a centralized structure. However, in the networks before and after this
window, this pattern is not established. The former network is designed linearly, and the
latter network tends to return to the linear state.

601012 601012 601857
“agy _ -

600346 601857 600383 000723
Y % / L
co0azs N o ’ \ &8 600435 . o '
600546 600726 600546
(a) Pre-Turbulence (b) Turbulence (c) Post-Turbulence

Figure 8. Circular layout of the bootstrapped-based minimum spanning trees: pre-turbulence,
turbulence, and post-turbulence in windows 28, 29, and 30.

4. Discussion
4.1. Anomaly Detection Using the MEWMA Procedure

In this section, we seek to complete the process of finding anomalies in the created
networks whose relative locations we previously observed. According to the explanations
provided in the introduction, to understand the factors affecting fluctuations in the energy
market, we discuss the impact of the Brent crude oil price index as a benchmark for the
global oil price index on the Chinese energy market in this section. Figure 9 shows the
movement of the Brent crude oil price from 2014 to 2023, where two significant price
fluctuations can be observed in 2015 and 2020.
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Figure 9. Movement of Brent crude oil price from 2014 to 2023 with the critical periods highlighted.

Using the process described in the methodology section, after constructing BMSTs
based on the ratio mutual information distance and extracting their key features with
metrics such as the node degree, node strength, eigenvalue centrality, closeness centrality,
communicability scores, and Brent crude oil price movement, a MEWMA statistic was
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created. According to Equation (13), x; is the vector of BMST characteristics (x1,. .., Xs5)
at time f, with x; representing the node degree, x, representing the node strength, x3
representing the eigenvector centrality, x4 representing closeness, x5 representing the
communicability score, and x¢ representing the Brent crude oil price movement; therefore,
the MEWMA statistics are calculated.

In this case, upper and lower control limits of 0.05 were selected. Values above or
below these limits indicate market fluctuations, while values within this range suggest
either insignificant fluctuations or stable market activity. Most of the MEWMA statistics
are within the control limits, which indicates that the system remains robust for this
period; however, several points surpass both the upper and lower control limits, suggesting
moments where the system deviated from expected behavior, potentially signaling outliers
or process shifts.

Figure 10 shows the MEWMA statistics for Window 29, which is identified as one of the
critical windows based on the three norms of the dy, dy, and d3 procedures. After deriving
the five network metrics for the constructed BMSTs for this window and aggregating
them in a vector with price movements, the MEWMA statistic for this critical period was
calculated. This critical period is categorized into three phases.

MEWMA Monitoring Over Time

—0.02 1

MEWMA Statistic

~0.04 \C

—0.06 1 \
\

—0.08 1

6 f; 1'0 1‘5 26 2'5 Sb
Time (Days)
Figure 10. The MEWMA statistic over the period of time for Window 29 with its upper and lower
control limits shown as dashed lines.

The multivariate exponentially weighted moving average (MEWMA) statistic provides
a comprehensive indicator of overall market stability by combining the five main network
metrics along with oil price movements. In this system, the control ranges are set based on
a threshold of 0.05 that differentiates “normal” market conditions from “abnormal” ones.
When the MEWMA index exceeds these limits, it indicates market instability and a possible
deviation from the usual economic patterns. This mode is often accompanied by increased
volatility, prompting investors to adopt conservative approaches, such as hedging against
potential market corrections. In contrast, when the MEWMA index remains within the
control limits, this indicates a stable environment that can be suitable for more aggressive
investment strategies.

The high sensitivity of the MEWMA index to deviations and changes makes it valuable
as an early warning system for financial managers. By alerting stakeholders and financial
market regulators, this indicator helps them identify conditions that may require portfolio
adjustments or risk reduction. In the MEWMA chart, three distinct phases—the volatile
phase, the less volatile phase, and the period approaching volatility—reflect broader eco-
nomic cycles. For example, a volatile phase in which the MEWMA exceeds the upper
control limit may indicate market corrections or crises, driving investors to safer assets.
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The less volatile and stable phase, which is characterized by MEWMA values in the con-
trol range, represents stability and can create favorable conditions for growth-oriented
investments. Finally, the nearly volatile period, where the MEWMA approaches the lower
control limit, is a warning of an impending turbulent period and calls for investors to take
a cautious approach in anticipating possible market volatility.

4.2. Stress Testing

To test the developed process, we need a tool that can evaluate the entire designed
algorithm. The stress test for the created process provides a comprehensive overview
of its weak points. This stress test is conducted by considering factors that can cause
changes in the network, specifically focusing on two critical factors: stock price and oil
price fluctuations. By creating different scenarios based on previously experienced realities,
we investigate the resilience of the developed process and test it accordingly.

The considered scenarios include five distinct situations, which are summarized in
Table 5. For each of these scenarios, data on stock prices and oil prices are updated. Subse-
quently, windows are formed, correlations are calculated, and networks are established. As
previously mentioned, the five metrics of the network introduced in Table 2 are calculated,
and then the maximum values are determined. We performed this analysis for the 29th
window across all five scenarios, and as shown in the table, all the values align well with
the actual data. Consequently, the algorithm was able to issue the necessary alarms for
approaching critical periods.

Table 5. Summary of scenarios for stock and oil price changes with the maximum MEWMA statistics.

Scenario Description Fact Max of the MEWMA
A minor market correction following a period of overval-
Scenariol  20% Decline in Stock Prices uation, similar to historical corrections seen in 2015 and  0.08
2018.
A significant decline due to reduced global demand during
Scenario 2 30% Decline in Oil Prices a recession, akin to what happened during the COVID-19  0.09
pandemic in 2020.
o . . A combination of factors such as economic slowdown and
. 25% Decline in Stock Prices and . . . .
Scenario 3 PR, increased production from OPEC countries, similar to the  0.06
15% Decline in Oil Prices L
2014 oil price collapse.
. 15% Increase in Stock Prices and A scenario where technology or renewable energy E.Id-
Scenario 4 AR, vancements boost the stock prices of energy companies  0.07
20% Decline in Oil Prices . . o
despite falling oil prices.
Simultaneous 10% Increase in An economic recovery scenario where demand for oil in-
Scenario5  Stock Prices and 10% Increase creases due to economic growth, leading to simultaneous  0.04

in Oil Prices

increases in both stock and oil prices.

Stress test scenarios that involve simulating real-world market conditions in order
to evaluate the flexibility of the financial system against economic pressures provide
the possibility of analyzing market behavior under the influence of various economic
shocks. Each scenario models specific events in the market and provides a picture of
how shocks affect financial stability. In Scenario 1, a 20% decline in stock prices is used
as an example of a common market correction that reflects investor caution following
periods of overvaluation. Scenario 2 simulates a 30% drop in oil prices, which is similar to
demand shocks, such as the shocks that occurred during the COVID-19 pandemic, which
led to the exposure of vulnerabilities in the oil-dependent sectors and wider effects on
the market. Scenario 3, which reflects the simultaneous decline in stock and oil prices,
indicates economic stagnation. These are conditions in which compound pressures increase
market sensitivity and provide the possibility of asset correlation analysis in challenging
economic conditions. On the other hand, Scenario 4 reflects trends such as an increase in
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stock prices at the same time as a decrease in oil prices, which is often caused by the trend
towards renewable energy and refers to the reallocation of investments in the energy sector.
Finally, Scenario 5, which deals with a simultaneous increase in stock and oil prices, shows
economic growth to provide guidance for investment strategies in high-growth markets.
By monitoring specific indicators and creating an early warning mechanism, these analyses
enable asset managers to adjust risks and allow policymakers to implement appropriate
financial measures.

The findings of this study not only confirm those of previous studies in various key
areas but also extend their scope. The network topology changes observed during market
turbulence are consistent with the results of Khoojin and Dong [17] for the 2015 Chinese
stock market crisis, particularly in showing how the market structure adapts during periods
of stress. However, the present study goes beyond their work by simultaneously using
price and volume data and provides a deeper insight into market dynamics. Additionally,
during periods of turbulence, we observe the formation of hub networks, which are based
on the analysis of nonlinear relationships. Our observation that firms tend to center
around specific institutions during times of financial turmoil provides new insight into the
reorganization of energy markets under stress.

The results of the MEWMA analysis show several improvements over traditional
market monitoring methods. While previous studies used various statistical methods
for anomaly detection, our combined approach of network metrics along with oil price
changes provides an advanced early warning system. The three distinct phases that we
identified—consisting of volatile, low-volatility, and near-volatile periods—align with the
broader economic cycles and provide a detailed approach to the transmission of market
behavior. In particular, the stress test results provide a deeper understanding of market
resilience. The five tested scenarios showed how network structures respond to various
market pressures. These findings emphasize the following three main factors:

¢  Quantification of network reactions to different market conditions.
¢  Identification of key companies that are more stable in periods of stress.
*  Documenting the changes in network centralities criteria in different scenarios.

The strong relationship that we observed between oil price changes and network
structure, especially for companies 000723 and 600726, provides empirical support for the
theoretical frameworks constructed in this study—in particular, how different firms obtain
central positions under various market stresses.

5. Conclusions

This study examined the Chinese energy market in the period from 2014 to 2023,
analyzing the performance of the top eight energy companies in terms of their energy
market share in the Chinese stock market. In this study, an attempt was made to provide a
framework for finding anomalies in different periods. Additionally, the impact of global oil
prices on China’s energy market during this period was investigated, and an algorithm
was developed to detect possible anomalies. Through collecting stock prices and daily
transaction data, reliable information on market fluctuations was generated by calculating
the ratio of the two. These data were processed using a sliding window method with
30-day intervals, which enabled us to analyze the financial system dynamically. For each
window, a network was constructed using the minimum spanning tree method based
on bootstrap sampling with 10,000 repetitions, and a confidence level was calculated for
each edge. The distances between networks were then calculated using ratio mutual
information (RMI), which is a nonlinear approach for measuring the distances among
nodes. Then, three different matrix norms were applied to find the difference between two
consecutive matrices.

Windows that significantly deviated from their preceding and subsequent windows
were identified. Specifically, five critical windows—20, 59, 850, 880, and 953—among
the 1750 created windows were recognized as key, and the corresponding time periods
were extracted for further analysis. In the meantime, the characteristics of these critical
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windows were extracted, including the node degree, node strength, eigenvalue centrality,
closeness centrality, and communicability scores. The results show that the identified
critical networks exhibit dynamic changes. In some windows, a compact and central
structure emerged, with strong connections between companies. In these critical networks,
we observed the formation of hubs centered around dominant companies; in Windows 29
and 953, Company 000723 demonstrated strong centrality, and the characteristics of each
network provide valuable insights into the status of the companies within the complex
network. This allowed us to identify key companies within the network structure and
analyze their significance; additionally, some companies showed variable behavior across
different time frames, highlighting the waning of their influence over the studied period.

After examining the critical network structure using minimum spanning trees to
monitor the Chinese energy market and utilizing changes in global oil prices, we employed
the multivariate exponentially weighted moving average (MEWMA) procedure. In this
way, we incorporated the features of the previously extracted network along with global
oil prices into the MEWMA process, creating a statistic to monitor the market and generate
appropriate alarms when critical market conditions are approaching. This algorithm
performed well and successfully identified the critical windows that we had previously
detected using the three different norms. To verify the stability of the designed algorithm,
we created five scenarios based on real-world occurrences, calculated the MEWMA statistic,
and found that the algorithm worked effectively.

This research has important implications for stakeholders and policymakers. By
identifying influential companies and understanding network structures during volatile
periods, decision-makers can better anticipate and respond to market fluctuations. The
anomaly-detection framework, which is grounded in the BMST and RMI methods, provides
a practical tool for early warning signals in financial markets, assisting in risk assessment
and potentially guiding investment strategies within the energy sector.

While the framework captures structural changes effectively, it primarily considers oil
prices, stock prices, and trading volumes. This limited scope may overlook other critical
factors that could impact the Chinese energy market, such as geopolitical shifts, regulatory
changes, or regional economic conditions. Additionally, reliance on historical data may
limit the model’s applicability to future, unforeseen market conditions.

Future research could expand this framework by incorporating additional factors,
such as environmental events, policy shifts, and international trade tensions, in order to
enhance predictive power. Moreover, extending the model to other energy markets or
sectors could provide comparative insights and validate its broader applicability. Further
refinement of the anomaly-detection model could also enable real-time monitoring and
more nuanced interpretations of complex market networks, making it valuable for a wide
range of stakeholders.

Author Contributions: Conceptualization, L.X. and A.S.K.; methodology, A.S.K.; resources, L.X. and
A.SK.; data curation, L.X. and A.S.K,; writing—original draft preparation, L.X. and A.S.K,; writing—
review and editing, A.S.K.; supervision, L.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: The authors acknowledge the Faculty of Economics and Business Administration
of Yibin University for their assistance in preparing this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.



Energies 2024, 17, 5852

20 of 22

Appendix A

Algorithm A1 Dynamical Anomaly Detection in the Chinese Energy Market

1:

10:

11:

12:

13:

Input: Stock prices P;(t) and traded volumes V;(t) for energy companiesi =1,...,8
over time periodt =1,...,T.

: Output: Dynamic BMSTs and MEWMA statistics for monitoring energy market stabil-

ity.

: Extract the stock price P;(t) and traded volume V;(t) data from the Shanghai and

Shenzhen stock markets for each company i, as well as the Brent crude oil price.

: Normalize the data by computing the price-volume ratio for each company i:

fori=1,...,8

: Apply the sliding window method by splitting the time series R;(t) into overlapping

windows of size w:

Wi,k = {ri,k/ Vik+1s-+-s 7i,k+w—1} fork=1,...,ny

: For each window k, construct the distance matrix J; based on correlations between

companies i and j:

(sffj = Distance(W; x, Wix)

: Compute mutual dependencies between time series using mutual information (MI)

and standardize them using ratio mutual information (RMI):

MI(W; 1 Wik)

max{E(W;x), E(W;)}

RMI(W;; Wix) =

then construct the metric distance using

d(Wi; Wix) =1 — RMI(Wiy; Wik)

: Construct a dynamic network for each window, where nodes represent companies and

edges are weighted with D(W;, W; ). The adjacency matrix is defined as

! 0 otherwise

: Measure changes between consecutive distance matrices J; using the following matrix

norms:

dy(k),d(k),ds (k)

For high-volatility windows, construct bootstrap-based minimum spanning trees (BM-
STs) by resampling and calculating reliability scores for each edge.

Analyze the network structure using key metrics such as the node degree, closeness,
eigenvalue, and communicability scores.

Apply the multivariate exponentially weighted moving average (MEWMA) procedure
to monitor changes in the multivariate time series of BMST characteristics:

Z; = Ax; + (1 - /\)thl

where x; represents the vector of BMST characteristics and the oil price at time ¢.
Monitor the MEWMA statistic and evaluate whether T? exceeds the control limit,
indicating high volatility in the energy market.

Test the robustness of the procedure using a stress test with different scenarios.
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