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Abstract: The extreme environmental issues and the resulting need to save energy have turned
attention to the electrification of energy applications. One of the key components involved in energy
efficiency improvements is the appropriate conception and manufacturing of electric machines. This
paper overviews the electromagnetic analysis governing the behavior of permanent magnets that
enable substantial efficiency gains in recent electric machine developments. Particular emphasis is
given to modeling the properties and losses developed in permanent magnets in emerging high speed
applications. In addition, the investigation of properties and harmonic losses related to ferromagnetic
materials constituting the machine magnetic circuits are equally analyzed and discussed. The
experimental validation of the implemented methodologies and developed models with respect
to the obtained precision is reported. The introduction of mixed numerical techniques based on
the finite element method intended to appropriately represent the different physical phenomena
encountered is outlined and discussed. Finally, fast and accurate simulation techniques including
aggregated lumped parameter models considering harmonic losses associated with inverter supplies
are discussed.

Keywords: permanent-magnets; electric vehicles; electric motor; demagnetization; geometry opti-
mization; constraint model; finite elements analysis; short circuit; neodymium magnets; parameter
sensitivity analysis

1. Introduction

Electric vehicles represent an emerging application in the field of transportation
electrification initiatives. Leading automotive manufacturers have committed to producing
electric vehicles to replace internal combustion machines. Some of the key factors that have
led to this change are related to reduced environmental emissions and fuel efficiency [1].
Furthermore, one of the key advantages is the energy saving capabilities related to the
appropriate propulsion system, namely concerning the battery, inverter, and electrical
motor. Primarily in electrification applications, permanent magnet electric motors are the
primary technology in most applications due to their increased efficiency [2].

The rapid development of permanent magnet (PM) materials during the last decades
has enabled the design of high-performance permanent magnet synchronous motors
(PMSMs), which are preferred by many electric vehicle (EV) manufacturers [3]. The high
efficiency, the low maintenance required and the high power/torque density achieved are
their main attractive characteristics. Some additional advantages of using permanent mag-
net motors include power factor improvement, better dynamic performance, and higher
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reliability when compared to rival types of electric motors [4]. However, PMSMs designers
and manufacturers have to meet many challenges during the PMSMs production pro-
cess. For instance, more complex control strategies are required, while the flux-weakening
technique, which is employed under high-speed driving, increases the risk of PMs de-
magnetization. The rare-earth PMs may suffer from high eddy current losses in particular
in high-speed applications and their manufacturing imperfections may affect negatively
the machine’s electromagnetic behavior. Also, the vibrations of the traction system may
be significant since the PMs introduce strong magnetic forces. That is why the EV/HEV
system’s reliability and fault tolerance have to be considered during the PMSMs design
procedure [5].

The evolution of power electronic converters in combination with the application of
appropriate control techniques has positioned permanent magnet motors as a promising
and favored technology that addresses key features of modern electric vehicles as well as
high speed applications. The basic purpose of this paper is to provide a survey of various
contemporary machine topologies, with a particular emphasis on different permanent
magnet configurations developed, compared in Section 2. In Section 3, the literature survey
focuses on material properties and experimental results, examining characteristics includ-
ing losses and, in particular, harmonic losses at higher speeds originated from inverter
supplies. In addition, the results obtained from experimental setups for various types of
permanent magnet configurations are analyzed and discussed; to that respect, magnetic
circuits of electric machines with surface mounted magnets on the rotors are considered,
and the effects on the losses due to epitaxial placement on the surface of the magnets of suit-
able micro-layers with ferromagnetic and/or conducting material grains are investigated.
It should be noted that, during the experimental validation of the characteristics of the
permanent magnets, it was shown that it was necessary to investigate them in conjunction
with the characteristics of the magnetic laminations in presence of the permanent magnets;
to that respect, iron lamination losses measured in standard gapless magnetic circuits such
as Epstein and toroidal cores do not provide sufficient accuracy in regions neighboring
permanent magnets, while C-Core type magnetic circuits under coexistence of DC and AC
excitations enable good precision in harmonic loss prediction. In addition, appropriate
models for synchronous permanent magnet motor analysis under three-phase short-circuit
conditions enabling consideration of magnet demagnetization risks are presented in Sec-
tion 4. Section 5 is devoted to numerical methodologies using mixed numerical techniques
based on finite element method proposed to facilitate permanent magnet motor analysis.
Moreover, Section 6 mentions the potential impact of rotor mechanical deformation on
permanent magnet motor characteristics. Finally, the basic conclusions derived from the
literature survey on permanent magnet motors and the respective application trends are
summarized in Section 7.

2. Topologies of Permanent Magnet Rotors
2.1. Inner and Outer Rotor Configurations

To satisfy the above requirements, numerous PMSM alternatives have been introduced
in the literature. Understanding the various stator windings configurations, there are
several rotor design variants, too. The rotor can be either inner or outer with respect to
the stator’s position. The inner topology is more commonly used since it guarantees the
achievement of a value for the airgap flux density amplitude close to the PMs magnetic
flux density, enabling a wider speed range operation and concluding to a satisfactory
flux-weakening capability. The above features deteriorate when an outer-rotor structure
is adopted. For such a motor, the temperature alleviation is not an easy task as the stator
winding coils (whose copper losses are usually the major heat source) are placed at the
inner part of the machine. Due to the poorer temperature alleviation, researchers have
focused on the development of advanced cooling systems [6]. On the contrary, the winding
coils assembly is much easier as the stator teeth points outwards. Furthermore, the motor’s
axial length can be smaller. A high value is frequently assigned to the outer diameter to
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axial length ratio. This substantially benefits the torque density. The outer-rotor PMSM’s
net mass may be up to 15% smaller than the corresponding one of a motor with inner
rotor [7]. The outer rotor motors are the primary choice in electrified applications as they
reduce transmission losses both during propulsion and regenerative braking. However,
they require suitable and precise design as the high torque requirements must allow the
vehicle to start on uphill roads in order to achieve the necessary speed. At the same time,
the higher moment of inertia contributes to the vibrations and torque harmonics mitigation.
For the above reasons, the outer–rotor PMSMs are the dominant structure at the in-wheel
electrified systems. The high-speed operation is not a great challenge for this machine since
the centrifugal forces retain the PMs [8].

2.2. Surface-Mounted Permanent Magnet Motors

Concerning the magnets’ placement, there is another classification for the PMSMs. In
particular, they are divided into: (a) surface-mounted (SPMSMs) and (b) interior (IPMSMs)
PMSMs. In the first case, the PMs are attached on the rotor’s inner or outer circumference
and they are magnetized radially. The motor’s effective airgap length is equal to the sum of
the PM’s height and the actual airgap length since the magnetic permeability of the PMs is
comparable to that of the air. The large effective airgap length decreases the motor’s self-
inductance. The tooth tip leakage inductance and thus the total inductance can be increased
through the appropriate stator teeth design for a better fault-tolerance capability. The PMs
of a SPMSM are exposed directly to the armature reaction field due to their position. So,
there is high risk for them to be susceptible to partial irreversible demagnetization. This
can be avoided thanks to a sleeve (made of non-ferromagnetic material with high electrical
conductivity) that is placed around them [9].

The sleeve helps also the magnet’s retention when the motor’s rotational speed is
too high. The rotor of a SPMSM has no saliency. The SPMSM’s efficiency is high as a
large amount of magnetic flux is concentrated in the airgap. Its flux-weakening capability
is reduced and its overload capability can be regarded as satisfactory. The permeance
variation in the airgap may cause a high torque ripple when the PMs and the stator teeth
dimensions are not properly selected. The curving of the magnets’ surface declines the
torque ripple, but this is a countermeasure of high cost [10].

The research so far works (aiming either to enhance the SPMSM’s performance or
to mitigate its inherent undesirable features) deals with the following topics: (a) the
examination of different PM shapes and segment numbers; (b) the demagnetization analysis
of the SPMSMs; (c) the study of the impact of poles/slots combination on the SPMSM’s
operational characteristics; (d) the development of advanced analytical models/methods
for the motor’s electromagnetic performance estimation, as well as its thermal behavior
prediction; (e) the introduction of novel design methodologies, especially for SPMSMs with
high-speed operation and/or outer-rotor topology and (f) the incorporation of artificial
intelligence-based methods in the design process. The recent advances in SPMSMs design
and analysis are presented and discussed in the next paragraphs of this section.

Regarding the magnet’s geometry, the authors of the work presented in [11] proposed
an analytical method, based on Schwarz –Christoffel mapping, for PM shape optimization
of an asymmetrical and unidirectional 12-poles SPMSM. According to the applied technique,
the PMs were divided into finite cells so that each cell can be assigned with either air (off)
or magnet (on). The optimization problem was solved by using genetic algorithm (GA).
The results, obtained through 2-D and 3-D finite element analysis (FEA) simulations,
demonstrated that the asymmetrical magnet shape substantially deteriorates the motor’s
cogging torque and torque ripple, while simultaneously slightly increasing the average
output torque. In the work presented in [12], four different magnet shapes (illustrated in
Figure 1) were analyzed and compared to each other for a SPMSM with full-pole-pitched
distributed stator winding.
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terial. Overall, it was concluded that the specific shaping technique is suitable for the de-
sign of high-performance SPMSMs as it does not have a negative impact on the motor’s 
average output torque. 
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Figure 2. The PM design concept proposed in [11]: (a) sinusoidal plus third harmonic shaped PMs; 
(b) proposed rotor design with butterfly shaped PMs. 

A study with similar research objectives was concluded in the work presented in [13], 
where a novel design method for the pole shape formation was developed by adopting a 
cycloid curve. The calculated results were quite consistent with FEA and experimental 
results. The effect of different PM shapes (depicted in Figure 3) on the SPMSM’s cogging 
torque was highlighted in the work presented in [14], aiming to identify the optimal de-
sign for each one. In order to overcome the limitations (which come as a result of the low 
versatility of the motor PMs fabrication technologies) on the development of new rotor 
geometries, the cold spray additive manufacturing was employed in the work presented 
in [15] for shaping the magnets of a radial-flux inner-rotor SPMSM. 
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Figure 3. The different PM shapes examined in the work presented in [14]: (a) rounded inside shape; 
(b) rounded out shape; (c) chamfered shape; (d) straight shape. 

Figure 1. The PMs designs examined in the work presented in [11]: (a) rectangular-shaped; (b) butter-
fly shaped; (c) egg-shaped; (d) bread-load-shaped magnet.

As can be seen in Figure 2, the thickness of the proposed PM is uniform along the
radial direction so as not to impair the magnet’s ability to handle the demagnetization force.
The introduced shaped-magnet design was proven to have clear advantages over the rest
tested topologies since it: (a) delivers the same amount of torque, but with almost zero
torque ripple even at high electric loading and (b) uses more efficiently the PMs material.
Overall, it was concluded that the specific shaping technique is suitable for the design of
high-performance SPMSMs as it does not have a negative impact on the motor’s average
output torque.
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Figure 2. The PM design concept proposed in [11]: (a) sinusoidal plus third harmonic shaped PMs;
(b) proposed rotor design with butterfly shaped PMs.

A study with similar research objectives was concluded in the work presented in [13],
where a novel design method for the pole shape formation was developed by adopting
a cycloid curve. The calculated results were quite consistent with FEA and experimental
results. The effect of different PM shapes (depicted in Figure 3) on the SPMSM’s cogging
torque was highlighted in the work presented in [14], aiming to identify the optimal design
for each one. In order to overcome the limitations (which come as a result of the low
versatility of the motor PMs fabrication technologies) on the development of new rotor
geometries, the cold spray additive manufacturing was employed in the work presented
in [15] for shaping the magnets of a radial-flux inner-rotor SPMSM.
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The magnets have been shaped according to a sinusoid along the axial direction while
their thickness has been kept uniform along the radial direction. The performance of the
machine with a sinusoidal shaped rotor was found to be superior to that of a conventional
rectangular shaped rotor design when the flux leakage, output torque, cogging torque
and back-electromotive force (Back-EMF) were examined. The influence of the PMs seg-
mentation on the aforementioned motor’s operational features was studied for different
slots/poles combinations and valuable conclusions were drawn. As for the PMs demagneti-
zation, the impact of three-phase short-circuit currents on the SPMSM’s performance under
different load conditions was studied. Moreover, a novel methodology, which takes into ac-
count the edge effect of SPMSMs, was introduced for the demagnetization analysis of ferrite
PMs [16]. Since the PMs shape and dimensions are not the only parameters that affect the
motor’s cogging torque and torque ripple, the proper selection of stator teeth dimensions
and poles/slots combination is necessary, too. Such investigations were conducted in the
work presented in [17,18] toward the SPMSM’s vibration and losses minimization.

2.3. Interior Permanent Magnet Motors

As already mentioned, the second category of the PMSMs are the IPMSMs, whose
permanent magnets are either inset or embedded into the rotor laminations as they are
either tangentially or radially magnetized. Their most important advantages are greater
resistance to PMs as well as better shielding against demagnetization. They are salient-pole
machines. Their d-axis inductance is lower than that in q-axis. The saliency ratio and
the resulting reluctance torque of the IPMSMs with buried PMs are highly dependent
on: (a) the PMs dimensions, position and configuration and (b) the flux barriers location
and geometry [19]. Special attention has to be paid to the flux barriers design parameters
determination since they have a great impact on the motor’s electromagnetic performance.
As for IPMSMs design methodology of flux barriers, it was found that they can reduce
core losses in both stator and rotor. Symmetrical and asymmetrical flux barriers were
considered. In the first case it was found that they have different shapes (trapezoidal,
triangular, etc.) and are placed at both ends of PMs in order to regulate and guide the
magnetic flux around the rotor poles. Conversely, in the second case, they may have
a different geometric configuration and orientation on the both sides of the permanent
magnets, while they may exist only at one side of the rotor pole.

By optimizing the design of the flux barriers, enhancement of the torque capacity of
IPMSMs, reduction of the torque ripple and minimizing the risk of irreversible demagneti-
zation of PMs can be achieved. Thus, based on the findings of the work presented in [20], it
can be concluded that large flux barriers with smaller angle are preferable when rare earth
magnets are used in the magnets. Considering the case of ferrite PMs, we find that the
design of flux barriers is not appropriate as extended torque pulses can occur, creating sig-
nificant problems in machine operation. Regarding the stator winding configuration, either
distributed or concentrated windings can be utilized. However, the distributed windings
enable the more sufficient exploitation of the IPMSM’s reluctance torque [21]. The electro-
motive force, induced by the PMs, of the IPMSMs is lower compared to that of the SPMSMs.
Concerning the efficiency, the IPMSMs have clear advantage over the SPMSMs at high
speeds, while at low speeds their performance is inferior [22]. Their high torque density
levels, along with their ability to handle a wide operation range with deep flux-weakening
control make them the leading candidates for EVs [23]. However, their design process is
characterized by increased complexity due to the large number of design variables [24].
Notwithstanding that, numerous rotor geometries have been analyzed, prototyped, and
evaluated by taking into account features, such the efficiency, flux-weakening-capability,
particular losses, thermal behavior, overload capability, manufacturing cost, risk of failure,
etc. [25].

A design variation of the SPMSMs, the inset PMSMs, is depicted in Figure 4a. The
PMs are allocated on the rotor’s circumference and the gaps among them are filled with
the core’s soft ferromagnetic material. In this way, a better restraint of the PMs is achieved.
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Nonetheless, their thermal behavior is poorer as: (a) less circulating air surrounds the
magnets and (b) high iron losses appear close to them. The rotor’s hysteresis losses increase
since the ferromagnetic material among the PMs is easily saturated. The rotor of this
machine is anisotropic as the iron’s relative magnetic permeability is much higher than that
of the PMs [26]. The difference between the q- and d-axis inductances creates reluctance
torque. Thus, the operating principle of the inset PMSM is similar to that of the IPMSMs
with buried PMs.
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Among the most important decisions during the design stage is the selection of the
iron bridges size, as it substantially affects the IPMSM’s back-emf and the magnetic flux
leakage [27]. The findings of the work presented in [28] indicated that the d-axis inductance
varies with the iron bridges saturation level.

The relationship between the rotor geometry and the trade-offs required for the
motor’s wide speed range operation was investigated in the above research work, too. The
incorporation of bypass ribs outspreads the IPMSM’s constant power region and boosts its
flux-weakening capability [22]. Also, the minimum thickness of the bridges is imposed by
mechanical constraints. The maximum mechanical stress on the iron bridges for various
angles between the PMs has been estimated in [29] through an analytical method. The
mechanical stress is alleviated when the flux barrier corners are rounded. The optimal
design of the rotor’s iron bridges and flux barriers is essential for the IPMSM’s performance
improvement. This can be implemented either by conducting a sensitivity analysis [30] or
by following an optimization-based finite element analysis approach.

Another design parameter of great importance is the rotor rib, i.e., the distance between
the flux barrier and the rotor circumference. The IPMSM’s maximum output power
variation as a function of the specific dimension was thoroughly studied in the work
presented in [31]. As the rotor rib becomes larger, the stress concentration is relieved at
high speeds but the IPMSM’s performance deteriorates. The opposite happens when the
rib thickness gets smaller values. Additionally, the rib thickness affects the d- and q-axis
inductances and consequently the flux-weakening operation. The angle between the PMs
is subjected to constraints, too. The V-shaped rotor is not easily applicable when the poles
number is large as there is less available space for the PMs. In this case, the angle between
the PMs decreases. For low angle values, the rotor core’s material is saturated and higher
rotor losses occur as highlighted in the work presented in [32]. The motor’s performance at
the constant power region is negatively affected for low angle values, too.

On the other hand, the rotor losses become lower as the angle value gets higher.
Another defect of the V-shaped IPMSM is the fact that the airgap magnetic flux density
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distribution is less sinusoidal. It contains harmonics of high order that cause torque ripple,
vibrations, and noise. The harmonics can be reduced through the appropriate choice of the
pole arc to pole pitch ratio. The effect of the specific design variable on the airgap magnetic
flux density and back-emf was analyzed and discussed in the work presented in [33,34].
Another effective design solution is the PMs shifting. It leads to the cogging torque and
torque ripple suppression, while the average output torque is preserved [35]. Toward the
specific direction, the impact of stator slotting and armature reaction field was studied in
the work presented in [36] for IPMSMs with multi-segmented skewed poles. Guidelines
regarding the proper poles/slots combination choice were provided in the work presented
in [37] for IPMSMs with fractional-slot concentrated winding (FSCW).

The aim of these research effects was to establish a base capable of securing the
reliability of the IPMSMs that are used at traction applications. In order to overcome a
few of the V-shaped rotor IPMSMs inherent defects, the double-V structure (illustrated in
Figure 4c) has been introduced. An indicative alternative design is shown in Figure 4d.
The manufacturing complexity of this rotor is greatly increased compared to that of an
IPMSM with single magnet per pole. The topology of Figure 4e is known as delta-shaped
rotor. It has three PMs per pole that are arranged in two layers. The first layer contains two
magnet blocks that create a V-shaped structure. The second layer includes only one straight
magnet block. The difference between the q- and d-axis inductance of this motor is very
high. Although a high reluctance torque is produced, this torque can be hardly utilized
due to the DC link voltage limit. So, it has moderate field-weakening capability. Its torque
density is slightly higher than that of the single V-shaped rotor. In order to boost even
more the power/torque density of the delta-shaped rotor IPMSM, the Hairpin windings
was preferred in the work presented in [38]. The U-shaped rotor is depicted in Figure 4f.
At this geometry, the layout of letter “U” is built by the PMs. A PM volume smaller than
the corresponding one of the V-shaped rotor IPMSM is required, aiming for the motor to
deliver the same output torque. Due to its satisfactory torque capability, many already
published research works deal with the analysis and design of this IPMSM.

The rectangular-type rotor is presented in Figure 4g. It has one PM block per pole. Its
PMs are radially magnetized and embedded near the rotor surface. The manufacturing
process of this topology is quite easy. The PMs are well protected against the centrifugal
forces and the armature reaction field. However, the PMs suffer from much higher eddy
current losses compared to the rest IPMSMs due to the larger magnet poles cross-sectional
area. Therefore, the PMs segmentation is demanded. Another drawback of the specific rotor
design is the high leakage of flux through the iron bridges [39]. Its flux-weakening capability
can be characterized as satisfactory according to the findings. Many research efforts gave
emphasis on the torque quality improvement. A thorough analysis was performed in the
work presented in [40] regarding the impact of PM segments numbers and geometrical
parameters on the torque characteristics. It was found that increasing the PM’s thickness
instead of its width is more beneficial for the torque. Significant reduction of the torque
ripple was achieved in the work presented in [41] by conducting a range analysis on data
from orthogonal experiments.

The spoke-type rotor is illustrated in Figure 4h. The PMs are of a rectangular shape and
they are tangentially magnetized and inserted in deep slots. The rotor geometry permits the
magnetic flux concentration. When the magnet bridges are avoided, the flux moving inside
the rotor from one to pole to the adjacent one is averted [42]. The effect of both bridge
leakage and axial leakage was considered in during the design process of an IPMSM of this
type. The magnetic flux concentration leads to an airgap magnetic flux density value higher
than that of the PMs. This feature is of great importance since the produced reluctance
torque is low [43]. The rotor’s manufacturing is easy and of low cost. The restricted field-
weakening capability and the back-emf distortion are the utmost disadvantages of this
IPMSM. A novel design method was proposed in the work presented in [44] toward the
minimization of cogging torque and torque ripple without proceeding to the PMs skewing.
Asymmetric flux barriers were used along with the inverting lamination technique.
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The optimization of the rotor shape in the work presented in [45] was found to be effec-
tive enough. The torque ripple was reduced while the average torque remained unaffected.
A novel structure with hybrid radial and axial flux-concentrating capability was presented
in the work included in [46] to reduce the interpolar leakage flux. The electromagnetic
performance of the developed model was superior compared to that of a traditional spoke-
type IPMSM. Targeting the efficiency enhancement, a comparative analysis was made in
the work presented in [47] for IPMSMs whose cores were made of a dual phase magnetic
material and conventional ferromagnetic materials for rotor laminations.

Expect from the so far described rotor designs, there is an adequate number of alterna-
tive topologies in the literature. They are either design variations of the conventional rotors
or combinations of them, while few of them exhibit unique geometrical and operational
characteristics. In any case, the most promising ones are presented herein. The hybrid
magnets rotor structure of Figure 5a is formed when: (a) high-resistivity ferrite magnets
are introduced in the flux paths of the d-axis and q-axis and (b) V-type NdFeB PMs are
placed in the d-axis path. As stated in the work presented in [48], the fill of the air grooves
between the tangential magnet blocks with ferrite PMs improves the torque quality and
makes the airgap magnetic flux density more sinusoidal. The reduction of rotor and PMs
losses was achieved by finding the optimal angle between the V-type PMs.
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Figure 5. Promising IPMSM topologies: (a) Different PM types; (b) PMs with various air flux-barriers
and iron bridges; (c) Two layer PM configurations; (d) Multi-layer PM optimization parameters;
(e) Outer rotor single layer PMs; (f) Outer rotor multi-layer PMs.

A new rotor shape, shown in Figure 6b, was developed in the work presented in [49]
especially for IPMSM’s high-speed operation. The motor’s electromagnetic performance
was found to be superior compared to that of a SPMSM with the same specifications, while
the PMs volume has been decreased by 53%. The rotor geometry of Figure 6c contains two
layers of PMs (i.e., one of U-type and one of V-type). In the work presented in [50], the
impact of the involved rotor design variables was investigated and explained by employing
both analytical and numerical techniques. The final values of the geometrical parame-
ters were selected by considering key performance metrics, the motor’s flux-weakening
capability and the effect of short-circuit faults on the PMs.
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In the work presented in [51], a design methodology was proposed for the high-speed
multi-layer rotor IPMSM of Figure 6d, which has ferrite PMs. Since the ferrite magnets
have much lower coercive force than that of the NdFeB PMs, great emphasis was given
to the incorporation of PMs demagnetization analysis and rotor mechanical analysis at
all the design stages. Despite the fact that the outer rotor topology is more popular at the
SPMSMs, there are research works that deal with the design of outer-rotor IPMSMs. The
IPMSM of Figure 6e was studied in the work presented in [52]. PMs of a rectangular shape
were allocated near the rotor’s inner circumference. The motor’s cogging torque and torque
ripple was minimized by optimizing the flux barriers design. A hybrid double-U rotor with
two-layer crescent barriers (depicted in Figure 6f was introduced in [53] aiming to maximize
the IPMSM’s output torque and reduce the utilization of high-cost rare-earth PMs.

2.4. Comparative Analysis of PMSMs Configurations

The performance of the V-shaped rotor IPMSM was compared to the respective one of
the configurations with rectangular PMs in the work presented in [54]. The PMs dimensions
along with the flux barriers design were optimized, aiming to meet specific requirements,
while the authors of the work presented in [55] estimated the rotor’s stress distribution
under maximum speed operation to validate its mechanical stability.

Also, alternative rotor configurations have been analyzed and compared to the con-
ventional ones. For instance, the topologies shown in Figure 7a–d, which have PMs both
radially and tangentially magnetized, were found to present higher torque capability and
saliency ratio than the ones of the equally operated spoke-type IPMSM shown in Figure 8a.
The asymmetric magnetic pole structure of Figure 8d that uses bonded rare-earth PMs
achieves higher output torque compared to the rectangular-type IPMSM of Figure 8c that
has sintered NdFeB PMs. In particular, its reluctance torque was increased by 34% and
the total average output torque was enhanced by 6.5%, as mentioned in the work pre-
sented in [56]. Its only disadvantage is the higher torque ripple, which can be reduced by
optimizing the magnets layout.
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Moreover, the configuration depicted in Figure 6a, which is known as flux-concentrated
V design, was studied. From the findings of this research work, the following are observed:
(a) the spoke type rotor leads to the highest no-load back-emf per PM material usage while
the V-type results to the lowest one; (b) the back-emf total harmonic distortion of the spoke
and flux-concentrated V rotor is the highest ones; and (c) the aforementioned topologies
have poor demagnetization characteristics.

The cross-sectional view, along with the no-load magnetic flux density distribution
of the final models are given in Figure 6. From the obtained results, it can be noticed that:
(a) the double-layer PM machines have lower magnetic flux density harmonics content
compared to the single-layer ones, (b) the q-axis inductance of the five models is almost the
same; (c) the U-shape rotor motor has the largest d-axis inductance, followed by the single-V
double-V, and hybrid (i.e., UV-shape) rotor, (d) the U-shape arrangement has the lowest
difference between the q-axis and d-axis inductance, which is quite close to that of the
V-shape rotor, (e) the double-layer PMs motors have almost the same difference between
the d-axis and q-axis inductances and their values are higher than those of the single-layer
PMs, (f) the U-shape rotor has the best mechanical performance, while the V-type one
has the worst one and (g) the U-shaped IPMSM has the best anti-demagnetization ability
among the five rotors under the three-phase symmetric short-circuit faults. In the magnet
of Figure 9, the fields H, B are in the same direction outside the magnet, Figure 9a,b, while
the demagnetization field Hd inside the magnet opposes the fields B, M. Demagnetization
factors depend on the image and permeability of the magnetic material sample and are
very difficult to determine in closed form.
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3. Thermal Analysis and Permanent Magnet Demagnetization Effects
3.1. Magnetic Material Categories

Designing electric motors with high power density for EVs can be challenging due
to power loss and temperature rise. To overcome these challenges, a significant amount
of research has been conducted on the design high-density electric motors with advanced
materials, improved physics and mathematics, and improved power density, modeling of
the materials and the motor system, as well as interdisciplinary optimization at the system
level of the entire drive system [57].

New manufacturing techniques have also been introduced aiming to reduce produc-
tion costs, such as 3-D printing. Although important magnetization levels have not been
attained yet, such technologies present advantages in high speed and high supply fre-
quency applications due to the reduced losses developed, and could constitute an attractive
possibility for low-cost core production in such cases. The features of fabricated cores
from a commercially available low-mass and low-cost magnetic polylactic acid (PLA) iron
filament are under investigation [58].

Magnetic materials belong to one of the following categories: diamagnetic, paramag-
netic, ferromagnetic, antiferromagnetic and ferrimagnetic.

• Diamagnetic materials have no pure magnetic moment at the atomic or molecular
level. When diamagnetic materials are subjected to the action of an external field,
atomic currents are produced, which cause total magnetization, which opposes the
external field that caused it. Bismuth (Bi) is an example of the diamagnetic material.

• Paramagnetic materials have a pure magnetic moment at the atomic level, but the
coupling between neighboring magnetic moments is weak. These magnetic moments
tend to align with an external magnetic field, but the magnitude of the alignment
decreases at higher temperatures due to random thermal agitation effects. Materially,
the adjacent magnetic moments are unequal resulting in a net magnetic moment.

• Ferromagnetic materials have a pure magnetic moment at the atomic level, but unlike
paramagnetic materials there is strong coupling between neighboring magnetic mo-
ments. This strong coupling causes a spontaneous alignment of magnetic moments
at the macroscopic level, in regions called magnetic fields. The magnetic fields are
further aligned under the influence of an external field. They are classified into soft
and hard ferromagnetic materials depending on the value of the coherent field (Hc).

• Finally, the antiferromagnetic materials and ferromagnetic materials have neighboring
atomic moments oriented antiparallel. In antiferromagnetic materials, the adjacent
magnetic moments are equal, so that there is no net magnetic moment. In ferromag-
netic materials the neighboring magnetic moments are unequal, so that there is a net
magnetic moment.

3.2. Demagnetization Field

When a sable is magnetized, a field is developed which opposes the magnetizing field.
This field is called the demagnetization field, and it plays a role in the whole process of
magnetization.

Let us consider a uniformly magnetized sample of volume V and area S. The magneti-
zation M creates surface poles. These in turn create a demagnetization field Nx within the
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sample. The demagnetization field Nx is proportional to the magnetization M but in the
opposite direction. For example, along the x-axis we have:

Hdx = −Nx Mx (1)

where Hdx and Mx are the x-components of the demagnetization and magnetization fields,
respectively, and Nx is the demagnetization factor along the x-axis. If an external field Ha is
applied to the sample, then the field inside the sample Hin will be equal to the vector sum
of Ha and Hd:

Hin = Ha + Hd (2)

A sample with an isotropic distribution of specific orientation axes (magneto crystalline
anisotropy) is considered. It is initially demagnetized with its domains isotopically oriented
as shown in point “O” of Figure 10. Applying a H field, and as H increases from zero
along the positive semi-axis (weak field), the magnetic domains which are aligned with the
field grow in size and the oppositely oriented magnetic domains decrease in size due to
the movement of the magnetic domain walls. As H increases further (intermediate field)
the magnetic moments in the remaining non-oriented magnetic sectors rotate or flip in
orientations along specific axes that are in the direction of the H field. For high values of H
the magnetic moments along specific axes in magnetic fields not aligned with the H field
rotate off these axes and align with H.
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3.3. Hard Magnetic Material Characteristics

Hard magnetic materials are characterized by low permeability and a high coherent
field value. The latter property makes them difficult to magnetize and demagnetize.
Permanent magnets are used as field sources in a wide range of electromechanical devices.
One of them is concerned the choice of Fe-Co-V alloy instead of silicon steel. The magnetic
properties of silicon steel, which is a widely chosen soft magnetic material in motors,
deteriorate severely under high pressure, which leads to a reduction in motor performance.
In contrast, by choosing this alloy, better torque density, less core loss and better electric
motor operation performance were found [59].

The properties of primary importance in the selection of a magnetic material are those
that determine the magnitude and stability of the field they can provide. These include the
coherent field value Hc, the saturation magnetization value M, the residual magnetization
Br, as well as the shape of the hysteresis loop in the second quadrant. This part of the
hysteresis loop is called the demagnetization characteristic, shown in Figure 11a.

The points B, H in the demagnetization characteristics define an energy product B-H
which takes a maximum value max in the interval −Hc < H < 0 as shown in Figure 11b.
When a permanent magnet is used as a field source it is polarized at a functional point (Bm,
Hm) of its demagnetization characteristic. The operating point depends on the circuit in
which it is used. It can be determined from the load line of the circuit. This intersects the
demagnetization characteristic at the point (Bm, Hm) as shown in Figure 12. It is desirable
to polarize the magnet at the point of maximum energy (B-H) max. This will result in
minimizing the volume of the magnet and reducing its cost.
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An important consideration in permanent magnet machines concerns the avoidance
of permanent demagnetization effects of the magnets in cases of faults, as under such
conditions the current component along the direct (d) axis (id) can take values several
times greater than those of nominal operation. An approximate analysis of the short
circuit current variations of the machine can be performed by using analytical formulae
based on sub-transient (X′′

d), transient (X′
d) and steady state (Xd) reactance values along d

axis, respectively, according to the classical two axes transformation method. In general,
this method enables the analysis of machines with damper windings. The mathematical
expression concerning short circuit current time variation is as follows:

id(t) = −ωλMag

[
1

Xd
+

(
1

X′
d
− 1

Xd

)
·e
− t

T′d +

(
1

X′′
d
− 1

X′
d

)
·e
− t

T
′′
d

]
(3)

T′′
d < T′

d (4)

where, λMag is the flux linkage, ω is the angular frequency, T
′
d is the transient short circuit

time contstant and T′′
d is the subtransient short circuit time contstant.

Figure 13 illustrates the demagnetization effects in the permanent magnets of an
internal permanent magnet V-type machine computed by finite element analysis, the
geometry of which is shown in the same figure.

Permanent magnet motors are now well established in the ever-growing electric car
industry. The presence of strong rare earths of Neodymium in these motors is vital for
increasing power density [60]. The absence of copper from the rotor offers an advantage
for achieving high efficiency, as in the case of modern magnetoresistance motors (SRMs),
while the presence of magnets improves the power factor and increases the maximum
torque capacity [61]. Meanwhile, concerns related to the magnetization level of permanent
magnets appear [62]. The main disadvantage of this kind of motors is the difficulty of
field attenuation, even at relatively low speeds [63]. The characteristics of the machine are
derived from the preliminary design and based on the observe of the high saturation in the
rotor and stator. In general, the demagnetization calculation methods are applied on top
of some already optimized geometry and help to study the cost in terms of the type and
grade of magnet that the final geometry can use [64–66].
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3.4. Thermal Modeling of Permanent Magnets

The dependence of magnetization on temperature is non-linear, but approximate
models exist [67]. The most common approach is to describe the temperature function
with a linear model. This is illustrated in Figure 14, where linearity is established for
a local temperature interval, Ti − Ti−1. In this technique it can be assumed that the
residual magnetization at the macroscopic level can be approximately correlated with the
spontaneous magnetization at the microscopic level.
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Magnetization is modeled by a linear function of temperature which decreases with
increasing temperature T [68]. Similarly, the residual magnetic induction Br is modeled by a
linear function [69]. It is usually expressed as a percentage per degree Celsius as mentioned
above (%/oz) and is given by Equation (5).

Br(T) = Br(T0 )(1 + a(T − T0 )) (5)

The above equations express an interval of linearity at a temperature T associated with
a reference temperature T0, which is usually 20 ◦C. Since the slope of the linear function
changes for different temperature intervals, the interval Ti − Ti−1 must be redefined. An
analogous model is used to describe the coherent field as a function of temperature.

Hc,i(T) = Hc,i(T0 )(1 + b(T − T0 )) (6)
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The parameters of the slope of the linear function in the two models are, respectively,
a, b. Since the IEC standard uses the same symbol a for both models, it is necessary to make
the following distinction for two models, a(Br) and a(Hc) [70].

As the gradient is different, Ti − Ti−1 temperature intervals in a non-linear model
would be more appropriate than the linear one. Such an alternative model has been
proposed with second-order polynomials [71] for the residual magnetic induction and
coherent field.

Br(T) = Br(T0 )(1 + a1(T − To ) + a2(T − To)
2) (7)

Hc,i (T) = Hc,i (T0 )(1 + b1(T − To ) + b2(T − To)
2) (8)

The omega-shaped PMs arrangements were proposed as substitutes of conventional
rectangular-type IPMSMs to enhance the torque characteristics. The developed geometries
(illustrated in Figure 15a–c have bonded instead of sintered PMs and exhibit: (a) lower iron
losses due to the lower magnetic flux density distribution, (b) higher efficiency under the
maximum output control, (c) lower torque ripple and (d) higher average output torque.
Modified models of the V-type IPMSM were introduced in the work presented in [72]. The
IPMSM (depicted in Figure 15a of the 3rd generation Toyota Prius model) was considered
as the reference motor. The modified models of Figure 15b, c were developed by apply-
ing an optimization algorithm. The motors’ performance was evaluated by taking into
consideration the electric vehicle’s behavior under three different driving cycles.
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The results revealed that the proposed modified V2 model (shown in Figure 15c) has a
higher torque density of 36%, while the PMs volume has been decreased and significantly
lower cogging torque. It leads to higher electric drive efficiency by 0.84% (in average) at
the electric vehicle level for the three examined drive cycles. Its only undesirable feature is
the mitigation by 14.69% of the motor’s maximum output power capability.

Models of permanent magnets are not based on demagnetizing force and residual
magnetic induction alone and are not complete without modeling magnetic permeabil-
ity. A model for the recoil permeability can be developed which takes temperature into
account. This can be achieved by a similar linear model originally developed for soft
ferromagnetic materials.

µ(T) = µ(T0 )(1 + aµ(T0 )(T − To) (9)

The above thermal model of residual magnetization, demagnetizing force and per-
meability is based on the change of the main parameters. The model can be made more
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complex if a sigmoid function is used, such as the tanh function, for example. To model the
B-H curve, the following relation can be used:

Bi(H, T) = P(T)
(

b0tanh
H + Q(T)Hc,i(T0)

Q(T)h0

)
+ b1tanh

(
H + Q(T)Hc,i(T0)

Q(T)h1

)
(10)

where the function P(T) represents the vertical part of the loop associated with the residual
magnetization and the function Q(T) the horizontal part of the loop is associated with the
demagnetizing force.

The ability to impose proper magnetization on magnets to restore full magnetization
is a complex problem that requires very stringent conditions to which the magnet must be
subjected to make this possible. First, for the study of magnets, a detailed determination of
the B-H magnet curve in the second quadrant must be made. For this purpose, according
to this publication [73], the exponential model for calculating the B-H curve is mentioned.
According to the above publication, the function describing the curve consists of two terms,
linear and exponential.

In order to obtain its correct fitting, it is necessary to determine the values of two
constants [74]. The formula of the function and the method of calculating the constants are
given below:

B(H) = Br + µ0µr · H − E · K1(K2 + H ) (11)

where:

• E is a constant needed for unit conversion
• µr denotes the relative magnetic permeability
• Br is given by the manufacturer and indicates the residual magnetization.
• K1 indicates the acidity of the knee; indicative value is −4–10−5 m/A for neodymium

NdFeB magnets of classical grade (regular grade magnet).
• K2 is calculated from the equation:

K2 =
ln
[
(Br + (µr − 1)·µ0·jHc)· 1

E

]
K1

− jHc (12)

Permanent magnet losses cause an increase in magnet temperature and can lead
to a decrease in demagnetization resistance. In order to avoid the negative effects of
bifurcations, the above V-shaped PM motor geometry, shown in Figure 14, was considered,
which includes an internal PM configuration. Proper evaluation of the demagnetization
risk requires combining the permanent magnet loss model with a thermal analysis.

The rotor of the machine comprises permanent magnets of ND50H grade. The cal-
culated magnetic field distribution under short circuit illustrating magnet regions with
important demagnetization risks is shown in Figure 14 The demagnetization evaluation
is highly dependent on the model used for the B-H curve behavior. Figure 16 shows the
percentage of PM demagnetization evaluated by different models implemented. This figure
illustrates that at higher temperatures the simpler models for demagnetization evaluation
may lead to important overestimation of the magnet demagnetized percentage.

The study demonstrates that the proposed methodology for the evaluation of per-
manent magnet bifurcation losses combined with the modeling procedure adopted for
the demagnetization consideration can provide great services in the proper determination
of the demagnetization risks of MM and the efficient use of the material in the design of
electrical machines.
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3.5. Demagnetization Modeling of Permanent Magnets

Permanent magnet motors currently have been established as a favored option in the
ever-growing electric automotive industry. In the presence of strong rare earth neodymium
material enables substantial increase in power density. In addition, the absence of copper
from the rotor offers advantages of reduced maintenance and increased efficiency; on
the other hand, in the case of modern reluctance motors (SRM), the presence of magnets
improves the power factor and offers the potential for higher torque. A key area of
extensive study concerns the level of magnetization of permanent magnets at specific
temperatures [67,68].

The following investigation shows in the demagnetization results under three phase
short-circuits conditions, in radial flux permanent magnet motors favored in electric mobil-
ity applications. The optimization of the geometry was based on the combination of high
torque at low speeds and satisfactory performance under field attenuation conditions [75].
Based on the geometry of the motor, three different types of magnets were used in order
to draw conclusions about the motor operation in each case. In the motor with ND52
(Figure 17) type, there is a strong sensibility to demagnetization even when the stator
current is quite low. It is therefore considered quite important to characterize and diagnose
demagnetization at an early stage. With the 2-D finite element method (FEM) and PMSM
motor current examination, which is based on the fast Fourier transform (FFT), harmonics
indeed lead to safe conclusions in case of fault, as they are characterized as fault indicators
for detecting demagnetization. Therefore, the effect of increasing the current is expected to
reduce the strength of the machine [76].

The motors with ND50H magnets were also tested for its demagnetization behavior
when the current is 1.5 and 7 times the nominal current as shown in Figures 18 and 19,
respectively. In this case, the improvement compared to the previous machine with ND52
magnets is very large.

ND42UH type magnets were then placed in the machine. Magnets of this type have a
higher jHc value and are therefore more difficult to demagnetize than ND50H magnets and
in that respect, even more difficult when related to the original simulation of the machine
with ND52 magnets. In order to keep the torque performance of the machine the same, the
length of the machine has to be increased, since the Br value of the magnets is reduced [77].
The demagnetization behavior of this machine with ND42UH magnets, as shown in the
diagrams below, is much more robust than the previous two machines. This is evident as it
shows a strong resistance to demagnetization, i.e., almost zero demagnetization, up to T:
120–180 ◦C and then it demagnetizes abruptly and rapidly.
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Based on the previous analysis, it is indicated that the method, which was implemented
and used, enables easy and fast representation of demagnetization of any configuration
of internal permanent magnets as well as any kind of winding and stator geometry. In
addition, the power density of the machine increases when the magnets used have higher
residual magnetization [78]. This becomes apparent since when the type of magnets is
changed, appears a need to vary the active length of the machine in order to maintain the
performance at the same torque level. In this way, the power density of the machine is
indirectly altered. The demagnetization varies strongly with temperature which can be
assessed by the importance of the respective temperature coefficients of the coercive force.



Energies 2024, 17, 538 19 of 47

The angle of the stator currents play a less important but not negligible role in de-
magnetization of the magnets, as the maximum demagnetization does not occur in all
magnets when the excitation field is oriented along 180◦ angle. The geometry of the rotor
near the magnets and the local core saturation enables more uniform distribution of the
demagnetization. Finally, the design of appropriate flux barriers next to the magnet borders
is necessary to increase the magnet withstand to demagnetization effects by reducing the
flux density developed near the magnet endings [79,80].

The final configuration proposed includes two different neodymium magnet grades,
that is 42UH and 50H, respectively, while the motor produces higher torque density
compared to the motor involving a single magnet grade (ND42UH). In addition, it offers
reduced torque ripple and THD while it exhibits greater withstand to demagnetization
and lower manufacturing costs. The determination of the appropriate geometry has been
obtained by applying the robustness evaluation algorithm in conjunction with the torque
calculation algorithm.

3.6. Demagnetization Consideration Methodology

The proposed demagnetization calculation models assume that the demagnetization
field is only the component of the field that has a direction parallel to the easy axis of mag-
netization of the permanent magnet. According to them, during finite element formalism, it
is relatively simple to integrate the respective model into the overall computational scheme.

The stepwise model is an intermediate solution to the restrictive and linear models.
It essentially places the demagnetization curve on predefined linear lines. The number of
these curves can be relatively small in order to reduce the running time of the algorithm.
However, the accuracy is limited compared to the linear model which essentially allows for
the generation of demagnetization lines without involving the restriction of the discrete
distance between them, which is the case in the step model [81].

Furthermore, the specific methodology developed is based on the stepwise representa-
tion of simpler demagnetization models into more accurate and time-consuming models,
depending on the results obtained in terms of demagnetized subregions. In particular,
successive considerations of the behavior of the B-H curve are adopted: in a first step,
the constrained model is explored as this model refers to the recoil curve as a single line
passing through the nominal recoil point and to the knee as a constrained function that sets
the recoil line to zero recoil, and then the step model is applied, using a predefined number
of recoil lines and the same knee definition line as before. In the next step, the exponential
model is introduced, using two exponential curves with fixed knee parameters, which form
the recoil curve and the B-H knee behavior. The resulting models for the ND50H magnet
class at 20 ◦C are shown in Figure 20.
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Consequently, the first FEA analysis is performed with the standard representation of
the permanent magnet and then according to the local magnetization results a recursive
algorithm introduces the new recoil curves consecutively, if needed.

4. Combined Permanent Magnet and Lamination Loss Modelling

Surface-mounted permanent magnets present design advantages due to the creation
of a strong magnetic field in the gap of electric motors, but are sensitive to the development
of eddy currents and respective losses [82], while internal magnet configurations involve
dominant losses in neighboring laminated iron parts [83]. These are generated by harmonic
phenomena due to stator slotting during rotor rotation and switching frequency effects
involved in pulse-width modulation techniques applied in the inverter supply [84]. In
recent literature, numerous techniques for loss estimation in permanent magnets have been
developed [85], indicating the dominance of losses due to eddy currents over hysteresis
losses in most practical electric motor applications [86].

In order to reduce the losses due to eddy currents, the magnet segmentation method
can be applied. However, even in segmented magnets, the harmonics generated by the
supply usually involve penetration depths less than the size of the segments [87]. In that
respect, there is a need to account for the third dimension in the magnet end regions
when modeling the generated eddy currents in order to accurately calculate the losses they
generate while using a 2-D Finite Element Analysis [88].

A methodology based on the 3-D Fourier Transform (3-D FFT) method has already
been proposed in the literature [89]. Moreover, a technique has been introduced, enabling
evaluation of eddy current losses in permanent magnets, by using a 2-D Finite Element
Modeling (2-D FEA) combined with differential resistance concept in the magnet’s end regions.

Another methodology introduces lumped parameter impedances by developing an
already well-established technique for considering the end region of the rotor damper wind-
ings. The skin effect of the magnet is taken into account through appropriate techniques
involving mutual inductances in lumped parameter models. In addition, a C-core type
magnetic circuit has been modeled through both three-dimensional and two-dimensional
finite element analysis and validated by measurements. In addition, a methodology for
separating the core and permanent magnet losses through consecutive experiments has
been presented and implemented [90].

Apart from losses considerations, an important feature affecting equally the supply
strategies, concerns the electromagnetic compatibility (EMC) and interference (EMI) effects
of permanent magnet motor drives.

4.1. EMC and EMI Effects Consideration

EMC and EMI issues are of importance in most permanent motor adjustable speed
drive applications [91,92]. A generally accepted strategy for reducing their impact in
electric vehicles is based on the integration of the inverter supply with the motor part in
the same casing [93], sharing a single cooling system and providing an adequate shielding
of alternating current high frequency phenomena, enabling avoidance of interference with
other electrical and electronic equipment. Nevertheless, high frequency effects exist on the
direct current part concerning the battery management system and the link with the inverter
that is why various techniques for their mitigation and attenuation have been proposed,
such as appropriate filter topologies [94], combined with switching techniques [95,96], as
well as multi-winding machine configurations [97]. It may be noted that a detailed analysis
of EMC and EMI effects is critical in particular applications involving very restrictive
requirements such as in aerospace engineering [98,99].

4.2. Experimental Setup

In order to properly model the losses in permanent magnets, a specific simple magnetic
circuit was constructed as shown in Figure 21. This magnetic circuit consists of two U-
shaped sections with wound coils and a core made of soft magnetic material, separated by
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two neodymium allow magnets. Two copper coils are wound around the position where
the magnets are placed. These windings are used for excitation purposes and for detecting
the included voltage, as shown in the diagram below. In the first step, the losses in the core
were measured without the presence of the permanent magnet. In the second step, the
magnets were placed in the magnetic circuit, and the total losses were measured at various
frequencies. This two-step process allows for the precise determination of eddy current
losses in the permanent magnets.
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4.3. Core Loss in C-Core Magnetic Circuit

The core loss model is based on the Bertotti’s separation of losses technique [100],
which is expressed by Equation (13).

PCore = KH B2 f + KCB2 f 2 + KEB1.5 f 1.5 (13)

where:

• KH = 1.05·10−2 [7.W/(kgT2Hz)] represents the hysteresis loss coefficient.
• KC = 7.91·10−5 [7.W/(kgT2Hz2)] represents the eddy current loss coefficient.
• KE = 3.16·104 [7.W/(kgT1.5Hz1.5)] represents the excess loss coefficient.

The excitation coil of the magnetic circuit consists of 24 turns and the magnets are
absent during the experiment. The coefficient KH , KC and KE were derived from measuring
lossesunder various loading conditions. Figure 22 presents the measured losses under
sinusoidal current supply for different frequencies and maximum flux density values (Bmax),
along with the corresponding adjusted surface area obtained [101]. The measured iron
losses vary both with the maximum value of the applied magnetic field (the hysteresis loop
variations with the maximum flux density at 50 Hz frequency are shown in Figure 23) and
frequency (the hysteresis loop variations with frequency for 0.8 T maximum flux density
are shown in Figure 24). It may be noted that the measurements have been made at room
temperature (approximately 20◦) and are compatible with the corresponding simulation
results of the model adopted. A similar technique has been followed to calculate the iron
losses in induction motors under PWM inverter supply providing good precision in their
evaluation [102].



Energies 2024, 17, 538 22 of 47

Energies 2024, 17, x FOR PEER REVIEW 22 of 48 
 

 

where: 
• K  = 1.05·10−2 [7.W/(kgT2Hz)] represents the hysteresis loss coefficient. 
• KC = 7.91·10−5 [7.W/(kgT2Hz2)] represents the eddy current loss coefficient.  
• K  = 3.16·104 [7.W/(kgT1.5Hz1.5)] represents the excess loss coefficient. 

The excitation coil of the magnetic circuit consists of 24 turns and the magnets are 
absent during the experiment. The coefficient K , KC and K  were derived from measur-
ing lossesunder various loading conditions. Figure 22 presents the measured losses under 
sinusoidal current supply for different frequencies and maximum flux density values 
(B ), along with the corresponding adjusted surface area obtained [101]. The measured 
iron losses vary both with the maximum value of the applied magnetic field (the hysteresis 
loop variations with the maximum flux density at 50 Hz frequency are shown in Figure 
23) and frequency (the hysteresis loop variations with frequency for 0.8 T maximum flux 
density are shown in Figure 24). It may be noted that the measurements have been made 
at room temperature (approximately 20° ) and are compatible with the corresponding sim-
ulation results of the model adopted. A similar technique has been followed to calculate 
the iron losses in induction motors under PWM inverter supply providing good precision 
in their evaluation [102]. 

 
Figure 22. Core loss and the fitted surface of the core loss model with variations in frequency and 
flux density. 

 
Figure 23. Experimental assessment of the hysteresis loops of soft magnetic material. Family of 
curves at a specific frequency of 50 Hz for different maximum magnetic field density variations. 

Figure 22. Core loss and the fitted surface of the core loss model with variations in frequency and
flux density.

Energies 2024, 17, x FOR PEER REVIEW 22 of 48 
 

 

where: 
• K  = 1.05·10−2 [7.W/(kgT2Hz)] represents the hysteresis loss coefficient. 
• KC = 7.91·10−5 [7.W/(kgT2Hz2)] represents the eddy current loss coefficient.  
• K  = 3.16·104 [7.W/(kgT1.5Hz1.5)] represents the excess loss coefficient. 

The excitation coil of the magnetic circuit consists of 24 turns and the magnets are 
absent during the experiment. The coefficient K , KC and K  were derived from measur-
ing lossesunder various loading conditions. Figure 22 presents the measured losses under 
sinusoidal current supply for different frequencies and maximum flux density values 
(B ), along with the corresponding adjusted surface area obtained [101]. The measured 
iron losses vary both with the maximum value of the applied magnetic field (the hysteresis 
loop variations with the maximum flux density at 50 Hz frequency are shown in Figure 
23) and frequency (the hysteresis loop variations with frequency for 0.8 T maximum flux 
density are shown in Figure 24). It may be noted that the measurements have been made 
at room temperature (approximately 20° ) and are compatible with the corresponding sim-
ulation results of the model adopted. A similar technique has been followed to calculate 
the iron losses in induction motors under PWM inverter supply providing good precision 
in their evaluation [102]. 

 
Figure 22. Core loss and the fitted surface of the core loss model with variations in frequency and 
flux density. 

 
Figure 23. Experimental assessment of the hysteresis loops of soft magnetic material. Family of 
curves at a specific frequency of 50 Hz for different maximum magnetic field density variations. 
Figure 23. Experimental assessment of the hysteresis loops of soft magnetic material. Family of
curves at a specific frequency of 50 Hz for different maximum magnetic field density variations.

Energies 2024, 17, x FOR PEER REVIEW 23 of 48 
 

 

 
Figure 24. Experimental assessment of the hysteresis loops of soft magnetic material. Family of 
curves at a specific magnetic flux density amplitude of 0.8 T as a function of excitation frequency. 

4.4. Magnet Losses 
In order to properly evaluate the losses in the permanent magnets in a magnetic cir-

cuit as the one shown in Figure 21, it is necessary to separate the core losses from the total 
losses. Moreover, the choice of stator design and the supply by modern inverters with 
high switching frequency introduce harmonics that can contribute to significant losses in 
the magnets, causing the rotor to heat up [103]. In that respect, the aim to exploit the ad-
vantages of permanent magnets in modern machines have prompted several researchers 
to increase the frequency of electromechanical energy conversion by examining in detail 
the losses of the magnets [104,105]. 

The FEA modelling process requires usually an examination of three-dimensional 
configurations due to the geometries of the applied permanent magnets and the paths of 
the developing eddy currents. Additionally, the nonlinear characteristics of the cores ne-
cessitates a step-by-step time representation, resulting in a demanding framework con-
cerning memory and execution time constraints [106]. 

In order to develop efficient models for estimating losses due to switching frequency 
in the runner of surface-mounted permanent magnets, mixed numerical techniques cou-
pling field and circuit equations have been proposed for cases involving pulsed width 
modulation (PWM) power supplies [107,108]. Such models are based on a 2-D Finite Ele-
ment Analysis (2-D FEA) combined with circuit equations in border areas of the perma-
nent magnets. The analysis takes into account the extreme end effect phenomena associ-
ated with the switching frequency, which are primarily responsible for the majority of 
eddy current losses in the magnets [109]. It is worth noting at this point that a significant 
part of the losses relates to the existence and occurrence of harmonics inside the machine. 
The harmonic content in the PMSM flux due to stator grooving was determined in [110]. 
The currents in a solid rotor of a PMSM due to stator indentation were calculated in [111], 
taking into account magnetic saturation. It was shown that the harmonics of the teeth de-
crease with saturation and, consequently, the respective losses were lower. 

The model’s accuracy is validated through experimental measurements in magnetic 
circuits. The comparison between the experimental losses and the losses predicted by the 
model was made by applying a basic loss segregation analysis and highlighted the domi-
nance of losses due to eddy currents in permanent magnets associated with the switching 
frequency [112]. In the case that the air gap field contains only synchronized spatial har-
monics, the magnetic bisection losses can be neglected. Similarly, in real situations, the 
magnetic flux density in the air gap has a spatio-temporal variation: therefore, non-syn-
chronized spatial harmonics are generated. Therefore, significant losses are caused by 
eddy currents in the rotor [113]. 

Figure 24. Experimental assessment of the hysteresis loops of soft magnetic material. Family of
curves at a specific magnetic flux density amplitude of 0.8 T as a function of excitation frequency.



Energies 2024, 17, 538 23 of 47

4.4. Magnet Losses

In order to properly evaluate the losses in the permanent magnets in a magnetic circuit
as the one shown in Figure 21, it is necessary to separate the core losses from the total
losses. Moreover, the choice of stator design and the supply by modern inverters with
high switching frequency introduce harmonics that can contribute to significant losses
in the magnets, causing the rotor to heat up [103]. In that respect, the aim to exploit the
advantages of permanent magnets in modern machines have prompted several researchers
to increase the frequency of electromechanical energy conversion by examining in detail
the losses of the magnets [104,105].

The FEA modelling process requires usually an examination of three-dimensional
configurations due to the geometries of the applied permanent magnets and the paths of
the developing eddy currents. Additionally, the nonlinear characteristics of the cores neces-
sitates a step-by-step time representation, resulting in a demanding framework concerning
memory and execution time constraints [106].

In order to develop efficient models for estimating losses due to switching frequency in
the runner of surface-mounted permanent magnets, mixed numerical techniques coupling
field and circuit equations have been proposed for cases involving pulsed width modulation
(PWM) power supplies [107,108]. Such models are based on a 2-D Finite Element Analysis
(2-D FEA) combined with circuit equations in border areas of the permanent magnets. The
analysis takes into account the extreme end effect phenomena associated with the switching
frequency, which are primarily responsible for the majority of eddy current losses in the
magnets [109]. It is worth noting at this point that a significant part of the losses relates
to the existence and occurrence of harmonics inside the machine. The harmonic content
in the PMSM flux due to stator grooving was determined in [110]. The currents in a solid
rotor of a PMSM due to stator indentation were calculated in [111], taking into account
magnetic saturation. It was shown that the harmonics of the teeth decrease with saturation
and, consequently, the respective losses were lower.

The model’s accuracy is validated through experimental measurements in magnetic
circuits. The comparison between the experimental losses and the losses predicted by
the model was made by applying a basic loss segregation analysis and highlighted the
dominance of losses due to eddy currents in permanent magnets associated with the switch-
ing frequency [112]. In the case that the air gap field contains only synchronized spatial
harmonics, the magnetic bisection losses can be neglected. Similarly, in real situations,
the magnetic flux density in the air gap has a spatio-temporal variation: therefore, non-
synchronized spatial harmonics are generated. Therefore, significant losses are caused by
eddy currents in the rotor [113].

Particular 2-D Finite Element methodologies combining end zone circuits, in order to
take into account the currents flowing in permanent magnets end zones, have been created
by using both time discretization techniques based on harmonic analysis through complex
variables, and FDTD including time-stepping techniques [114].

The magnetic circuit shown in Figure 21, which supplied the sinusoidal waveform
current at 1 kHz up to 20 kHz corresponding to switching frequency of SPWM supply,
presented comparable losses in laminated iron and permanent magnet parts, illustrating
a dominance of the latter in higher frequency ranges. Moreover, the simulated results
obtained by the 2-D coupled method were in good agreement with the those of the 3D FEA
model and the respective experimental ones [115].

These results demonstrated that such modeling procedures are promising for efficient
simulation of magnet eddy current losses, which are generated by the intermittent frequency
of the carrier signal used in pulse-width modulation in inverter-driven surface permanent
magnet machines [116]. It may be noted that such techniques are necessary as the standard
two-dimensional finite element analysis without coupling with the circuit equations results
in significant overestimation of the eddy current losses in the magnets.
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In the work presented in [117], by applying such a method, a parametric design study
has been performed, enabling a significant reduction of the computation time and allowing
optimization of key machine parameters.

In the above mentioned analyses, the governing equation is the diffusion equation
expressed in Cartesian two-dimensional formulation in terms of the magnetic vector poten-
tial, while at the same time the gradient of the electric scalar potential enables consideration
of the end region effects of permanent magnets [118]. A similar approximate analysis
has been developed, reflecting the calculation of the magnetic field in two-dimensional
problems in which a region with a space-varying magnetic parameter is defined extending
the Maxwell-Fourier method for the simulation of surface-mounted high-speed cylindrical
permanent magnet machines [119].

4.5. Experimental Validation in a Linear Motor Prototype

Permanent magnet motors are a preferred choice in electrification applications, in
particular, respective to initiatives in transport, due to their relative advantages of increased
efficiency and the absence of rotor excitation requirements. This characteristic presents
important advantages in high-speed ranges [120]. However, the generation of significant
fault currents, as well as the subsequent risks of permanent magnet demagnetization and
impact on the behavior of the drive system, significantly increases concerns related to the
appropriate configuration for each class of electromobility application [66,121].

A wide range of studies and analyses have been developed on the losses in the
permanent magnets of inverter-fed motors [122]. The studies focus on different types of
motors, such as surface mounted PM synchronous motors and IPMSMs, as well as on
various types of permanent magnets such as NdFeB and SmCoalloys [123]. High harmonic
effects excite the high-speed leakage losses such as eddy current losses in surface-mounted
permanent magnets [92,124]. Internal permanent magnet configurations facilitate the
reduction of leakage losses but suffer from withstand limitations in high-speed applications
due to rotor dynamics [85]. With this in mind, the switching frequency harmonics are
responsible for a significant part of the losses in high-speed permanent magnet motors
supplied by PWM inverters [20,125].

Coupled field and circuit methodologies facilitate the appropriate optimization of the
geometry of permanent magnet motors. Intermittent frequency losses can be appropriately
included in terms of the magnetic field and electric circuit coupling equations, thereby sep-
arating iron and permanent magnet losses over a range of high frequency conditions [126].
Such a technique offers improved computational efficiency for the prediction of eddy cur-
rent losses, using a specific two-dimensional finite element analysis (2-D FEA). Moreover,
superposition principle considering frozen local iron permeabilities associated with low
frequency effects and incremental permeabilities associated with the switching frequency,
due to PWM power supply, allows fast calculations compatible with the optimization
procedure adopted [127].

The methodology is related to the calculation of the switching frequency losses devel-
oped in the iron laminations. Initially, the degree of saturation of the iron parts due to the
fundamental supply frequency is considered, and then the dynamic losses dominated by
the eddy current losses and the contribution of dynamic excess losses in the iron parts and
permanent magnet parts are determined.

Still high harmonics due to slotted geometry and switching supply waveforms, as
well as the DC magnetic field bias due to PM flux, greatly affect the iron losses during
the operation of a PM motor [128]. The above mentioned modeling techniques have been
validated through measurements on a manufactured prototype linear magnetic machine
circuit with surface magnets mounted on the rotor, shown in Figure 25c. The machine
configuration and the placement of the three phase full pitch stator windings involving
one slot per phase and pole is shown in Figure 25a. Figure 25b illustrates the machine part
corresponding to one pair of poles.
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rotor part caused an accelerated motion. The measured EMF, shown in Figure 26a, is in 
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Figure 25. Prototype magnetic circuit of a linear permanent magnet machine: (a) Geometry of the
linear machine configuration; (b) One pair of poles part; (c) Manufactured prototype.

With the implementation of the experimental part, the validation of the EMF developed
at the stator windings terminals has been achieved. A horizontal force applied to the rotor
part caused an accelerated motion. The measured EMF, shown in Figure 26a, is in good
agreement with the simulated one, shown in Figure 26b.
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Table 1 compares the fundamental amplitude of the experimental and the simulated
EMF as well as the respective Total Harmonic Distortion (THD). The difference observed
on the fundamental amplitude between experimental and simulated waveforms is quite
satisfactory (2.2%) as it depends on the magnetic flux variation along one pair of poles. The
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difference in the THD of the two waveforms is relatively more important (23.9%), as they
are of lower values and more sensitive to local manufacturing imperfections.

Table 1. Comparison of laboratory measurements with simulation results.

Results Parameters Value

Simulation
Fundamental amplitude (mV) 962

THD (%) 25.8

Laboratory Measurements Fundamental amplitude (mV) 984.3
THD (%) 19.62

Error
Fundamental amplitude (mV) 2.2%

THD (%) 23.9%

Moreover, a specific design methodology for permanent magnet motors for elec-
trification applications has been introduced. The methodology includes efficiency and
power density criteria coupled with criteria for avoiding magnet demagnetization risks
in fault conditions, using coupled magnetic field and electric circuit equations, thereby
enabling efficient modeling through two-dimensional finite element analysis. In addition,
another technique involves the design of a Machine Learning (ML) based demagnetization
fault diagnosis method for PMSM motors. The time-frequency domain analysis based
on the short-time Fourier transform (STFT) is applied to the process of extracting failure
characteristics of PM from the stator phase current signal [129].

In addition, to measure the losses in the stator laminations, the permanent magnet
rotor can be easily removed from such a prototype. In a first step, the rotor was kept
stationary and the stator winding was powered by a sinusoidal AC source, providing
1200 At excitation at a frequency of 10 kHz (shown Table 2).

Table 2. Measured total losses variation with sinusoidal excitation current in the linear motor
prototype for different frequencies in both cases of rotor presence and without rotor.

f = 1 kHz f = 5 kHz f = 10 kHz f = 15 kHz f = 20 kHz

Excitation
(At)

Losses
(W)

Excitation
(At)

Losses
(W)

Excitation
(At)

Losses
(W)

Excitation
(At)

Losses
(W)

Excitation
(At)

Losses
(W)

8 0.1 9 0.1 8 0.2 9 0.3 9 0.5
12 0.2 13 0.2 11 0.3 11 0.4 12 0.8
14 0.3 16 0.4 14 0.5 15 1 15 1.5
18 0.4 19 0.5 17 0.7 18 1.5 19 2.1
20 0.5 22 0.8 21 1.2 22 2.1 23 3.1
24 0.6 25 1 24 1.5 25 2.8 26 4
26 0.7 28 1.2 27 2 29 4 29 5.8
28 0.8 31 1.8 30 2.8 32 4.5 34 6.5

Based on the above results, it can be observed that permanent magnet losses are
relatively negligible at low frequencies, while they become very significant in the high
frequency regions. Moreover, the good agreement assessed between the measured and
simulated losses at all frequencies considered demonstrated the validity of the proposed
methodology in this class of problems and its suitability to be applied to surface-mounted
high speed permanent magnet motors [130,131]. This table shows that the losses in the
permanent magnets are comparable to those developed in the laminated parts of the stator
in all frequencies considered. The techniques introduced achieve adequate modeling of
high frequency losses, as validated by measurements on a prototype magnetic circuit, and
ensure robustness of the design, which is of major importance in highspeed applications.
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5. Mixed Numerical Techniques for the Simulation of Permanent Magnet Machines

Permanent magnets (PM) are usually represented in electrical machines by using the
finite element method (FEM) combined with other methods in order to calculate parameters
and analyze phenomena developed in permanent magnets; such techniques have been
extensively applied by researchers to overcome the problems of computational complexity
(mainly posed by 3D finite element analysis) and to improve the accuracy of the method. In
the following sections, representative related work reported in the international literature
over the last two decades is presented.

A method that combines 2-D FEM results along radial sections of the geometry, called
quasi-3-D FEM is proposed for the analysis of PM machines in [132]. Relying on the
disadvantage of quasi-3-D FEM is its inability to conduct finite element analysis when the
rotor back iron and permanent magnets have different lengths along the radial direction.
Thus, an improved technique was applied, combining asymptotic boundary conditions
with a finite element method to improve the calculation accuracy and computational
efficiency [133].

A proposed strategy uses a Response Surface Methodology (RSM) to dynamically
reset the objective function according to its optimization objective. Analytical functions
are used in order to verify the proposed method is feasible and capable of reducing the
computational time. The numerical example of the optimal design of a PM motor shows
that the computer program developed based on the proposed algorithm can significantly
reduce the FEM simulation times and speed up the optimization while ensuring the
accuracy of the dual RSM [134,135]. Scmidt and Susic [136] and de Assis et al. [137] use the
Frozen Permeability Method (FPM), which performs a discrete analysis of fields induced
by different excitation sources, in combination with FEM to calculate permanent magnet
synchronous motor parameters [138].

A work proposed an accurate tubular permanent magnet linear motor (PMLM) iron
loss calculation model combined with finite element method, in which the effect of the
primary motor structure harmonics on core losses are accurately calculated [139]. Xie et al.
use coupling of analytical models, FEM and CFD for electromagnetic and thermal analysis
of low-speed PM motors [140]. The simulation and measurement curves showed that high
copper loss of the stator winding is observed at the location of the highest temperature
rise of the system. The results demonstrate that as the fluid flux rate accelerates, the
system temperature rise decreases at an inversely proportional rate. Finally, after a tipping
point, the system temperature stabilizes. Similarly, Chen et al. apply such techniques to
high-speed train motor applications [141].

In the work presented in [142], a new transverse flux permanent magnet linear mo-
tor (TFPMLM) is constructed, which is called double-sided double excitation; using the
Schwarz–Christoffel (SC) mapping method enabled efficient analysis of the magnetic field
and motor characteristics. Genetic Algorithms (GA) have been implemented in conjunction
with coarse FEM to optimize the magnet positions and their effect on the motor characteris-
tics [143]. The distribution of the aerodynamic field in the air gap of the electrical motor has
been equally evaluated and its impact on the thermal analysis as well as the functionality of
the method in comparison to other techniques, has been assessed [144]. In addition, other
techniques for optimizing and examining key motor parameters combining multi objective
optimization and using Finite Element Analysis (FEA) have been proposed [138,145].

6. Mechanical Analysis of Electrical Machines
6.1. Mechanical Deformation Effects

Recent developments in power electronics favor highspeed permanent magnet ma-
chines, which are widely used in electric drive applications due to their advantages in
terms of achieving high power density, efficiency, durability, and low maintenance costs.
High-speed motors are generally vulnerable to the development of critical eddy current
and core losses, which promote the selection of low thickness and/or high silicon con-
centration laminations during design [146]. Moreover, a possibility to reduce losses is the
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design of multi-phase motors. Their advantages are the generation of a field with less space
harmonics and therefore better efficiency, with reduced time harmonic content [147] thus
decreased torque oscillations at frequencies several times the fundamental frequency and
better fault tolerance [148], since in the event of a fault, the phase showing damage can
be isolated at the expense of slight degradation of the power generation capability of the
machine and small reduction in the starting capability [149]. Also, the multi-phase ma-
chines with concentrated windings, as the one shown in Figure 27, can increase that torque
generating capacity by introducing appropriate higher harmonic current components from
the inverter [150].
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Figure 27. Concentrated winding 5-phase induction machine [149].

The power source is realized by using adequate power converters, so driving multi-
phase motors is feasible, provided that suitable power converters are designed [151]. The
need of electric vehicles for high power density (resulting in low weight and volume) has
led to the design of suitable inverters where the increase in power density will be realized
by using wide band gap semiconductor power devices such as SiC or GaN, mainly due
to their capabilities of being very small and capable of operating at high frequencies [152].
Multi-phase power converters have the additional advantages of improving the noise
characteristics and that for their configuration power electronics can be used with less rated
power than the corresponding three phase converter [153]. It may be noted that the number
of publications on multi-phase motors is growing recently, as shown in Figure 28 [154].
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In high-speed applications, rotor design involves trade-offs between opposing goals,
such as ensuring reduced flux leakage, reduced magnetic laminations losses and lower
rotating mass while maintaining increased magnetic drag torque [155]. Another key
objective is to achieve a reduction in rotor mass, especially in areas where the flux density
shows significant saturation, such as in permanent magnet supports [156]. A special
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category of modern motors are hysteresis motors where the output torque is produced
through the hysteresis effect of magnetic materials and the rotor is made of magnetic
material that exhibits hysteresis losses. The results are to develop hysteresis torque which
is constant at all speeds, but can be used in very small applications due to low efficiency,
power factor, and torque [30]. The main advantages of its use are its simple structure,
its operation at high speeds, resistance to high temperatures, low noise and self-starting
ability. Its application is quite limited in some special cases that require high speed such as
electric vehicles and high stagnation [157]. The combination of these challenges can lead
to unpredictable critical deformations of the rotor surface, resulting in a reduction of the
gap length and bringing about changes in inductances along the normal and vertical axes,
as well as torque oscillations. A not very common category of machines, but one that has
been the subject of much more research and has been developing in recent years, in the
category of machines using a magnetic counterpart, the Magnetically Geared Machines
(MGMs), involving structures shown in Figure 29. This type of motor is capable of either
increasing or decreasing the revolutions per minute in order to respond to different load
profiles, as in the case of mechanical gearboxes, but with physical isolation between rotating
components [158]. Some examples of Vernier machines are shown in Figure 30.
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Figure 30. Examples of Vernier machines: (a) Non-uniform FMP design; (b) Spoke-PM with double
stator; (c) Alternating flux barrier scheme; (d) Stator-PM in slot-opening; (e) Stator-PM inserted in
split tooth; (f) PM mounted on tooth surface; (g) Stator-PM inserted in teeth; (h) Assembly of a
modular PMVM [159].

The mechanical stresses and deformations under the influence of centrifugal forces
of the runner blades can be analyzed using a 2-D triangular mesh. The stress limits of the
tested materials can be based on manufacturer’s data and compared with the von Mises
stress calculation to check whether the laminations can withstand the stress developed by
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the radial forces [160]. The mass of the rotor and its ability to withstand centrifugal forces
at maximum speed conditions can be entered into an objective function of an appropriate
evolutionary optimization algorithm to obtain the preliminary geometry for the rotor
design. The electromagnetic behavior can then be investigated by the Finite Element
Method with a non-linear Discrete Image Solver in the Time Domain from the previously
generated mesh. Sources [155,161] refer to investigations on the effect of stresses on the
relative permeability of iron which have been carried out, respectively, for the stator side,
due to the tight assembly as a way of mounting the stator [162].

In relevant studies, a combined mechanical and electromagnetic analysis has been
adopted and specific techniques for the weak coupling of the interdependent phenomena
have been proposed. Various types of mechanical eccentricities with respect to rotor
positioning can cause severe damage and reduce its ability to rotate at higher speeds.
Therefore, advanced finite wavelet techniques have been developed that allow the detection
of such eccentricities [163]. A variable magnetic resistance rotor shaft operating under
high-speed conditions is studied in the source [164], together with some characteristics
related to the machine drive inverter.

6.2. Mechanical Analysis in Electrical Machines
6.2.1. Vernier Machines

The energy losses introduced by the use of a gearbox where a proper interface with
the electric motor is required and significant reliability issues [165], due to thermal and
mechanical stresses, reduce the lifetime of the motor, thus prompting the exploration of
possible alternative applications [166]. Vernier machines are a solution to this problem for
low power applications and high torque requirements with direct motor drive, since for a
given volume, some topologies can produce torque two-three times higher in comparison
to a conventional motor. The main reason that this type of electric motor has gained great
interest in the last two decades is due to their high torque density, which is made possible
by the magnetic gearing effect [167]. The possibility of increased torque production (+40%
on average compared to traditional permanent magnet machines) is due to the interaction
phenomena of the harmonic content of the rotor magnets with the harmonic content of the
groove coils [168].

Some of the applications where Vernier machines (shown in Figure 30) are encountered
include traction systems [169], linear permanent magnet vernier generators manufactured
to harness the energy of sea waves [170], wind turbines [171], rotary vehicle motors [172],
axial flux autofocus lenses with ring magnets [173] and linear generators without pis-
tons [174]. The characteristic of the machines is the transmission ratio which is defined as
the ratio of the number of pole pairs of the rotor to the number of the stator. The three basic
characteristics of a Vernier machine are the rotor design, the flux modulation poles (FMPs)
and the winding configuration of the machine.

6.2.2. Flux-Switching Electrical Motors

As in the case of the Vernier machines discussed above, permanent magnet variable
flux machines, (topologies shown in Figure 30) have been of increasing interest in recent
years, due to their numerous advantages such as high flux density due to flux concentration
phenomena, good management of the heat generated, and magnets that can be placed
in the stator with relative safety in terms of demagnetization and suitability for high-
speed applications. An important role is played by the appropriate design of the rotor
as an iron body without the limitations introduced by centrifugal forces in conventional
machines [175].

Compared to other machines (topologies shown in Figure 31) with magnets in the
stator, alternating flux machines have better torque and power density and more sine-
wave anti-EMF. Disadvantages include reduced space for windings in the stator grooves
due to space occupied by the magnets, the higher cost of using quantity of magnets and
manufacturing difficulties due to the particular stator configuration. They also exhibit a
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high torque ripple due to the structure double-printing structure and a high flux density
with the occurrence of saturation phenomena in the magnetic circuit [176].
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Figure 32 illustrates the operation of the machine as a generator. The operation as a
motor is based, like in the Vernier machine case, on the magnetic differential effect, which
is the equivalent of a mechanical gear, with the advantage of not having the wear and
tear that it suffers but with the disadvantage of increasing the cost. The aim is for a small
movement of the rotor to cause a large change in the magnetic flux and a high torque
output. The interaction of the magnets multiplies or divides, respectively, the number of
revolutions and the torque between the two rotating parts [177].
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6.2.3. Flux Reversal Electrical Motors

These machines have, like the variable flux machines, magnets in the stator. The
difference is that the magnets are located inside the teeth of the stator and, unlike other
machines with magnets in the stator, in this case we have a simpler and sturdier construction
with easy placement of the magnets and without reducing the space available for the
excitation winding in the slots. The flux, generated by a pair of permanent magnets on
a tooth of the FRM, is closed at the stator tooth and along the tooth, respectively, which
creates a variable flux connection. [178].

Figures 33 and 34 show how simple the rotor is and how complex the stator is for this
type of machine and, accordingly, their manufacturing process.
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6.2.4. Special Electrical Motors

Electrical motors with more than one stator or rotor appear in the literature. These
are variations of the main categories studied above and designed for specific applications
such as servo motors and universal electrical machines. Creating geometries with a more
curious than usual design offers some improvement in certain desirable characteristics
with the disadvantage of increasing complexity or degrading other features. Their main
difference is in their design geometry which offers some improvement in certain desired
functional characteristics [177].

In the work presented in [178], a machine is designed to increase the torque attributed
to the volume of magnets used to implement a gearless motor with high torque at low
speeds. The results showed the improvement of the average torque of the proposed
machine. The competitiveness of the vernier machine was validated using 2-D finite
element analysis under the same machine volume as that of the conventional machine.

In Vernier triple rotor axial-flux radial permanent magnet machines, (shown in
Figures 35 and 36), a common phenomenon in axial-flux machines that is the combina-
tion of more than one stator and rotor in order to increase the power and torque produced
with a smaller increase in the final volume of the machine and without the need to create
several designs is exploited. By appropriately summing a basic machine design two, three
or more times the torque and power requirements are achieved. The key feature of these
machines is to eliminate disadvantages of Vernier machines while providing high power
factor, high power and torque density, high copper utilization, and increased efficiency as a
consequence [179,180].



Energies 2024, 17, 538 33 of 47

Energies 2024, 17, x FOR PEER REVIEW 33 of 48 
 

 

 
Figure 34. Typical geometry flux reversal electrical motors [179]. 

6.2.4. Special Electrical Motors 
Electrical motors with more than one stator or rotor appear in the literature. These 

are variations of the main categories studied above and designed for specific applications 
such as servo motors and universal electrical machines. Creating geometries with a more 
curious than usual design offers some improvement in certain desirable characteristics 
with the disadvantage of increasing complexity or degrading other features. Their main 
difference is in their design geometry which offers some improvement in certain desired 
functional characteristics [177]. 

In the work presented in [178], a machine is designed to increase the torque attributed 
to the volume of magnets used to implement a gearless motor with high torque at low 
speeds. The results showed the improvement of the average torque of the proposed ma-
chine. The competitiveness of the vernier machine was validated using 2D finite element 
analysis under the same machine volume as that of the conventional machine. 

In Vernier triple rotor axial-flux radial permanent magnet machines, (shown in Fig-
ures 35 and 36), a common phenomenon in axial-flux machines that is the combination of 
more than one stator and rotor in order to increase the power and torque produced with 
a smaller increase in the final volume of the machine and without the need to create sev-
eral designs is exploited. By appropriately summing a basic machine design two, three or 
more times the torque and power requirements are achieved. The key feature of these 
machines is to eliminate disadvantages of Vernier machines while providing high power 
factor, high power and torque density, high copper utilization, and increased efficiency as 
a consequence [179,180]. 

 
(a)                (b) 

Figure 35. PMVM geometries of radial type with double air gap: (a) with iron body rotor; (b) without 
iron body rotor [181]. 

Figure 35. PMVM geometries of radial type with double air gap: (a) with iron body rotor; (b) without
iron body rotor [181].

Energies 2024, 17, x FOR PEER REVIEW 34 of 48 
 

 

 
Figure 36. Triple rotor axial flux Vernier machine configuration [182]. 

Also, in the work presented in [183] an example of comparison and implementation 
of two motor rotor designs for an automotive application using ferrites is given. The in-
vestigation focused on the use of the non-magnetic material in order to achieve a reduction 
in demagnetization and an increase in magnetic drag torque. The check of demagnetiza-
tion, mechanical strength, torque ripple with and without a load, as shown in Figure 37, 
shows that the proposed solution using rare earth free magnets is feasible in real applica-
tion. 

 
Figure 37. Comparison of the two types A and B in demagnetization effects in magnets and mechan-
ical stress in the rotor [183]. 

6.3. Case Study Using Basic 2-D Mechanical Analysis 
To investigate the effects of rotor deformation due to centrifugal forces, a mechanical 

static model has been created which is weakly coupled to a nonlinear internal PM ma-
chine. The deformations of the outer rays of the rotor are estimated in a first step using 
the structural solver and then entered into the electromagnetic solver. There is a signifi-
cant impact on the mechanical deformation of the runner which is due to the different V-
shaped angles. The higher the maximum deformation, it imposes corresponding mechan-
ical stresses on the magnetic bridges [184]. 

The mapping of the variables of the V vector to the curvatures in the rotor cases is 
shown in Figure 38 where the geometry of the motor studied is illustrated. It is worth 
noting that in the structural analysis model only half of a pole section needs to be drawn, 
whereas in the electromagnetic model it is necessary to consider a pole section of the rotor 
geometry. The geometry of the rotor is limited to only one pole, its partitioning is per-
formed by finite element analysis (shown Figure 39), with meshing dense enough to ob-
tain reliable results without excessive use of computational resources and the consequent 
requirement for large computational time.  

Figure 36. Triple rotor axial flux Vernier machine configuration [182].

Also, in the work presented in [183] an example of comparison and implementation
of two motor rotor designs for an automotive application using ferrites is given. The
investigation focused on the use of the non-magnetic material in order to achieve a reduction
in demagnetization and an increase in magnetic drag torque. The check of demagnetization,
mechanical strength, torque ripple with and without a load, as shown in Figure 37, shows
that the proposed solution using rare earth free magnets is feasible in real application.
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6.3. Case Study Using Basic 2-D Mechanical Analysis

To investigate the effects of rotor deformation due to centrifugal forces, a mechanical
static model has been created which is weakly coupled to a nonlinear internal PM machine.
The deformations of the outer rays of the rotor are estimated in a first step using the
structural solver and then entered into the electromagnetic solver. There is a significant
impact on the mechanical deformation of the runner which is due to the different V-shaped
angles. The higher the maximum deformation, it imposes corresponding mechanical
stresses on the magnetic bridges [184].
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The mapping of the variables of the V vector to the curvatures in the rotor cases is
shown in Figure 38 where the geometry of the motor studied is illustrated. It is worth
noting that in the structural analysis model only half of a pole section needs to be drawn,
whereas in the electromagnetic model it is necessary to consider a pole section of the rotor
geometry. The geometry of the rotor is limited to only one pole, its partitioning is performed
by finite element analysis (shown Figure 39), with meshing dense enough to obtain reliable
results without excessive use of computational resources and the consequent requirement
for large computational time.
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6.3.1. Formulation of the 2-D Model for Mechanical Analysis

The structural analysis is carried out by developing a mechanical static solver in
order to examine 2-D plane stresses in isotropic materials. According to the proposed
methodology, which was based on the Constant Stress Triangle (CST) concept, the matri-
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ces representing the Elasticity (D) and the mechanical stresses are derived by using the
following equations:

[D] =
E

(1 − v2)

1 ν 0
ν 1 0
0 0 (1−ν)

2

 (14)

εx =
dN1

dx
u1 +

dN2

dx
u2 +

dN3

dx
u3 (15)

εy =
dN1

dy
v1 +

dN2

dy
v2 +

dN3

dy
v3 (16)

Yxy =
dN1

dy
u1 +

dN1

dx
v1 +

dN2

dy
u2 +

dN2

dx
v2 +

dN3

dy
u3 +

dN3

dx
v3 (17)

σ =
[
σxx σyy σxy]

T (18)

ε =
[
εxx εyyεxy]

T (19)

σ = [D]ε (20)

where, E is the Young modulus, ν is Poisson ratio, εx, εy and Yxy is denote mechanical
strains, while ε is the deformation matrix. The ith node coordinate function Ni and respective
displacements ui, vi are indicated in Figure 40.
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This model can also support boundary conditions for the air gap slip zone. Such a
boundary condition allows avoiding the redesign of the geometry during rotor rotation.
The nodes on both the stator side and the rotor side are kept stationary and a zone in
the air gap guarantees the inclusion of the motion. This technique constitutes a practical
alternative solution for taking into account the rotating mesh in the air gap, compared to
analytical solutions of specific elements. In addition, the specific weakly coupled mechani-
cal 2-D electromagnetic finite element model can represent permanent magnet materials by
determining appropriate values of residual magnetization Br and relative permeability.

The geometry shown in Figures 41 and 42 has a thin section that holds the iron section
in front of the magnet and iron-bridge positions that connects one pair of poles to the
adjacent one in order to limit magnetic scattering in the iron body. It appears that at
3000 rpm for this geometry the maximum stress is 27 MPa with a fracture limit of this type
of iron is 470 MPa.
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6.3.2. Formulation of the 2-D Model for Electromagnetic Analysis

The proposed electromagnetic nonlinear weakly coupled mechanical 2-D electro-
magnetic finite element model has been developed to work with 2-D triangular grids,
considering a given single BH function of the initial magnetization curve that contains
nonlinear relative permeability characteristics in each element. The application of the
Newton–Raphson algorithm allows accelerating the convergence towards the solution
shown in Figure 43.
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6.3.3. Optimization of Rotor Mass and Leakage Flux

Mechanical optimization is performed by developing a certain evolutionary algorithm
that optimizes an appropriate objective function. In particular, a genetic algorithm (GA) of
1000 generations with a population size of 100 each is employed. The specific population
size ensures, the detection of the total minimum of the cost function for this application,
which also converges to 800 generations approximately. With the application of this
algorithm, a better convergence of values is achieved, while the parallel application on
a computer system can provide a great reduction in computing time. In the case of the
considered machine, a variation of the order of a few percent in torque can be obtained
under nominal operating conditions at 15,000 rpm. The exploration is designed in such
a way that we set boundary values of the optimization variables, so that the genetic
algorithm knows what boundaries it will fall within in order to make the search for the
optimal solution faster. The use of the algorithm to optimize the rotor characteristics and
the curvature at the tips of the magnets sleeves can lead to a significant improvement in
the electromagnetic characteristics as shown in Figure 44 without any risk of mechanical
resistance. In addition, by placing auxiliary magnet retaining brackets on the top side of
the magnets it helps to strengthen the rotor at higher speeds.
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6.3.4. Spatial Harmonics in the Air Gap

Observed differences in the spatial distribution of the flux density and the correspond-
ing harmonics can lead to different iron losses caused by the slot harmonics. The proposed
method uses the geometric distortion of the rotor near the gap [185]. This particular type
of coupling between electromagnetic and mechanical phenomena results in a reliable nu-
merical method in terms of numerical stability-convergence issues. In general, a large
part of the losses of a modern electric motor is due to harmonic losses. By applying an
optimized model to visualize and calculate the harmonic iron losses in a IPMSM. The main
conclusions are related to harmonic currents and voltage along with saturation and cross-
saturation occurrence phenomena. The proposed harmonic dq model includes a harmonic
iron loss resistor to calculate the losses at different speeds and loads. The determination of
all the above elements highlighted both the accuracy of the model and the more detailed
representation of results compared to other conventional loss minimization and maximum
torque per ampere techniques [186].

Rotor deflection in high-speed regions is critical and must be taken into account at
the design stage in order to avoid exceeding the maximum allowable leakage limit and
compromising the reliability of the motor. Particular attention should be paid in the analysis
to the effect of the rotor radius on critical parameters such as air friction losses, rotor and
stator heating [187]. In addition, in cases where the mechanical strength of the rotor is not
properly ordered by reducing the tensile strength relative to the compressive strength [188],
the reduction of its mass can lead to deformations that cause unmeasurable changes in
the operating characteristics of the machine. This analysis introduced a methodology to
analyze the effects of non-uniform gap deformation, on the characteristics of the permanent
magnet motor, due to rotor deformations under high-speed conditions. This technique is
based on the weak coupling between mechanical and electromagnetic analysis. It allows
a detailed examination of the variations in the harmonics of the spatial flux density, the
entangled flux of the stator windings and the electromagnetic torque ripples. It was applied
to a machine with internal magnets in a V-type configuration [189].

Based on the harmonic analysis shown in Figures 45 and 46, respectively, an increase
in torque after optimization by 20.9% can be observed. Therefore, the dimensions of
the machine can be reduced, namely its length by 20% in order to obtain the required
torque. The advantage of the proposed method is based on the particular weak coupling
adopted to study the interdependent phenomena in this way there is no need to use very
powerful computational tools, while its integration into permanent magnet motor design
optimization procedures is relatively simple. Consequently, great services can be offered
to the designer in terms of high reliability and detailed determination of the variations in
operating characteristics at high speeds. By reducing the bridge at the ends of the rotor
over the magnets causes a reduction in the scattering flux and an increase in the torque of
the motor as shown in Figure 47.
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7. Conclusions

The main conclusions drawn from this literature survey concern the already assessed
permanent magnet motor dominant role in low power applications, which is actually
extended to modern greater power implementations favoring higher speed operation;
however, permanent magnet material characteristics present significant variations when
operating under harsh conditions and are affected both by temperature rise and mechanical
stresses. In that respect, demagnetization risks are increased and detailed loss handling
has to be considered at the design stage. Consequently, it is necessary to account for the
losses in permanent magnets due to high frequency effects caused by space harmonics
in case of high rotor rotation speeds as well as by higher harmonic content of converter
supplies. Appropriate methodologies have already been developed for analysis of the
respective machine operating characteristics, including detailed representation of harmonic
losses in the permanent magnets and the surrounding ferromagnetic laminated magnetic
circuits, as well as combined consideration of the electromagnetic, thermal, and mechanical
phenomena involved. Respective accurate simulations can be achieved by appropriate
weak coupling techniques using methodologies based on the finite element method. It may
be noted that the appropriate permanent magnet material implementation plays a key role
in each application, as Neodymium-Iron-Boron alloys, exhibiting higher remanence values,
suffer from significant decrease of magnetization with temperature rise, with respect to
Samarium–Cobalt alloy rivals, presenting lower saturation magnetization but presenting
much better temperature rise withstand. In particular applications, suitable combinations
of different types of permanent magnet materials may provide effective configuration
solutions. Finally, appropriate coupled two-dimensional finite element—equivalent circuit
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equation techniques enable consideration of edge effects in permanent magnet machines by
means of reduced computational means, facilitating integration in geometry optimization
algorithms, and efficient motor design methodologies development.
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