
Citation: Gao, X.; Zhang, X. Robust

Collaborative Scheduling Strategy for

Multi-Microgrids of Renewable

Energy Based on a Non-Cooperative

Game and Profit Allocation

Mechanism. Energies 2024, 17, 519.

https://doi.org/10.3390/en17020519

Academic Editors: Yun-Su Kim and

Tek Tjing Lie

Received: 19 October 2023

Revised: 11 January 2024

Accepted: 12 January 2024

Published: 21 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Robust Collaborative Scheduling Strategy for Multi-Microgrids
of Renewable Energy Based on a Non-Cooperative Game and
Profit Allocation Mechanism
Xiedong Gao and Xinyan Zhang *

School of Electrical Engineering, Xinjiang University, Urumqi 830017, China; 107552104049@stu.xju.edu.cn
* Correspondence: xjuzhangxy@xju.edu.cn

Abstract: The Multiple Microgrid System (MMG) facilitates synergistic complementarity among
various energy sources, reduces carbon emissions, and promotes the integration of renewable energy
generation. In this context, we propose a two-stage robust cooperative scheduling model for MMGs
based on non-cooperative game theory and a benefit allocation mechanism. In the first stage,
considering electricity price fluctuations and uncertainties in wind and solar power outputs, a robust
optimization approach is applied to establish an electric energy management model for MMGs. This
model enables point-to-point energy sharing among microgrids. In the second stage, addressing the
benefit allocation problem for shared electric energy, we introduce a Cost Reduction Ratio Distribution
(CRRD) model based on non-cooperative game theory. The generalized Nash equilibrium is utilized
to determine the benefit distribution for shared electric energy. Finally, through case studies, the
proposed model is validated, ensuring fair returns for each microgrid. The results indicate that the
proposed model optimizes the operational states of individual microgrids, reduces operational costs
for each microgrid, and lowers the overall total operational costs of the MMG system. Additionally, an
investigation is conducted into the impact of electricity price uncertainty coefficients and confidence
levels of wind and solar uncertainties on the operational costs of microgrids.

Keywords: microgrids; renewable energy; electricity price fluctuations; non-cooperative game; profit
allocation mechanism; electricity sharing; Nash equilibrium; robust optimization

1. Introduction
1.1. The Motivation of the Paper

In the context of an increasingly evident global energy crisis, microgrids are considered
a key strategic initiative to address energy challenges. This study aims to enhance energy
utilization efficiency through optimized scheduling and electric energy sharing among
multiple microgrids. In this paper, the superiority of each microgrid is demonstrated
by maintaining independent operational loads while concurrently reducing the overall
operational costs of the entire microgrid system.

1.2. Description of the Background and Research Gaps

As microgrid technology continues to advance, the emergence of multiple adjacent
microgrids within the same distribution area forms a Multiple Microgrid System. These
systems possess flexibility and sustainability advantages, adapting well to varying energy
demands and changing energy supply conditions. When a microgrid system includes
electric loads, heating loads, and cooling loads, it constitutes a Combined Cooling, Heating,
and Power (CCHP) microgrid system, enhancing the overall efficiency of multi-energy us-
age. The literature [1] has proposed a scheduling optimization model for CCHP microgrids,
although the game relationship between microgrids and loads has not been taken into
account. Although [2] introduced a non-cooperative game-based optimization model for
CCHP microgrids, demonstrating the existence of the Nash equilibrium in non-cooperative
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games, there is a lack of consideration for uncertainties within the microgrid system. In ad-
dressing system uncertainties, ref. [3] proposed a predictive control dynamic optimization
strategy. There is a deficiency in contemplating planning and design methods. Furthermore,
ref. [4] presented a dual-level planning design for determining microgrid device types and
capacities. The impact of electricity price mechanisms on market demand has not been
considered. Finally, ref. [5] introduced a non-cooperative game optimization model for
CCHP-based multi-districts, considering the impact of dynamic electricity pricing mech-
anisms on market demand. There is a lack of research on point-to-point electric energy
sharing among multiple microgrids.

Energy interactions among multiple microgrids often involve electric energy sharing.
Sharing electric energy enhances the integration of new energy sources, mitigates wind
and solar energy curtailment, and improves the efficiency of various energy sources. In [6],
considering the uncertainty of new energy output, a regional MMG distribution network
energy trading model was proposed to minimize the overall operating cost of the MMG
system. The interests of individual microgrids have not been taken into account. For
regional MMGs, ref. [7] developed an optimization scheduling model considering both
economic and comprehensive energy efficiency, aiming to improve the economic efficiency
of the MMG system while ensuring a certain level of comprehensive energy efficiency. There
is a deficiency in considering the economic viability of individual microgrids. Establishing
a shared energy medium through a public energy storage station, ref. [8] demonstrated
effective enhancement of energy usage efficiency, facilitating renewable energy integration
and reducing the operating costs of MMG systems. Optimizing the multi-microgrid system
as a collective entity overlooks the interrelations among individual microgrids, preventing
the assurance that each microgrid benefits within the multi-microgrid system as a whole.

Currently, energy-sharing management modeling is categorized into single-stage
and two-stage models. Single-stage energy-sharing management models predominantly
focus on the global energy management of multiple microgrids [9,10]. The scheduling
and settlement of individual microgrid dispatches and sharing are not sufficiently clear.
Two-stage models typically optimize the energy sharing of multiple microgrids in the
first stage, akin to single-stage models. In the second stage, settlement is performed for
the optimal energy sharing determined in the first stage, considering the costs of energy
sharing [11–15]. The earliest use of a two-stage energy-sharing management model is
presented in [12]. Refs. [13,14] introduced power flow considerations into two-stage energy
management modeling, enhancing microgrid safety and reliability. The settlement of
energy-sharing costs in the second stage often employs non-cooperative game models to
determine Nash equilibrium points [13–16]. The above-mentioned literature predominantly
focuses on deterministic optimization models, with limited consideration for uncertainties
in renewable energy output and minimal contemplation of the impact of electricity price
fluctuations on electric energy sharing management.

1.3. Contributions of the Paper

In this context, this paper focuses on the study of electric energy-sharing transactions
in microgrids and constructs a two-stage robust collaborative scheduling model for multi-
ple microgrids based on non-cooperative game theory and profit allocation mechanisms.
In the first stage, robust optimization is applied to address electricity price fluctuations
and uncertainties in wind and solar power output. This establishes an electric energy man-
agement model for multiple microgrids, facilitating point-to-point energy sharing among
individual microgrids. An analysis comparing the operational conditions of microgrids
before and after electric energy sharing is conducted. In the second stage, addressing the
clearance and settlement of shared electric energy, a Cost Reduction Ratio (CRR) model
based on non-cooperative game theory is formulated. The generalized Nash equilibrium is
utilized to determine the clearance and settlement of shared electric energy. Considering
the interdependence and mutual influence of electric energy-sharing payments, this model
ensures fairness in determining electric energy-sharing payments. This means that each
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microgrid can achieve the maximum cost reduction, and the cost reduction is as close as
possible to the ideal situation. This model not only ensures the benefits of each microgrid
within the model but also reduces the overall operating costs of the MMG system. The
first-stage problem is solved using the Column and Constraint Generation (C&CG) method,
while the second-stage problem is addressed using the Alternating Direction Method
of Multipliers (ADMM). Finally, through case studies, the proposed model is validated,
ensuring fair returns for each microgrid. The results indicate that the proposed model
optimizes the operational states of individual microgrids, reduces operational costs for each
microgrid, and lowers the overall total operational costs of the MMG system. Additionally,
an investigation is conducted into the impact of electricity price uncertainty coefficients and
confidence levels of wind and solar uncertainties on the operational costs of microgrids.

2. Multi-Microgrid Operational Architecture

Figure 1 illustrates the framework for electric energy-sharing transactions and energy
management in a multi-microgrid setting. Each microgrid comprises various components,
including renewable energy sources, electric storage (ES), thermal storage (TS), and four
types of energy conversion devices: a ground-source heat pump (HP), gas turbine (GT),
absorption cooler (AC), and electric cooler (EC). Photovoltaic (PV) and wind turbine
(WT) units, as depicted in Figure 1, fall under the category of renewable energy sources.
The load demands from internal end-users encompass electric loads, heating loads, and
cooling loads.
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Figure 1. Multi-microgrid power sharing and energy management framework.

Assuming each microgrid can engage in the buying and selling of electric energy
with the main power grid and purchase natural gas from the main natural gas network,
microgrids are interconnected through power interconnection lines, enabling real-time
point-to-point sharing of electric energy transactions. A set of multiple microgrids is
defined as ΩN = {1, 2, · · · , N}, N microgrids. Simultaneously, the optimization periods are
defined as ΩT = {1, 2, · · · , T}, where the optimization period spans 24 h, and optimization
is conducted every hour. Therefore, T = 24.

3. Optimization Scheduling and Trading Model for Multi-Microgrid Systems
3.1. Scheduling Model for Multi-Microgrid Systems

Gas Turbine (GT) Model [17]:

PGT
i,t = ηe

GTδgGGT
i,t (1)

HGT
i,t = ηh

GTδgGGT
i,t (2)
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0 ⩽ PGT
i,t ⩽ PGT,max

i,t (3)

0 ⩽ HGT
i,t ⩽ HGT,max

i,t (4)

where: GGT
i,t is the amount of natural gas consumed by microgrid I for GT operation in

period t; PGT
i,t and HGT

i,t are the electric and thermal outputs of microgrid I from GT operation
in period t; ηe

GT and ηh
GT are the efficiencies of GT in converting to electric and thermal

energy for microgrid I in period t; δg is the heating value of natural gas; PGT,max
i,t and

HGT,max
i,t are the maximum electric and thermal outputs of GT for microgrid I in period t.

Ground Source Heat Pump (HP) Model [17]:

HHP
i,t = ηHPPHP

i,t (5)

0 ⩽ HHP
i,t ⩽ HHP,max

i,t (6)

where: HHP
i,t is the thermal output of microgrid I from HP operation in period t; ηHP is

the electric to the thermal conversion efficiency of HP for microgrid I in period t; PHP
i,t is

the electric power consumed by microgrid I for HP operation in period t; HHP,max
i,t is the

maximum electric power for HP operation for microgrid I in period t.
Electric Cooler (EC) Model [17]:

CEC
i,t = ηECPEC

i,t (7)

0 ⩽ CEC
i,t ⩽ CEC,max

i,t (8)

where: CEC
i,t is the cooling output of microgrid I from EC operation in period t; ηEC is the

electric to cooling conversion efficiency of EC for microgrid I in period t; PEC
i,t is the electric

power consumed by microgrid I for EC operation in period t; CEC,max
i,t is the maximum

electric power for EC operation for microgrid I in period t.
Absorption Cooler (AC) Model [17]:

CAC
i,t = ηACHAC

i,t (9)

0 ⩽ CAC
i,t ⩽ CAC,max

i,t (10)

where: CAC
i,t is the cooling output of microgrid I from AC operation in period t; ηAC is

the thermal to cooling conversion efficiency of AC for microgrid I in period t; HAC
i,t is

the thermal power consumed by microgrid I for AC operation in period t; CAC,max
i,t is the

maximum thermal power for AC operation for microgrid I in period t.
Energy Storage Device Model [17]:
Energy storage devices include Thermal Storage (TS) and Electric Storage (ES). Since

the models for thermal and electric energy storage devices are similar, we will illustrate the
model using the example of an electric energy storage device.

Storing excess electric energy in the electric storage device and releasing electric energy
when the generated energy is insufficient to meet the electric load is modeled as follows:

SES
i,t = SES

i,t−1 +

(
ηES

stoPES,sto
i,t −

PES,rel
i,t

ηES
rel

)
∆t (11)

γES
minSES,max

i ⩽ SES
i,t ⩽ γES

maxSES,max
i (12)

SES
i,0 = SES

i,T (13)

0 ⩽ PES,sto
i,t ⩽ BES,sto

i,t PES,sto,max
i,t (14)
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0 ⩽ PES,rel
i,t ⩽ BES,rel

i,t PES,rel,max
i,t (15)

BES,sto
i,t + BES,rel

i,t ⩽ 1 (16)

where: SES
i,t represents the current capacity value of microgrid i’s electric storage device

in period t; ηES
sto and ηES

rel are the efficiencies of the electric storage device for charging and
discharging in period t; PES,sto

i,t and PES,rel
i,t are the charging and discharging powers of

microgrid i’s electric storage device in period t; γES
max and γES

min are the minimum and maxi-
mum states of the charge ratios of microgrid i’s electric storage device; SES,max

i represents
the total capacity of microgrid i’s electric storage device; SES

i,0 and SES
i,T represent the initial

and final stored electric energy in microgrid i’s electric storage device for a day, as electric
storage devices operate in a cyclical manner over a day; BES,sto

i,t and BES,rel
i,t are auxiliary

binary variables representing the charging and discharging states of microgrid i’s electric
storage device in period t, and these states are mutually exclusive; PES,sto,max

i,t and PES,rel,max
i,t

are the maximum charging and discharging powers of microgrid i’s electric storage device
in period t.

Load Side Model [17]:
The user-side load of a microgrid includes the electrical load, thermal load, and

cooling load. The electrical load can be divided into two categories: fixed load and
transferable load. Users participate in demand response within the microgrid by adjusting
their transferable load.

Fixed Load: These loads are considered crucial as they cannot be transferred. They cannot
participate in any demand response programs and need to be serviced by the microgrid.

Transferable Load: These loads are controllable and can be shifted from one time
interval to another but cannot be reduced. They can only participate in price-based demand
response programs.

The price-based demand response plan for electric loads involves transferring trans-
ferable loads out of the microgrid during periods of high grid electricity prices and moving
these loads back to the microgrid during periods of lower grid electricity prices. The sum
of the transferred transferable loads at each moment should be equal to the sum of the
received transferable loads at each moment. This approach aims to reduce users’ electricity
costs and alleviate energy supply pressure during peak demand periods. A price-based
demand response indirectly influences thermal and cooling loads through various energy
conversion devices, as illustrated in Figure 1.

The model is described as follows:

Le
i,t = Le,0

i,t + Ptran,in
i,t + Ptran,out

i,t (17)

0 ⩽ Ptran,in
i,t ⩽ Btran,in

i,t βtran,in
i Le,0

i,t

0 ⩽ Ptran,out
i,t ⩽ Btran,out

i,t βtran,out
i Le,0

i,t

Btran,in
i,t + Btran,out

i,t ⩽ 1
24
∑

t=1
Ptran,in

i,t =
24
∑

t=1
Ptran,out

i,t

(18)

Ctran
i =

24

∑
t=1

Ptran,out
i,t λsell

e,t −
24

∑
t=1

Ptran,in
i,t λsell

e,t (19)

where: Le,0
i,t is the initial electric load demand of microgrid I in period t; Le

i,t is the electric

load demand of microgrid I after load demand response in period t; Ptran,in
i,t represents

the electric load transferred into microgrid i at time t; Ptran,out
i,t represents the electric load

transferred out of microgrid i at time t; Btran,in
i,t and Btran,out

i,t are auxiliary binary variables
representing the transfer-in and transfer-out states of electric loads in microgrid i during
time interval t, and the states of transferring in and out are mutually exclusive; βtran,in

i
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is the coefficient representing the proportion of transferred-in electric load in microgrid
i within the initial load at time t; βtran,out

i is the coefficient representing the proportion
of the transferred-out electric load in microgrid i within the initial load at time t; in this
paper, βtran,in

i and βtran,out
i are both set to 15%; Ctran

i represents the cost reduction of the
price-based demand response for electric loads in microgrid i; λsell

e,t represents the electricity
purchase price from the main grid for microgrid i at time t.

3.2. Multi-Microgrid Electric Energy Trading Model
3.2.1. Electric Energy Trading Model between Microgrids and the Main Power Grid

Each microgrid purchases electric energy from the main power grid when there is an
electricity deficit and sells excess electric energy to the main power grid when there is a
surplus. The cost for a microgrid to purchase electric energy from the main power grid is
defined as follows [18]:

Cgrid
i =

24

∑
t=1

∆t(λbuy
e,t Pgrid,buy

i,t − λsell
e,t Pgrid,sell

i,t ) + Cpunish
i (20)

where: Cgrid
i is the cost for microgrid I to purchase electric energy from the main power grid;

λ
buy
e,t and λsell

e,t are the buying and selling prices, respectively, of electric energy between

microgrid I and the main power grid in period t; Pgrid,buy
i,t and Pgrid,sell

i,t are the buying and
selling electric power, respectively, between microgrid I and the main power grid in period
t; Cpunish

i is the penalty cost for electricity price uncertainty, which will be explained in
Section 3.2.

Transactions between microgrid I and the main power grid must adhere to the follow-
ing constraints:

0 ≤ Pgrid,buy
i,t ≤ Pgrid,max

i (21)

0 ≤ Pgrid,sell
i,t ≤ Pgrid,max

i (22)

where: Pgrid,max
i is the maximum buying or selling electric power capacity for microgrid I

in transactions with the main power grid.

3.2.2. Electric Energy Trading Model between Microgrids

Microgrids achieve point-to-point electric energy sharing through power intercon-
nection lines. In period t, the electric energy sharing between microgrids must satisfy the
following [18]:

Ps
ij,e,t + Ps

ji,e,t = 0 (23)

Ps,min
ij,e ⩽ Ps

ij,e,t ⩽ Ps,max
ij,e (24)

λs
ij,e = λs

ji,e (25)

where: Ps
ij,e,t represents the electric quantity purchased by microgrid i from microgrid

j in period t; λs
ij,e represents the unit price for the shared electric energy transactions

between microgrid i and microgrid j, and it satisfies Price λs
ij,e > 0; Ps,min

ij,e and Ps,max
ij,e

represent the minimum and maximum hourly shared electric energy between microgrid
i and microgrid j, respectively.

Therefore, the total cost of shared electric energy for microgrid I can be expressed as:

Cs
i = ∑

j∈ΩN ,j ̸=i
λs

ij,e,t

24

∑
t=1

Ps
ij,e,t∆t (26)
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Due to Equations (23) and (25), the sum of the costs of shared electric energy for each
microgrid system is zero:

N

∑
i=1

Cs
i = 0 (27)

4. System Fluctuations Due to the Uncertainty Model
4.1. Uncertainty Model for Wind and Solar Power

To address the uncertainty in wind and solar power outputs, a robust approach is
employed. By solving the decision variables {pk}, the goal is to find the worst-case proba-
bility distribution for K discrete scenarios. This process enables obtaining the maximum
expected cost.

Cinside
i = max

{pk}∈Ω

K

∑
k=1

pkmin
(

Cgas
i + Cdr

i + Cope
i

)
(28)

where: Cinside
i is the cost of internal operations for microgrid I; Ω is the feasible domain of

real-time operational scenarios; pk is the probability value for each discrete scenario; Cgas
i is

the cost of purchasing natural gas for microgrid I; Cdr
i is the cost of demand response for

microgrid; Cope
i is the cost of operation and maintenance for the equipment of microgrid I.

Cgas
i =

24

∑
t=1

λ
buy
gas GGT

i,t (29)

where: λ
buy
gas is the purchase price of natural gas; GGT

i,t is the amount of natural gas consumed
by microgrid I for GT operation in period t.

Cdr
i =

24

∑
t=1

φtran∣∣Ptran
i,t
∣∣ (30)

where: φtran is the price compensation coefficient for transferring the electric load.

Cope
i =

24

∑
i=1

[mGTPGT
i,t + mHP HHP

i,t + mECCEC
i,t + mACCAC

i,t + mES
(

PES,sto
i,t + PES,rel

i,t

)
+ mHS

(
HHS,sto

i,t + HHS,rel
i,t

)
+ mPVPPV

i,t + mWTPWT
i,t ] (31)

where mGT mHP mEC mAC mES mHS mPV mWT are the equipment operation and mainte-
nance costs for GT, HP, EC, AC, ES, HS, PV, and WT, respectively.

In the solving process, it is necessary to find the probability distribution values for
discrete scenarios that maximize the expected objective function. To ensure that the obtained
probability distribution values are as close as possible to the actual data, a combined norm
of 1-norm and ∞-norm is used to constrain the probability distribution values for discrete
wind power and photovoltaic power scenarios [19]. The corresponding feasible domains
are denoted as Ω1 and Ω∞. This ensures that the obtained probability distribution values
reasonably match real-world situations.

Ω =


{pk}

∣∣∣∣∣∣∣∣∣∣∣∣∣

pk ⩾ 0, k = 1, 2, · · · , K
K
∑

k=1
pk = 1

K
∑

K=1

∣∣pk − p0
k

∣∣ ⩽ θ1

max
1⩽k⩽K

∣∣pk − p0
k

∣∣ ⩽ θ∞


(32)

The above formula represents the initial probability value for the k-th discrete sce-

nario obtained from actual operational data;
K
∑

K=1

∣∣pk − p0
k

∣∣ ⩽ θ1 and max
1⩽k⩽K

∣∣pk − p0
k

∣∣ ⩽ θ∞

represent the 1-norm and ∞-norm constraint conditions, respectively, and θ1 and θ∞ rep-
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resent the maximum allowable deviations under the worst-case robust conditions, as per
the constraints.

According to references [20,21], the confidence levels constrain the probability distri-
bution of discrete scenarios:

Pr
{

K
∑

k=1
|pk − p0

k |⩽ θ1

}
⩾ 1 − 2Ke−

2Mθ1
K

Pr
{

max
1⩽k⩽K

| pk − p0
k |⩽ θn

}
⩾ 1 − 2Ke−2Mθ∞

(33)

Letting the right-hand side of the inequalities be confidence levels α1 and α∞, respec-
tively, Equation (33) can be transformed into Equation (34):

Pr
{

K
∑

k=1
|pk − p0

k |⩽ θ1

}
⩾ α1

Pr
{

max
1⩽k⩽K

| pk − ρ0
k |⩽ θn

}
⩾ α∞

(34)

From Equations (33) and (34), Equation (35) is derived:{
θ1 = K

2M ln 2K
1−α1

θ∞ = 1
2M ln 2K

1−α∞

(35)

4.2. Electricity Price Uncertainty Model

The electricity market significantly influences the decisions of microgrids. However,
accurately obtaining the distribution of electricity prices is a challenging task due to the
complexity of the market. In such cases, robust optimization methods can be employed to
describe the uncertainty brought about by electricity price fluctuations [22].

Cpunish
i = max ∑{k|k⊆T,|k|≤δ}

t∈k ε|Pi,t,total| (36)

To handle the uncertainty brought about by electricity price fluctuations, a penalty cost
is introduced and denoted as a penalty Cpunish

i . Additionally, a price deviation coefficient ε
is introduced, δ representing the degree of uncertainty for microgrid I. A larger numerical
value indicates more periods of electricity price uncertainty. When δ is 0, it signifies that
the microgrid does not consider electricity price fluctuations. When δ is 24, it means
that uncertainty in electricity prices is considered at every moment. Here, T represents
the number of periods in the scheduling cycle, and the range of k is [0, T]. The penalty
term ε|Pi,t,total| is activated only during periods of electricity price uncertainty, limited by
|k| ≤ δ , t ∈ k.

Considering electricity price uncertainty, the overall objective is to determine the
optimal collaborative operation strategy for microgrids, minimizing the total operational
cost. The objective involves a min-max formulation, utilizing robust optimization to address
electricity price uncertainty. The goal is to identify the worst-case scenario for electricity
prices, as generated by Equation (36). To simplify computations, auxiliary variables Zi,t are
introduced, transforming the penalty term for price deviation into the following form:

max∑
t∈T

ε|Pi,t,total|Zi,t (37)

∑
t∈T

Zi,t ≤ δi, ∀i ∈ N : αi (38)

0 ≤ Zi,t ≤ 1, ∀t ∈ T, ∀i ∈ N : βi,t (39)

In these equations, δi represents the electricity price uncertainty parameter for each
microgrid, and αi and βi,t are the dual variables for Equations (38) and (39), respectively. Ac-
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cording to the strong duality theory, Equations (37)–(39) are transformed into the following
minimization problem:

min

(
T

∑
t=1

βi,t + αiδi

)
(40)

αi + βi,t ≥ εyi,t, ∀t ∈ T, ∀i ∈ N (41)

αi ≥ 0, ∀i ∈ N (42)

βi,t ≥ 0, ∀t ∈ T, ∀i ∈ N (43)

yi,t ≥ 0, ∀t ∈ T, ∀i ∈ N (44)

−yi,t ≤ Pi,t,total ≤ yi,t, ∀t ∈ T, ∀i ∈ N (45)

In these formulations, the introduction of an auxiliary variable yi,t serves to linearize
the minimization problem. This transformation changes the objective function’s form from
a Min-Max problem to a Min-Min problem.

5. Distributed Collaborative Energy Management for Multiple Microgrids
5.1. Phase 1: Energy Management Model for Multiple Microgrids
5.1.1. Microgrid Model without Considering Electricity Sharing

In the scenario where electricity sharing between microgrids is not considered, and
for each microgrid I, the following electrical, thermal, and cooling load balance constraints
must be satisfied:

Pgrid,buy
i,t + PGT

i,t + PPV
i,t + PWT

i,t + PES,rel
i,t = Le

i,t + Pgrid,sell
i,t + PHP

i,t + PEC
i,t + PES,sto

i,t (46)

HGT
i,t + HHP

i,t + HHS,rel
i,t = Lh

i,t + HAC
i,t + HHS,sto

i,t (47)

CAC
i,t + CEC

i,t = Lc
i,t (48)

where Le
i,t, Le

i,t, and Le
i,t are the electrical, thermal, and cooling loads for microgrid I at time

t; Additionally, PPV
i,t and PWT

i,t denote the predicted output of renewable energy sources
(photovoltaic and wind power) for microgrid I at time t.

In this case, the energy management model for microgrid i is represented as:

minCNC
i = min

(
Cgrid

i + Cinside
i

)
(49)

where CNC
i is the operational cost for microgrid I without considering electricity sharing.

5.1.2. Microgrid Model Considering Electricity Sharing in Multiple Microgrids

As discussed in Section 3.2.2 of this paper, when considering electricity sharing be-
tween microgrids, the electrical load balance Equation (46) for microgrid I will include the
electricity sharing term Ps

ij,e,t. Thus, for microgrid I involved in the set ΩN during period t,
the power balance constraint considering electricity sharing is given by:

Pgrid,buy
i,t + PGT

i,t + PPV
i,t + PWT

i,t + PES,rel
i,t + ∑

j∈ΩN ,j ̸=i
Ps

ij,e,t = Le
i,t + Pgrid,sell

i,t + PHP
i,t + PEC

i,t + PES,sto
i,t (50)

As per Equation (27), the total expenditure and income from sharing within the multi-
ple microgrid system are equal throughout the day. Therefore, the cost of electricity sharing
between microgrids is balanced in internal transactions within the multiple microgrid
system. Hence, the objective function for the total operational cost considering electricity
sharing in the multiple microgrid system is:
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minCsc = ∑
i∈ΩN

minCco
i (51)

Here, Csc represents the total operational cost considering electricity sharing, Cco
i is

the operational cost for microgrid i considering electricity sharing.
Therefore, the objective function for the operational cost of microgrid i becomes:

minCco
i = min

(
Cgrid

i + Cinside
i

)
(52)

The first part of the model, Cgrid
i , involves the cost of purchasing and selling electricity

from/to the main grid by microgrid I (considering the penalty cost for electricity price
uncertainty). The second part of the model, Cinside

i , considers the actual output of wind
and photovoltaic power generation and optimizes for the uncertainty of discrete scenario
probability distribution, adapting to different scenarios of wind and photovoltaic power
output. This design can address challenges arising from uncertainty.

The proposed model is solved using the C&CG algorithm, which divides it into a
Master Problem (MP) and Subproblems (SP). By iteratively solving the MP and SP, with
feedback from the SP results to the MP, the optimization process is conducted, as depicted in
Figure 2. The MP seeks the optimal result under the worst probability distribution scenario
(considering constraints). The result provides data for the SP iteration. For Equation (52), it
establishes a lower bound:

min
x∈X,W

aTx + W (53)

W ⩾
K

∑
k=1

bTy(m)
k p(m)

k ,∀m = 1, 2, · · · , n (54)
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In the formulas, x represents the robust decision variables for the Master Problem;
yk represents the variables for the Subproblem under the k-th scenario; m represents the
number of iterations. Equation (54) pertains to the second part of Equation (52), where W
is the maximum value for the worst-case scenario.

Given the variables in the MP, the SP iterates and finds the worst probability distribu-
tion scenario under the current MP situation. The SP results are then fed back to the MP for
iteration. The SP’s solution to Equation (52) provides an upper bound:

L(x∗) = max
{pk}∈Ω

K

∑
k=1

pk min
yk∈Y(x∗)

bTyk (55)

Within the innermost minimization term in Equation (55), problems for each scenario
are independent. The inner minimization function can be represented as a parallel solution
denoted by f (x∗). Thus, Equation (55) can be rewritten in parallel solution form:

L(x∗) = max
{pk}∈Ω

K

∑
k=1

f (x∗)pk (56)

In summary, the MP and SP models for Equation (52) alternate in solving through
iterations and variable updates via Equations (53), (54) and (56) until a predetermined
accuracy is achieved, concluding the iterative process. Through continuous iteration and
updating, the problem can be gradually optimized, approaching the optimal solution.

5.2. Second Stage: Non-Cooperative Game-Based Clearance and Settlement of Shared Electricity

After completing the first stage of electricity sharing, the second stage involves calcu-
lating the clearance and settlement of shared electricity models for each microgrid. As each
microgrid pursues an individual optimal trend based on this paper’s optimization objec-
tives, it is essential that each microgrid benefits from electricity sharing. A non-cooperative
game-based model is established to determine the clearance and settlement of shared
electricity, achieving a Nash equilibrium state where each microgrid’s operational cost is
reduced, consequently lowering the total operational cost of the multi-microgrid system.
This model is considered fair for all microgrids.

The incentive for participation: for each microgrid i, the operational cost reduction
after electricity sharing must be greater than zero to motivate participation:

Cco
i + Cs

i < CNC
i (57)

Call CNC
i − Cco

i − Cs
i a microgrid I with reduced operating costs. The reduced oper-

ating cost ratio of a microgrid is defined as the ratio of the difference between the actual
reduced operating cost and the maximum reduced operating cost to the maximum reduced
operating cost. This reduction rate is formulated to minimize the squared sum of the
reduction rates, subject to the constraints defined in Equation (27) within the microgrid
inter-energy trading model. The objective is to minimize the squared sum of the reduction
rates, aiming to bring the actual reduction in the operational costs of microgrid I as close
as possible to the maximum reduction. This payment determination method is referred
to as the Cost Reduction Ratio Distribution (CRRD) model, ensuring fairness among all
microgrids. Each microgrid benefits from this model, and consequently, it is accepted by all
microgrids. The specific formulation is provided below.

Firstly, incentivize each microgrid to participate in energy sharing, thereby reduc-
ing the operational costs for each microgrid. A feasible range for the transaction unit
price of energy sharing, denoted as

(
λs

max, λs
min
)
, can be determined. If all microgrids

engage in energy sharing with a payment unit price within this range, the incentive con-
dition in Equation (57) can be satisfied, encouraging the participation of all microgrids in
energy sharing:

max(λs
max − λs

min) (58)
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Subject to:

24

∑
t=1

(
λs

maxmax
{

0, Ps∗
i,e,t

}
+ λs

minmin
{

0, Ps∗
i,e,t

})
≤ CNC

i − Cco
i (59)


λs

max − λs
min > 0

λs
max > 0

λs
min > 0

(60)

where λs
max and λs

min represent the maximum and minimum transaction unit prices, respec-
tively, for the shared energy by the microgrid. The variable Ps∗

i,e,t denotes the purchased
electricity by microgrid I during period t.

The optimization problem above is to find the feasible upper bound for λs
max and the

feasible lower bound for λs
min. Equation (59) addresses the worst-case scenario, ensuring

all microgrids benefit from energy sharing, where microgrid I purchases energy at the
maximum transaction unit price when buying and sells it at the minimum unit price when
selling during energy sharing.

Cref
i =

24

∑
t=1

(
λs

minmax
{

0, Ps∗
i,e,t

}
+ λs

maxmin
{

0, Ps∗
i,e,t

})
(61)

Equation (61) represents the idealized scenario for energy sharing payments, where
microgrid I buys energy at the minimum transaction unit price when purchasing and sells
it at the maximum unit price when selling during energy sharing. Evaluating the maximum
cost reduction involves computing the idealized scenario, considering the constraints
presented in Equation (27). However, it is impractical for all microgrids to achieve the
idealized scenario in energy-sharing transactions.

Each microgrid participating in the game aims to maximize the reduction in its own
operating costs, i.e., minimizing the rate of cost reduction. The variable γ is introduced to
represent the cost reduction rate of the microgrid:

min
(52)

∥γ∥2
2 (62)

Subject to:
Cs

i − Cref
i

CNC
i − Cco

i − Cref
i

= γi (63)

Cref
i < Cs

i < CNC
i − Cco

i (64)

Note that the above optimization problem is strictly convex, therefore having a unique
optimal solution when the feasible region is non-empty [23]. By substituting (63) into (27),
we obtain the following constraint on γ to replace the coupling of λs

i in constraint (27):

N

∑
i=1

{
γi(CNC

i − Cco
i − Cref

n ) + Cref
i

}
= 0 (65)

Therefore, the decision variables include Cs
i , ∀i, and γ, and the unique coupling

constraint among them is (63). Let Cs =
[
Cs

1, Cs
2, · · · , Cs

N
]
, so the regularized Lagrangian

optimization function for the non-cooperative game is:

L(Cs, γ, ω) =∥ γ ∥2
2 +

τ

2 ∑
i∈I

(
Cs

i − Cref
i

CNC
i − Cco

i − Cref
i

− γi +
ωi
τ

)2

(66)

Based on the above formulas, the CRRD model can be solved in a distributed manner,
such as using the ADMM framework. The algorithm process is shown in Table 1.
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Table 1. Retail electricity prices and feed-in tariffs on the main grid.

Time Slot
Electricity Price (¥/kWh)

Purchasing from the Grid Selling to the Grid

Valley 0–7 h
0.17 0.1322–24 h

Flat
7–11 h

0.49 0.3814–18 h

Peak
11–14 h

0.83 0.6518–22 h

In Table 1, the variables LCs
i

and Lγ in Steps 3 and 4 are extracted from L(Cs, γ, ω) for
minimizing the relevant objective functions Cs

i and γ. Let Cs∗
i and ∀i represent the optimal

solution of the CRRD model.
Note that both Figure 2 (C&CG) and Algorithm 1 (ADMM) can be implemented in

a distributed manner supported by a point-to-point energy-sharing platform. The local
decision updates for each microgrid do not require any private information from other
microgrids, and the updates to auxiliary variables only necessitate limited information
from the microgrids. This approach ensures the privacy of microgrids.

Algorithm 1 Solving the CRRD Model in the ADMM Framework

1: Initialize τ, γ(1), ω(1), ξ, k = 1
2: repeat
3: Every microgrid i ∈ ΩN , updates Cs

i (k + 1):
min

Cs
i ∈{(70c)}

LCs
i
(Cs

i , γi(k), ωi(k))

4: update γ(k + 1):
min

γ∈{(71)}
Lγ(Cs

i (k + 1), γ, ωi(k))

5: update ω(k + 1):

ωi(k + 1) = ωi(k) + τ

(
Cs

i (k+1)−Cref
i

CNC
i −Cco

i −Cref
i

− γi(k + 1)
)

6: k = k + 1
7: until ∥ω(k)− ω(k − 1)∥ < ξ

After the execution of Figure 2 and Algorithm 1, once the energy-sharing configu-
ration and payments are completed, actual energy sharing will take place in the energy
management of microgrids. Payments will be facilitated through the point-to-point energy-
sharing platform.

6. Case Study and Results

In the example of a nine-node microgrid system, the electrical system decomposition
diagram is illustrated in Figure 3. The microgrid system comprises wind turbines (W),
photovoltaic devices (P), gas turbines (G), and energy storage (E).
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Power network constraints [24]: The power grid is modeled using the non-convex
formulation of the branch flow model. Constraints (67)–(70) represent the branch power
flow equations. Constraints (71) and (72) impose square limits on the voltage and cur-
rent magnitudes.

PF
m,n =

P̂E
n

SB
+ ∑

i:n→i
PF

n,i + rm,nℓm,n, ∀(m, n) ∈ BE (67)

QF
m,n = QE

n + ∑
i:n→i

QF
n,i + xm,nℓm,n, ∀(m, n) ∈ BE (68)

vn = vm − 2
(
rm,nPF

m,n + xm,nQF
m,n
)

+
(
r2

m,n + x2
m,n
)
ℓm,n, ∀(m, n) ∈ BE (69)

ℓm,nvm = PF
m,n

2 + QF
m,n

2, ∀(m, n) ∈ BE (70)

vn ≤ vn ≤ vn, ∀n ∈ NE (71)

0 ≤ ℓm,n ≤ ℓm,n, ∀(m, n) ∈ BE (72)

In the equation: PF
m,n represents the active power flow of line (m, n); P̂E

n
SB is the reference

active power of node n; ∑
i:n→i

PF
n,i is the sum of active power flows from node n to all

outgoing lines; rm,n represents the resistance of the line (m, n); ℓm,n is the square of the
current magnitude of line (m, n); BE is the line from bus m to bus n in the power network;
QF

m,n is the reactive power flow of line (m, n); QE
n is the reference reactive power of node

n; ∑
i:n→i

QF
n,i is the sum of reactive power flows from node n to all outgoing lines; xm,n is

the reactance of line (m, n); vn and vm are the square of the voltage magnitude at nodes n
and m, respectively; vn and vn are the minimum and maximum values of the square of
the voltage magnitude at node n; ℓm,n is the maximum value of the square of the current
magnitude at node n.

To validate the feasibility and effectiveness of the proposed model, three microgrids
are taken as examples. Table 1 provides the retail electricity price and grid electricity
price of the main grid. The electric, heating, and cooling loads of the three microgrids
are illustrated in Figures 4–6, respectively. Microgrid 1 exclusively considers wind power
generation as the form of renewable energy, while microgrids 2 and 3 exclusively consider
solar power generation (with different solar resources for the two microgrids). Figures 7–9
illustrate the generation resources of renewable energy within each microgrid, simulated
using a dataset spanning 10 days. At different time points, surplus energy can be mutually
utilized through complementary means. By employing game theory and profit distribution
mechanisms, collaborative scheduling among multiple microgrids is realized to optimize
energy utilization efficiency and system performance.

In the text, the price deviation coefficient (ε) is set to 0.1; the electricity price uncertainty
parameter (δ) is set to 5; the confidence intervals for wind and solar uncertainties are set at
α = 0.95 and β = 0.99, respectively. The natural gas price is assumed to be 2.2 CNY/m3 in
the Jiangsu region, with a heating value of 9.7 kW·h/m3. The power for buying and selling
electricity between microgrids and the main grid is set at ±2000 kW, and the power for
energy sharing among microgrids is ±2000 kW. The main parameters of each device and
the node parameters of the microgrid can be found in references [8,21,24].
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6.1. Energy Sharing Transaction Results among Microgrids

The results of energy transactions among Microgrid 1, Microgrid 2, and Microgrid
3 are illustrated in Figure 10. It is evident from the figure that the power of electricity
transactions among the microgrids is in a real-time balanced state, achieving effective
energy sharing and trading.
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Microgrid 1 sells electricity externally from 04:00 to 06:00, demonstrating character-
istics of a surplus electricity microgrid. From 07:00 to 24:00, it buys electricity externally,
indicating a deficit electricity microgrid. It does not engage in electricity transactions from
00:00 to 4:00, representing a self-sufficient microgrid.

Microgrid 2 sells electricity externally from 00:00 to 07:00 and 16:00 to 24:00, showing
characteristics of a surplus electricity microgrid. It engages in minimal external electricity
transactions from 07:00 to 15:00.

Microgrid 3 buys electricity externally from 00:00 to 06:00 and 18:00 to 24:00, indicating
characteristics of a deficit electricity microgrid. From 08:00 to 17:00, it sells electricity
externally, representing a surplus electricity microgrid.

To illustrate the optimization results of electric, heating, and cooling power dispatch
before and after electricity sharing, we can take Microgrid 1 as an example.

Figure 11 shows that after electricity sharing, there is a significant increase in shared
electricity compared to before sharing, with a focus on the period from 07:00 to 17:00. This
concentration is due to the fact that the renewable energy source of the other two microgrids
is photovoltaic power generation, and during periods of high photovoltaic generation in
these microgrids, shared electricity is absorbed to enhance the efficiency of renewable en-
ergy utilization. Simultaneously, this practice significantly reduces the amount of electricity
purchased from the main grid. The price-based electricity load demand response plan in-
volves shifting the transferrable electrical load from high-price periods to low-price periods.
Calculated using Formula (19), Microgrid 1 is projected to save ¥1472.06 by implementing
this price-based electricity load demand response plan. During the fixed load phase, Mi-
crogrid 1 adopts a strategy to reduce electricity purchases and increase gas turbine power
generation during high−price periods to counteract the high cost of electricity purchases.
Based on grid selling prices, shared electricity costs, along with its own electricity load,
and renewable energy output, Microgrid 1 adjusts the distribution of its electrical load to
achieve the optimal state of electrical energy output. Energy storage primarily charges
during low-price periods and discharges during high-price periods.
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Figure 11. Comparison of electric power dispatch optimization results before and after microgrid
1 electric power sharing.

As depicted in Figure 12, a substantial reduction in gas turbine-based heating is ob-
served after the implementation of electricity sharing compared to before. This reduction
is attributed to the dual functionality of the gas turbine, capable of generating both elec-
tricity and heat. The introduction of a significant amount of shared electricity, as shown in
Figure 10, results in a decreased workload for the gas turbine, consequently influencing
a decrease in the heat generation capacity of the gas turbine. Microgrid 1 is primarily
supplied with heating from a gas turbine and a ground-source heat pump. The gas turbine
generates heat during power generation, while the ground-source heat pump consumes
electricity to produce heat. Through their respective constraints and considering shared
electricity, a balance is achieved. A portion of the heating load is provided by an absorp-
tion chiller. Thermal energy storage is charged when thermal energy is abundant and
discharged during periods of high heating costs.
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Figure 12. Comparison of heating power dispatch optimization results before and after microgrid
1 electric power sharing.
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As shown in Figure 13, after the implementation of electricity sharing, there is a signif-
icant decrease in the electricity-driven cooling provided by the electric chiller compared to
the period before electricity sharing. Simultaneously, there is a substantial increase in the
absorption chiller’s operation. Microgrid 1’s cooling system consists mainly of an electric
chiller and an absorption chiller. During the cooling process, the absorption chiller provides
cooling during periods of relatively low thermal energy costs, while the electric chiller
achieves cooling by consuming electricity. Considering their respective constraints and
shared electricity, Microgrid 1 adjusts the operation of the two cooling devices to achieve a
balance between cooling load and cooling capacity.
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6.2. Microgrid System Cost and Revenue Analysis

A comparison of the cost results for multiple microgrids is presented in Table 2 for
scenarios with and without considering energy sharing. In the scenario allowing energy
sharing, the total operating cost of multiple microgrids is lower than in the scenario without
energy sharing. The total costs for the three microgrids decreased by CNY 2046.7708, CNY
1241.1888, and CNY 1959.6289, with reduction rates of 4.55%, 4.70%, and 6.34%, respectively.
The post-transaction total cost decreased by CNY 5247.5885, with a reduction rate of 5.13%.
It can be observed that the costs for each microgrid significantly decrease under the new
planning, reflecting the fairness in profit distribution. This indicates that the proposed
energy-sharing trading mechanism can simultaneously improve the economic benefits of
both society and individuals. This is because each microgrid cannot only focus on its own
interests but must also consider the balance of energy-sharing payments, reflected in the
almost zero-sum of all energy-sharing payments. The error is caused by the precision of
Formula (65) and the accuracy of Algorithm 1.

The payment settlement method of the Cost Reduction Ratio Distribution (CRRD) is
employed in this study. The calculated maximum transaction price for shared energy is
CNY 0.79057, and the minimum transaction price is CNY 0.60198. Within this range of
shared energy transaction prices, each microgrid can benefit from energy sharing. That
is, within this range of transaction prices, each microgrid is incentivized to participate in
trading. Therefore, the CRRD model is both economical and fair and can be accepted by
each microgrid. In conclusion, this further validates the economic efficiency and fairness of
this framework.
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Table 2. The operation cost of microgrids.

Scenarios Microgrids Operating Cost/CNY Sharing Cost/CNY Total Cost/CNY

Does not consider
multi-energy sharing.

Microgrid 1 45,031.2056
Microgrid 2 26,411.7158
Microgrid 3 30,914.7995

Multi-Microgrid 102,357.7209

Considers multi-energy
sharing

Microgrid 1 29,136.1192 13,848.3156 42,984.4348
Microgrid 2 30,447.3816 −5276.8546 25,170.5270
Microgrid 3 37,526.6317 −8571.4611 28,955.1706

Multi-Microgrid 97,110.1325 −0.0001 97,110.1324

6.3. Impact Analysis of Electricity Price Uncertainty Coefficient on Microgrids

Based on the data in Table 3, the following results can be observed: as the electricity
price deviation coefficient increases, the operating costs of each microgrid and the multi-
microgrid system gradually increase. It can be seen that the penalty costs caused by
electricity price fluctuations lead to an increase in the operating costs of each microgrid
and the multi-microgrid system.

Table 3. The influence of the electricity price deviation coefficient on the multi-microgrid system.

Price Deviation Coefficient Microgrid 1/CNY Microgrid 2/CNY Microgrid 3/CNY Multi-Microgrid/CNY

0.1 42,984.43 25,170.53 28,955.17 97,110.13
0.15 43,519.49 25,999.46 29,091.18 98,610.13
0.2 43,958.71 26,463.87 29,685.84 100,108.43

According to the data in Table 4, it can be observed that under different numbers
of periods of electricity price uncertainty, the costs of the multi-microgrid system after
cooperation gradually increase. This implies that with an increase in the number of periods
of electricity price uncertainty, the electricity price fluctuates at more time intervals, leading
to an increase in the costs of each microgrid and consequently causing the costs of the
multi-microgrid system after cooperation to gradually rise.

Table 4. The impact of electricity price uncertainty periods on the multi-microgrid system.

Electricity Price Uncertainty Periods Microgrid 1/CNY Microgrid 2/CNY Microgrid 3/CNY Multi-Microgrid/CNY

5 42,984.43 25,170.53 28,955.17 97,110.13
10 44,032.30 25,777.34 29,996.11 99,805.75
15 44,887.45 26,566.47 30,677.70 102,131.62

6.4. Impact Analysis of Wind and Solar Uncertainty Confidence Levels

In this section, an analysis is conducted by evaluating the computational results of the
multi-microgrid system using a historical data count of 100 and a discrete scenario count of
10 for different confidence intervals (α1 and α∞).

As observed from Table 5, with the increase in the confidence interval values, the
operating costs of the multi-microgrid system gradually increase. When the confidence
interval increases, the uncertainty of photovoltaic and wind power output also increases,
requiring more energy from other sources to compensate for this uncertainty. This, in turn,
leads to an increase in the overall costs. This observation aligns with the pattern revealed
in Equation (35), further validating the correctness of the computational results.



Energies 2024, 17, 519 21 of 22

Table 5. Comparison of results at different confidence levels.

α∞ α1=0.2 α1=0.5 α1=0.95

0.5 96,812.35 96,821.79 96,821.79
0.9 96,895.71 96,913.45 96,955.70

0.99 96,966.68 96,998.28 97,110.13

7. Conclusions

This study explores the collaborative management and cost settlement of shared elec-
trical energy in multi-microgrids, employing a two-stage collaborative scheduling model.
In the first stage of the model, considering electricity price fluctuations and uncertainties in
wind and photovoltaic power outputs, point-to-point energy sharing among microgrids is
allowed, and a multi-microgrid energy management model is established. Fo solving, the
C&CG algorithm is employed. In the second stage of the model, addressing the issue of
shared energy payment distribution, a Cost Reduction Ratio Distribution (CRRD) model
based on non-cooperative game theory is proposed. The Nash equilibrium is utilized to
determine the transaction settlement of shared energy, and the ADMM algorithm is applied
for solving. Finally, the feasibility and effectiveness of the proposed method and model are
verified through case analysis.

The main conclusions of this work are summarized as follows:
1. In the proposed model, the sharing of electrical energy among microgrids reduces

the overall operating costs of the multi-microgrid system.
2. A CRRD model based on non-cooperative game theory is established for point-to-

point transactions, ensuring fairness in shared transactions and reducing the operating
costs of each microgrid.

3. Considering uncertainties in wind and photovoltaic power outputs as well as
electricity price fluctuations enhances the stability of the developed model, facilitating the
integration of renewable energy generation.

4. Variations in the deviation coefficient, electricity price uncertainty periods, and the
confidence intervals (α1 and α∞) of wind and solar power output have an impact on the
total operating costs of the multi-microgrid system, leading to cost increases.
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