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Abstract: A systematic simulation model is proposed in this research paper to estimate the energy
consumption of electric vehicles. The main advantage of this model is that it is made in a generic
and simplified way in order to be adaptable to different electric vehicles. The overall electrical
power corresponding to the performed maneuver is estimated considering: a tabular form of electric
motor efficiency, mechanical power losses, a generalized efficiency map of the power electronics,
the auxiliary power losses, and an electro-thermal Lithium-Ion battery pack model. The battery
model was developed in a previous work, which simulates the open circuit voltage curves at different
temperatures and the alteration in the internal resistance of the battery cells. The proposed model is
validated with experimental data from the maneuver tests. The battery model proved high accuracy
in estimating the voltage values relevant to the WLTP2 driving cycle on the chassis roller test bench.
Furthermore, the mechanical and electrical power were estimated with excellent matching compared
to actual test field driving test measurements, giving only the measured vehicle speed and auxiliary
power losses. Finally, the state of charge change is predicted accurately along the performed test field
dynamic maneuver.

Keywords: electric vehicle; power estimation; energy consumption; efficiency map; battery model;
dynamic maneuver test; chassis dynamometer; validation

1. Introduction

The topics of energy consumption (customer-driven) and emission reduction (po-
litically driven) are two essential goals for automotive development [1]. In addition,
practical solutions for major challenges of trip-level management need to be provided.
Thus, the electrification of commercial, public, and freight delivery vehicles has become
essential [2,3]. Electric vehicles (EVs) have been widely adopted in recent years due to the
growing attention regarding implementing environmentally friendly energy sources and
energy conservation issues [4]. The most popular technologies that have adopted electrical
powertrains are hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs),
battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs) [5].

A comparative study between the energy consumption of conventional internal com-
bustion engines and electric vehicles was performed in [6]. The comparison was made
between two diesel-engine vehicles and their electric-equivalent models. An actual route
in a mountain region was simulated to estimate the energy consumption of each vehicle
model. The results from the simulation models were evaluated for different scenarios and
driving cycles. Although the electric vehicles were heavier than their equivalent internal
combustion engine (ICE) cars, they consumed less energy due to the regenerative braking
function of electric cars. Regarding energy efficiency, a BEV performs much better than an
ICE vehicle. Provided the high BEV efficiency in energy production, their overall efficiency
can reach up to twice that of ICE cars [7]. Moreover, electric motors can provide a high
torque for wide-ranging rotational speed. Hence, a single-gear transmission is necessitated,
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which improves the powertrain’s efficiency even more. Generally, a BEV contains fewer
rotating parts than an ICE vehicle, resulting in lower maintenance costs [8]. Estimating the
remaining driving range of EVs and precise estimation of the battery’s state of charge (SOC)
are popular areas of study [7,9–16]. A comprehensive survey was made in [10] to investigate
the influencing factors for the remaining driving range of EVs. The authors classified the
influential factors into five categories: route and terrain, weather and environment, driving
behavior, vehicle modeling, and battery modeling. An experimental investigation of the
energy consumption in electric vehicles is presented in [11], based on driving course type,
driving style, and ambient temperature. The remaining driving range is a sophisticated
concept affected by multiple factors complicating its estimation. The vehicle’s driving
conditions primarily include the speed profiles and the altitude curves. Vehicle speeds
and altitude changes are determined based on information such as driving routes, driver’s
behavior, road traffic, environment conditions, and vehicle dynamics models [17].

Several research projects are oriented to establish accurate energy consumption esti-
mations that achieve the optimal energy economy to drive to a particular destination by
modeling the driving condition, considering driving style and selecting the optimal driving
route [18]. Likewise, the authors of [19] developed a mathematical regression model for
vehicle energy consumption based on eight different test vehicles’ instantaneous speed
and acceleration measurements. The authors considered various influential factors on
energy consumption: the roadway grade and roughness, the vehicle’s interaction with the
traffic, and the driver’s behavior. Developing energy estimation algorithms under realistic
conditions has become imperative. Subsequently, various concepts have been adopted to
calculate the accumulated energy consumption during real driving routes. Some methods
are based on sparse GPS observations [20], where readings from 68 EVs were used in a
linear regression approach to calibrate an energy consumption prediction model. Some
other approaches adapted to kinetic and potential energy changes during the trip, as in [21],
in which a measured and estimated energy consumption process in a customized con-
version electric vehicle was realized by collecting the data for energy consumption for
different routes with alternating driving modes. Another approach for energy consump-
tion modeling, which is oriented to quantify correlations between energy consumption
in electric vehicles and its kinematic parameters using real-world data, was developed
in [22]. Prediction of the driving conditions can be classified into two methods, according
to the availability of the driving destination information [17]: First, if the destination is
known, the vehicle speed profile and the altitude changes are evaluated based on the future
route segment information. Route segment information is divided into fixed parameters,
including road speed limit and altitude data, while real-time data provide information on
road adhesion, traffic jams, and weather conditions. Second, if the destination is unknown,
stochastic models are used to predict the virtual driving conditions by employing the stored
statistical data of the vehicle in the present area to estimate vehicle energy consumption.
An interesting method for a stochastic model that connects the vehicle with the data cloud
to predict the remaining driving range is presented in [23]. The authors’ concept was based
on estimating the remaining discharge energy in the battery by predicting the forthcoming
operating conditions. The results showed that the proposed vehicle–cloud collaboration
solution could improve the accuracy of the remaining driving range within an accuracy
of 5%.

Two main approaches are used to model EVs [24]. The first is forward modeling, also
known as the “dynamic approach”. The second is backward modeling, also known as
the “quasi-static approach”. The forward approach concerns equations for the behavior of
powertrain components and their dynamic interaction. On the other hand, the backward
approach considers determining the forces acting on the wheels based on an input reference
speed profile. Then, to process backward over the powertrain components. After that,
the motor torque is computed, and the battery’s energy needed to drive the electric motor
is determined. The choice between the forward and backward methods depends on the
study’s objective. For instance, the forward method does not require a reference driving
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speed profile but a control part. Moreover, it is based on solving the model’s differential
equations, making it more precise at the expense of more significant computational effort
than the backward approach. The backward method is based on analytical models consider-
ing vehicle dynamics and powertrain loss estimation from available efficiency maps [25]. In
general, computational models require more processing than analytical models. However,
they are more precise as they operate based on data analysis and prediction. In addition,
analytical models can only respond to changes in vehicle performance as they are vehicle
dynamics-dependent and based on physical modeling. More details about the advantages
and disadvantages of these approaches are available in [26,27].

The authors of [7] presented a sensitivity analysis for the energy demand estimation
of battery electric vehicles. Their model is based on modeling mechanical quantities,
such as driving resistances and losses in the powertrain. They found that the factors
with the highest impact on the energy demand estimation accuracy are the uncertainty of
powertrain efficiency and rolling friction coefficient. Moreover, the test results showed that
the uncertainty of auxiliary power demand, especially for heating and cooling, substantially
affects the estimation accuracy at low speeds. The authors in [27] stressed the importance of
an accurate power-based EV energy consumption model. Their EV model was created using
MATLAB/Simulink software (https://www.mathworks.com/products/simulink.html,
accessed on 10 January 2024) based on an actual EV, the BMW i3. The EV forward simulation
model comprised a powertrain system, longitudinal vehicle dynamics, and a driver model.
The efficiency maps of the electric motor and the power electronics were created from the
available technical data of the test vehicle. The input to their EV model was a reference
speed that the driver model tracked. They validated their model using standard driving
cycles, entirely in simulation and without field tests. Nonetheless, the motor and power
electronics efficiency maps are specifically for the selected EV. Moreover, the used battery
model is a simplified one with constant parameters.

The battery system is one of the most vital components of an electric vehicle. Among
energy storage technology development, lithium-ion batteries (LiBs) are the most promising
solution compared to the other available energy storage technologies [14] due to their dis-
tinctive benefits, such as their high energy density, low maintenance, and long life span [27].
SOC indicates the battery’s remaining charge. It is crucial to have an accurate battery SOC
estimation model as LiBs are sensitive to both over-charging and over-discharging, creating
the demand to predict the SOC with the highest accuracy possible [12]. The authors of [7]
classified the SOC estimation methods into five categories of battery modeling: tank model,
empirical model, lumped-parameter equivalent circuit models (ECMs), machine learning
model, and electrochemical model-based estimation. ECM-based estimation is the most
widely used model for online vehicle applications. ECM should enable simulating an
actual LiB voltage according to any current excitation. However, in reality, some charac-
teristics of the LiBs might not be adequately represented by circuit elements, such as the
hysteresis effect.

The authors developed a second-by-second model with regression coefficients de-
pending on instantaneous speed, acceleration, and SOC. The developed model encloses
four driving modes: acceleration, deceleration, cruising, and idling. Likewise, in [13], the
developed models have regression parameters that were attained based on the aggregated
data from real-world trips, which was extended in [28] by creating a multiple linear re-
gression model to estimate energy consumption. Many other studies reviewed the latest
SOC estimation methods to define the pros and cons of each approach, including physical
modeling state estimation [14,15] or Artificial Intelligence techniques [12,15]. Moreover, the
authors added a neural network model to predict driving parameters. In a similar context,
a model to estimate the energy consumption of EVs is proposed in [29]. The authors of [11]
benefit from the acceleration distribution and altitude difference. They are classified as
positive kinetic energy, relative positive acceleration, and the standard deviation of the
variation of the battery. In [30], an adaptive multi-resolution approach was proposed for
real-time energy consumption estimation in electric vehicles. A two-step nonlinear iterative

https://www.mathworks.com/products/simulink.html


Energies 2024, 17, 434 4 of 21

algorithm approximates three key parameters: powertrain efficiency, wind speed, and
rolling resistance. The first step is linear estimating with a Kalman filter, whereas the
second step follows a nonlinear optimization search.

Empirical open circuit voltage (OCV) modeling and look-up table interpolation are
responsible for low computational complexity. The direct OCV-based SOC estimation
method has minor computational complexity and a relatively high accuracy. Hence, it
is ordinarily used as a calibration methodology. By using the OCV estimation method,
especially combined with the ECM model, OCV-based SOC estimation enables extension
to dynamic working conditions [7]. It is also essential that the OCV curve is entirely
consistent for all LiBs, which allows the use of the experimental curves for online estimation
applications. Therefore, OCV-based estimation is an extensively practical method for online
applications. Even though the OCV characteristic curves are relatively stable for Lithium-
ion batteries, they alternate with the cycle life and temperature [30,31]. Therefore, to
have a reliable SOC-OCV relationship, it is essential to have experimental data for the
influence of temperature and cycle life [15]. The error in SOC when implementing OCV-
based estimation methods is smaller than that of the other methods, as shown in Figure 1.
Although the OCV area is located in the online feasible region, special attention should be
given to the influences of temperature, aging, and hysteresis [16]. Our previous work [32]
solved these issues; an OCV empirical model is integrated with an ECM as a function of
the SOC and battery’s temperature. The elements of the internal resistance model are also
functions of the SOC and battery’s temperature. The hysteresis during discharging and
charging is modeled, as well. In addition, the capacity fading effect, which represents the
aging factor, is embedded in the ECM model. Highly dynamic maneuvers of real-world
tests are modeled with high accuracy. Based on these results and the investigation in [33],
the proposed model in [33] makes an excellent choice for the LiB model for this work.
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The presented research emphasizes significant factors in EV energy consumption
estimation accuracy, such as developing detailed vehicle dynamic models, estimating high-
resolution powertrain efficiency, and considering environmental effects along a specific
route. So far, these works consider procedures too complicated to obtain representative
models for the energy consumption of EVs or more straightforward methods that are
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developed but with less accurate results. On the other hand, this research proposes a
generic modeling approach that overcomes the downsides of the resented works.

Section 2 defines the efficiency map model for different electric motor sizes, and an
approximated efficiency map for the power electronics is displayed. Section 3 summarizes
the proposed battery model in one of our previous works [32]. This detailed battery model
is an excellent asset for enhancing the accuracy of the estimation results. Then, Section 4
describes creating the complete vehicle model, including the battery model. The main
advantage of this model is that it defines a systematic and straightforward procedure to
model the energy consumption and the change in the battery-pack state of charge for electric
vehicles. The model inputs are a specific maneuver’s measured speed, the measured SOC,
and auxiliary power consumption to predict the corresponding energy consumption. Then,
the model is validated with actual measurements on the test vehicle. Auxiliary devices are
additionally included in the model as they can extensively influence the accuracy of energy
consumption estimation [15]. Moreover, our work is adapted for a wide range of motors
and power electronics.

2. Estimating Power Losses in Electric Powertrain

A computational model for energy consumption in EVs is proposed in [34]. The
authors used a simplified battery model based on technical data. The model’s accuracy was
endorsed by incorporating explicit equations for electric machines to generate efficiency
curves for each motor and generator modes. In this work, the model introduced in [34] will
be enhanced by incorporating more detailed powertrain and battery models.

As a general rule, electric motors are designed to operate between 50 and 100% of their
rated load. The highest operating efficiency reaches roughly 75% of the full load, while the
motor efficiency decreases significantly at loads below 50%. The part-load efficiency curves
are displayed in Figure 2 for electric motors with different sizes [35]. The motor efficiency
can be estimated in correspondence to the fraction (x) of the motor’s mechanical output
power (Pmo) regarding the rated motor power (Pmr) in kW, i.e., x = 0.001|Pmo|/Pmr [34].
Equation (1) describes the electrical machine efficiency for both motor mode (ηmot) and
generator mode (ηgen).

e f f iciency(x) =


cout1 x + cout2

x + cout3 , 0 ≤ x < 0.25

dout1 x + dout2 , 0.25 ≤ x < 0.75
eout1 x + eout2 , x ≥ 0.75

(1)
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The coefficients in Equation (1) are selected for an asynchronous motor with a rated
power of 45 kW, i.e., the yellow curve in Figure 2, which is the test vehicle in this work.
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These coefficients are acquired from [34], which implemented curve fitting of many motors,
and are presented in Table 1. One of the main characteristics of electrical machines is
that their efficiency increases with size [36]. Therefore, when determining the electrical
machine efficiency given the output power, the efficiency must first be calculated from
Equation (1), and then the efficiency is multiplied by a normalization factor (fnorm). In case
of regenerative braking, the efficiency is multiplied by a regenerative normalization factor
(fregen), as described in [34]. Figure 3 shows the efficiency normalization factor values based
on rated output power. According to this relation, the fnorm for a 45 kW motor equals 0.978.

Table 1. Coefficients for determining efficiency in Equation (1) [34].

Induction Electric Machine Synchronous Electric Machine

Coefficient Motor Mode Generator Mode Motor Mode Generator Mode

cout1 0.924300 0.925473 0.942269 0.942545
cout2 0.000127 0.000148 0.000061 0.000067
cout3 0.012730 0.014849 0.006118 0.006732
dout1 0.080000 0.075312 0.060000 0.057945
dout2 0.860000 0.858605 0.905000 0.904254
eout1 −0.073600 −0.062602 −0.076000 −0.066751
eout2 0.975200 0.971034 1.007000 1.002698
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The mechanical losses in the total gear transmission efficiency (ηg) are also a signifi-
cant factor [37]. Therefore, the authors of [25] created an energy consumption model for
EVs considering a deceleration-dependent regenerative braking efficiency model. They
also validated their model with measurements from different electric vehicles performing
several typical driving cycles. In addition to the energy consumption from traction, the
consumption of the auxiliary devices in electric vehicles is significant [18]. The authors
of [13] analyzed the influence of auxiliary devices’ load on energy consumption at three
different ambient temperatures. Accordingly, the total battery output power should also
cover the auxiliary load power (Paux) and the motor’s power or obtain the generator’s
electrical power. The power consumption of the auxiliary systems can significantly in-
fluence the overall energy consumption of EVs. For this reason, they must be included
in the vehicle model for more accurate energy consumption estimation [27,38]. Several
factors can determine the energy consumption due to the auxiliary devices. Consequently,
some auxiliary devices are deactivated during the test runs to reduce the uncertainty in
auxiliary power estimation [4]. For simplicity, average values are selected to represent
the average power of each auxiliary device in an EV and their consumption. Then, their
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effective power consumption during the tests is estimated based on each device’s activated
intervals [27]. In [34], the power model is modified with a correction factor constant to
consider the battery efficiency drop during the round trip. In this work, a detailed physical
battery model is employed instead, which incorporates more variable loss factors and
provides the final battery voltage.

The conversion of the battery’s direct current into a three-phase current for the motor
is associated with losses within the power electronics. Therefore, the efficiency of the power
electronics (ηpe) can be mapped analogously to the electric machine efficiency map, as
shown in Figure 4. The data in this figure represent different sizes of motors within a
range of power from 20 to 100 kW [39]. The asynchronous machine specifications of the
front-wheel-drive vehicle under the test (VUT) are listed in Table 2.
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Table 2. Technical data of LiFePO4 battery [40].

Parameter [Unit] Value

Nominal Module Voltage [V] 19.2
Nominal Module Capacity [Ah] 69

Max Continuous Load Current [A] 120
Peak Current for 30 s [A] 200

3. Battery Model

The battery pack of the VUT contains 19 battery modules. Each module encompasses
six cell blocks that are connected in series. Every cell is made of 50 LiFePO4–graphite
cells connected in parallel. The total number of cells within the single battery module is
300 [32]. The battery module specifications are given in Table 2. The VUT provides battery
cell units of cathode lithium iron phosphate (LiFePO4). These cells are distinguished by
their open-circuit voltage curves that remain almost constant over the SOC range from 20%
to 80%, even at different ambient temperatures [32]. The same model developed in [32],
which accurately simulates the changes in the battery during dynamic maneuvers, will also
be employed in this work. The battery model requires the following inputs: the battery
current, the SOC signal, the corresponding capacity rates (C-rate), the ambient and battery
temperatures, and the number of charging and discharging cycles.

The proposed open-circuit voltage (VOC) model in [32], as a function of the battery
SOC and temperature, is represented by Equations (2) and (3). According to [41], the
open voltage is modeled by separate equations in case of discharging, i.e., VOC,dis, and
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charging, i.e., VOC,ch. The corresponding constant values are given in Table 3. The effect of
the temperature on the discharge and charge curves over SOC are considered through the
constant gradients dVOC,d/dT and dVOC,c/dT, respectively.

VOC,dis(SOC, T) = a1 e−a2 SOC + a3 + a4 SOC + a5 e−
a6

1−SOC + Tbatt
dVOC,d

dT
(2)

VOC,ch(SOC, T) = b1 e−b2 SOC + b3 + b4 SOC + b5 e−
b6

1−SOC + Tbatt
dVOC,c

dT
(3)

Table 3. VOC parameter values [32].

Constant Value Constant Value

a1 −1.166 b1 −0.9135
a2 −35 b2 −35
a3 3.344 b3 3.484
a4 0.1102 b4 0.1102
a5 −0.1718 b5 −0.1718
a6 −2 × 10−3 b6 −8 × 10−3

dVOC,d/dT 0.00125 dVOC,c/dT 0.00069

By neglecting the temperature differences between the cells in the same battery module,
the temperature variations in the battery module (Tbatt) can be described in Equation (4) [42].

MbattCp
dTbatt

dt
= Ibatt(VOC − Vbatt)− hAbatt∆T − ε σAbatt

(
T4

cell − T4
amp

)
(4)

where ∆T is the temperature difference between the battery cell and the ambient (Tcell − Tamp),
Ibatt is the battery input current, and Vbatt is the battery output voltage. The constants of
Equation (4) are defined and evaluated in Table 4. The battery circuit model considers
the fading capacity effect by adding resistance in series (Rcyc). It is identified in [42], as
shown in Equation (5), as a function of the number of charging and discharging cycles (ncyc).
The usable battery capacity (Cusable) is a function of ncyc and temperature [43]. Figure 5
shows the percentage of Cusable from the initial capacity (C0) over the ncyc and at a reference
ambient temperature of 23 ◦C. A simple definition for the change in SOC is made by
Equation (6) [42], where SOC0 is the initial state of charge.

Rcyc = 0.0015
(
ncyc

)0.5 (5)

SOC = SOC0 −
∫
(Ibatt/Cusable)dt (6)

Table 4. Battery thermal model parameter list [32].

Parameter Description Value Unit

Abatt Battery module surface area 0.284 m2

Mbatt Battery module mass 12 kg
Cp Specific heat capacity 1360 J·kg−1·K−1

σ Stefan–Boltzmann constant 5.67 × 10−8 W·m−2·K4

ε Emissivity of heat 0.95 -
h Natural heat convection constant 4 W·m−2·K−1
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The values of the internal resistance components of resistances and capacitors are
determined through Equations (7)–(11), which are developed in [44], where ϑ is the battery
cell temperature [◦K], and the constant, c1–c39, values are listed in Table 5. The total
estimated battery output voltage (Vbatt) is modeled as in Equations (12) and (13) [32].
According to [41], the hysteresis effect between the discharge and charge behaviors is
considered in Vbatt by implementing two different equations, i.e., (12) for discharging and
(13) for charging. The parameters in Equations (12) and (13) are defined and evaluated
in Table 6. The battery internal resistance parameters in Equation (14) are acquired by
multiplying the corresponding battery cell internal resistance parameter, calculated by
Equations (7)–(11), by the total number of cells. The battery circuit model diagram is shown
in Figure 6. Ibatt is the battery current, I*

batt is the filtered battery current, and It is the
integration of the battery current. The charge–discharge characteristics are considered, and
hysteresis is modeled with empirical equations. The open-circuit voltage, VOC(SOC,T), is
employed as a function of SOC and temperature. The aging effect is regarded by adding
Rcyc to the internal resistance. The variable ohmic resistance Ro and two variable RC
networks, RSCS and RLCL, are also considered for the short- and the long-time transient
responses, respectively.

Rs, cell(SOC, ϑ) =
(

c1e(c2SOC) + c3 + c4SOC
)
+ c5∆ϑ + c6 SOC ∆ϑ (7)

Cs, cell(SOC, ϑ) =
(

c7SOC3 + c8SOC2 + c9SOC + c10

)
+ c11SOC ∆ϑ + c12∆ϑ (8)

Rl, cell
(

SOC, ϑ, IC−rate
)
=

((
c13e(c14SOC) + c15 + c16SOC

)
+ c17∆ϑe(c18SOC) + c19 ∆ϑ

)
×

(
c20

(
IC−rate

)c21 + c22
) (9)

Cl, cell(SOC, ϑ) =
(

c23SOC6 + c24SOC5 + c25SOC4 + c26SOC3 + c27SOC2 + c28SOC + c29

)
+ c30e

c31
ϑ (10)

Ro, cell(SOC, ϑ) =
(

c32SOC4 + c33SOC3 + c34SOC2 + c35SOC + c36

)
c37e

c38
ϑ−c39 (11)

Vbatt = VOC,dis(SOC, T)−
(

RO + Rcyc + VS + VL
)
·Ibatt − K

Q
Q − It

·(It + I∗batt) + Ae−B·It (12)

Vbatt = VOC,ch(SOC, T)−
(

RO + Rcyc + VS + VL
)
·Ibatt − K

Q
It − 0.1Q

·I∗batt − K
Q

Q − It
·It + Ae−B·It (13)

dVS
dt = Ibatt

CS
− VS

RSCS
dVL
dt = Ibatt

CL
− VL

RLCL

(14)
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Table 5. Constant values of Equations (7)–(11) [44].

Constant Value Constant Value

c1 1.080 × 10−2 c21 −6.919 × 10−1

c2 −11.03 c22 2.902 × 10−1

c3 1.827 × 10−2 c23 2.130 × 106

c4 −6.462 × 10−3 c24 −6.007 × 106

c5 −3.697 × 10−4 c25 6.271 × 106

c6 2.225 × 10−4 c26 −2.958 × 106

c7 1.697 × 102 c27 5.998 × 105

c8 −1.007 × 103 c28 −3.102 × 104

c9 1.408 × 103 c29 2.232 × 103

c10 3.897 × 102 c30 3.128 × 103

c11 −6.580 c31 −2.398 × 103

c12 12.11 c32 1.298 × 10−1

c13 2.950 × 10−1 c33 −2.892 × 10−1

c14 −20.00 c34 2.273 × 10−1

c15 4.722 × 10−2 c35 −7.216 × 10−2

c16 −2.420 × 10−2 c36 8.980 × 10−2

c17 6.718 × 10−3 c37 7.613 × 10−1

c18 −20.00 c38 10.14
c19 −5.967 × 10−4 c39 2.608 × 102

c20 6.993 × 10−1

Table 6. Parameters list of the battery discharge voltage model [41].

Parameter Description Value

K Polarization constant or polarization resistance 0.012
Q Battery capacity Variable
A Exponential zone amplitude 0.271
B Exponential zone time constant inverse 152.130
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4. Integration and Validation of the Complete Vehicle Model

The electric VUT used for this work is shown in Figure 7. Actual maneuver test
measurements from this vehicle will be used to validate the proposed simulation models.
The vehicle’s motor is powered by alternating current (AC), which is delivered from
the power electronics that convert the direct current (DC) of the battery. The battery
management system (BMS) controls the processes of battery charging and discharging.
Moreover, it monitors the temperatures of each battery pack’s cell blocks. The “torque
demand” signal is determined in correspondence with the actuation of the accelerator
pedal position. This signal is then manipulated by the vehicle control unit (VCU) based
on the car’s current driving state, battery state, motor, and pedals. The front-wheel-driven
VUT powertrain topology is shown in Figure 8. Except for the battery and the mechanical
parts, none of these systems are modeled in this work because we considered the backward
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modeling approach. Moreover, no cabinet heating or cooling is activated during the tests
in this work.
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The simulated Pmech is obtained from the vehicle dynamic simulation model, illustrated
in Figure 9. The model has three inputs: the vehicle’s speed, acceleration, and inclination.
The output is the Pmech, which results from the interaction between the driving resistance
force and traction force on the corresponding wheel model. The slip tire model increases
the realism of the model. Figure 10 shows the battery simulation model proposed in [33].
The implemented parameters in the VUT model are listed in Table 7.

Table 7. Parameters list for the VUT dynamic model.

Description Value Unit

Vehicle mass 1528 kg
Moment of inertia about the longitudinal axis 482.70 kg.m2

Moment of inertia about the vertical axis 2585.60 kg.m2

Wheelbase 2.59 m
Distance between center of gravity—front axle 1.47 m
Distance between center of gravity—rear axle 1.11 m

Height of the vehicle’s center of gravity 0.45 m
Transmission gear ratio 4 -
Differential gear ratio 2.5 -

Vehicle engine/motor inertia 0.03 kg.m2
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Table 7. Cont.

Description Value Unit

Front axle inertia 3.7 × 10−3 kg.m2

Rear axle inertia 3.7 × 10−3 kg.m2

Tire inertia 0.1 kg.m2

Wheel hub inertia 0.124 kg.m2

The height of the vehicle’s rolling center 0.31 m
Half-track width between front wheels or rear wheels 0.78 m

Distances of the front suspension from the middle 0.78 m
Distances of the front damper from the middle 0.78 m

Distances of the rear suspension from the middle 0.78 m
Distances of the rear damper 0.78 m

Spring stiffness front 21,269 N/m
Damping coefficient front 2244.4 N.s/m

Stiffness of the front anti-roll bar 7018.8 N.m/rad
Spring stiffness rear 17,374 N/m

Damping coefficient rear 1550.6 N.s/m
Longitudinal force initial slope in Pacejka formula 23.64 -
Longitudinal force shape factor in Pacejka formula 1.35 -

Longitudinal force peak factor in Pacejka magic formula 0.90 -
Longitudinal force curvature factor in Pacejka formula 1.37 -

Aligning initial torque slope in Pacejka formula 16.37 -
Aligning torque shape factor in Pacejka formula 1.13 -

Aligning torque peak factor in Pacejka magic formula 0.13 -
Aligning torque curvature factor in Pacejka formula 0.89 -

Tire effective rolling radius 0.31 m
Tire longitudinal stiffness factor (related to the wheel load) 19.15 1/m

Tire longitudinal nominal relaxation length 1.5 m
Tire minimum relaxation length 0.05 m
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The complete model of the VUT is shown in Figure 11. The main gain of this model is
its ability to estimate the total battery power for the assigned maneuver based on two input
variables: the relevant speed profile (Vx) and auxiliary power (Paux). Based on the speed
profile, the corresponding physical quantities are determined from a simulation model for
the VUT. Then, the mechanical power (Pmech) can be estimated using Equation (15) [45].

Pmech = ∑4
1Mdrive,i ωi (15)

where Mdrive,i is the driving moment on the wheel hub, and ωi is the corresponding
wheel’s angular speed. The Pmech sign decides whether the vehicle is in driving or braking
mode. Then, the battery provides an equivalent power that covers the total of Pmech
demands plus the powertrain power losses (Ploss). The approach proposed in [34] to
simplify the regenerative braking modeling is also implemented in this work. Furthermore,
the combined mechanical and regenerative braking systems are complementary due to
the electrical machine’s physical limitations and the maximum limit of the battery SOC.
Suppose the braking moment exceeds the moment limits; in that case, the rest of the
braking power is dissipated as heat due to the mechanical braking [46,47]. Moreover,
the percentage of regenerative braking taking effect has a speed-dependent regeneration
factor fregen(Vx), as a function of vehicle speed Vx: below the speeds’ lower threshold
limit, no regenerative braking is produced, and therefore, the mechanical braking system is
exclusively responsible for decelerating the vehicle to a standstill. Mainly, a lower threshold
speed must be surpassed so that the electrical machine regenerates energy, while it achieves
its maximum regeneration capability for speeds higher than an upper threshold speed.
For speeds between these two thresholds, the percentage of recoverable power follows
a linear interpolation with vehicle speed. The same lower and upper threshold speeds
implemented in [34] are 1.39 m/s (5 km/h) and 4.72 m/s (17 km/h), which are considered
for this work as well.
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Equation (16) defines the instantaneous power at the time (t). Subsequently, the battery
current (Ibatt) corresponds to the estimated powertrain’s instantaneous power (Pins), and
the battery voltage (Vbatt) is calculated using Equation (17).

Pins(t) =


Pmech(t)

ηpe ηg ηmot(x) fnorm
+ Paux , Pmech(t) ≥ 0 (driving)

Pmech(t) ηpe ηg ηgen(x) fnorm fregen(Vx) + Paux Pmech(t) < 0 (braking)
(16)

Ibatt =
Pmech + Ploss

Vbatt
=

Pins
Vbatt

(17)

Paux could have a wide range of variations depending on the operation of other energy-
consuming devices, such as air conditioning [13,28]. According to Equation (16), fnorm, ηpe,
ηg, and Paux are required to determine Pinst(t):

• fnorm for the VUT electrical machine class is 0.978, according to Table 8 and Figure 3;
• ηpe is determined from Figure 4 at each motor’s rotational speed;
• ηg is set to 0.97 and 300 W, similar to the VUT in [34]. Paux is determined based on

the best match to the experimental results. The value of 300 W yielded the best match
with measurements, which is also similar to the Paux value in [36].

Table 8. Technical data of the VUT electric motor.

Parameter Value

Rated Power 45 kW
Peak Power 68 kW
Peak Torque 210 Nm
Rated Speed 3000 RPM

Maximum Speed 13,000 RPM
Number of poles 6

4.1. Validation of the Battery Model with WLTP-Class Two Driving Cycle

The battery voltage model is already validated in [33]. However, all test maneuvers
were performed with relatively low speeds and short testing periods due to the limited area
of the testing site. Therefore, the VUT in this work underwent a WLTP class two (WLTP2)
driving cycle on a roller dynamometer test bench to validate the model for higher speeds
and a more extended test period. Figure 12 displays that the battery model estimated
the total battery-pack output voltage, corresponding to the measured battery current,
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with a high Pearson correlation coefficient (Pearson correlation coefficient—Wikipedia,
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#cite_note-3, accessed on
27 November 2023) of 0.981.
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driving cycle.

The model did not foresee some spikes since they are caused by the influences of the
unpredictable slipping between the tires and the rollers during acceleration and deceler-
ation. This high accuracy is related mainly to the battery model [32]. The battery model
must be as realistic as possible because the total energy consumption is be linked directly
to the accuracy of both the Vbatt and Ibatt.

4.2. Validation of the Total Energy Consumption Model

The energy consumption model is validated using the measured data from the mea-
surement of the test vehicle. The validation target is to determine the estimation accuracy
of the power transferred through electric vehicles’ powertrain, i.e., the electrical power
consumed from the battery and then transformed into mechanical driving power and
power losses. The driver applied a dynamic pedal input to create a dynamic maneuver for
about 385 s. The test results are displayed in Figure 13.

The positive battery current corresponds to the discharged current during the driving
mode, whereas the negative values occur during the braking. Hence, there is no charging
for the battery. It can be noticed that the voltage dropped drastically during the high
acceleration driving and then remained around 370 V while braking. The final drive mo-
ment is produced at the axles after the motor’s torque is transferred through the total gear
ratio transmission, responding similarly to the battery current. Finally, the electric motor
rotational speed along the test maneuver is also shown. Given the measured speed profile,
as shown in Figure 11, the VUT simulation model was able to estimate the mechanical
power that needs to be delivered by the powertrain to overcome the corresponding driving
resistances. The accuracy of Pmech, attained from the multiplication of the estimated angular
speed and moment, correlates to 0.983 compared to the expected results, as in Figure 14.

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#cite_note-3
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The next step is to estimate the electrical power components, i.e., the Vbatt during
the maneuver and the withdrawn Ibatt from the battery pack. The total Pins is determined
at each instant by adding the mechanical and electrical losses in the powertrain system,
as shown in Figure 11. The Ibatt is then estimated according to Equation (15) at every
instant, and is an excellent overall match for Pins, with a correlation of 0.973, as shown in
Figure 15. Due to the low precision of the voltage measurements, as shown in Figure 16a,
the correlation of Vbatt to the measured voltage has slightly diminished to 0.963, as shown in
Figure 16d, even though all the estimated values of Vbatt are found within a 99% confidence
band compared to the measured battery-pack voltage, as demonstrated in Figure 16b. It
can even be noticed from Figure 16c that the mean value of the measured value is 366
V, while Vbatt has a mean of 366.84 V, which confirms the high accuracy of the voltage
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model. Figure 17 reveals that the estimation of Ibatt from this complex model is remarkably
accurate, with a correlation of 0.973 relative to the measurements. The accuracy of the
results is ascribed to the detailed modeling and accurate parametrization, especially for the
battery model. Despite the frequent and severe fluctuations of different physical quantities
along the measurements, the integrated model of several submodels did not accumulate
high errors after this series of calculations.
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The most critical quantity that should be measured as accurately as possible in the pro-
posed model is the vehicle’s speed since the whole chain of calculations for the final energy
consumption begins with it. If the speed-measured signal was distorted by high noise or
the low resolution of speed measurement, the error in energy consumption estimation is
expected to increase. A possible solution could be to contain a prediction model for the
vehicle’s speed.
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5. Conclusions

Many studies focused on creating explicit models to estimate energy consumption
for EVs. Several requirements accompany this type of modeling: driving long routes,
assuring suitable environmental conditions, and preparing specific measurement instru-
ments. Moreover, the results would be valid for the particular test vehicles; the developed
models might not be suitable for other vehicles with different specifications. Other works
built physical models of the complete vehicle, but the models must be more detailed to
produce the desired energy consumption accuracy. This paper is concerned with creating a
generic simulation model for estimating the energy consumption of electric vehicles that
is simple to model yet provides highly accurate results. A backward model method is
considered in this work for creating the complete electric vehicle since the main objective is
estimating the energy consumption based on the vehicle’s speed. Also, no model exists
for the interaction between the pedals and the motor through the vehicle control unit. The
powertrain model includes a detailed Li-Ion battery model and a generic power loss model
for electric vehicles. Furthermore, the model is parameterized according to the technical
data of a specific test vehicle. Finally, the proposed powertrain model is incorporated
with a vehicle dynamic simulation model to create the complete simulation model for the
vehicle under the test. The battery simulation model is validated in two stages. Firstly, the
battery voltage (Vbatt) estimation is validated, given the measured battery current (Ibatt).
This step is accomplished by executing the WLTP2 drive cycle while mounting the VUT on
a chassis dynamometer. The results proved the outstanding accuracy of the battery voltage
estimation. Secondly, the battery current (Ibatt) is validated by dividing the computed total
instantaneous power (Pins) by the concurrent battery voltage. This validation is realized
with a field driving maneuver. Comparing the measured and estimated physical quantities
proves the simulation model’s high reliability. Eventually, the complete integrated model is
proven to be beneficial in evaluating the overall energy consumption of electric vehicles
and predicting the SOC for a specified real driving course.

This work might be extended in various scopes: For example, developing accurate
estimation methods for SOC and Paux to create a standalone estimation model that can
be applied for different routes with known or unknown starting and destination points.
Moreover, a detailed regenerative braking model could be combined with prediction
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methods for driver behavior and driving conditions for real-world roads to estimate the
remaining driving range for EVs. Furthermore, the proposed method could be implemented
for larger vehicles, such as electric buses. Another research area would be implementing
this approach for hybrid vehicles. Systematic parametrization techniques would widen
the usability scope of the proposed approach to include different types of electric and
fuel-cell vehicles.
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