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marcin.jastrzebski@p.lodz.pl (M.J.); jacek.kabzinski@p.lodz.pl (J.K.)
* Correspondence: przemyslaw.mosiolek@p.lodz.pl

Abstract: We consider a two-mass drive with a flexible joint with a nonlinear characteristic of the
transmitted torque as a function of the torsion angle. We propose a new, nonlinear, adaptive position-
tracking controller, taking this nonlinearity of stiffness into account. The derivation of the controller
is based on nonlinear adaptive control theory, incorporates several non-standard mathematical
techniques and provides a proof of the uniform ultimate boundedness of tracking errors. As the
result, we present a controller that solves the position tracking problem, attenuates dangerous
tortional oscillations in the shaft and operates correctly in the presence of unknown torques acting on
both sides of the joint, even if all plant parameters are unknown. We demonstrate experimentally
that using some materials indeed introduces a nonlinear characteristic of the joint. We prove via real
plant experiments that the proposed control algorithm is easily implementable with a DSP controller
in real-world applications.

Keywords: two-mass drive; flexible joint; nonlinear adaptive control

1. Introduction

Systems that transform electrical energy into mechanical energy are the basis of mod-
ern technology. Electric drives of different types consume about 50% of electric energy
production (according to an official website of the European Union Electric motors and
variable speed drives (europa.eu)) [1]. Precise and energy-efficient control of motion plays
a fundamental role in all fields of technology, and their effective operation determines
the completion of important tasks in production, transport, mining, medicine, bioengi-
neering, etc. A standard assumption underlying typical models of motion transmission
systems is that all components consist only of rigid bodies and ideal couplings. Under
this assumption, the position and velocity of the load are the same as the position and
velocity of the motoring shaft. Unfortunately, this is an idealized situation that may be
considered valid only in the case of slow motion and small interacting forces/torques.
In general, mechanical flexibility is present in most motion transmission systems. This
introduces static and dynamic deflections between the position of the driving actuators and
the position of the manipulated part. Such a drive system can be modeled as a so-called
two-mass system. The motoring part (the first mass) is connected by a flexible joint with
the manipulated part (the second mass). Numerous applications are based on the two-mass
model, and some of them are rolling mill drives [2], conveyer belt drives [3], cage-hoist
drives [4,5], drilling rigs used in oil and gas explorations [6,7], some special drives used in
textile [8] and paper machines [9,10], space antennas [11,12] and space manipulators [13,14],
CNC drives [15], wind turbines [16], microelectromechanical systems (MEMS) [17], robotic
manipulators with flexible joints [18], electric drives using harmonic reducers [19] and
planetary gear powertrains [20,21]. Among the above-mentioned applications, manipula-
tors with flexible joints are of particular interest. First, the two-mass model well reflects
the behavior of a single manipulator segment. Second, potential implementations are
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wide and include not only industrial robots but also medical, rehabilitation, space and
human-cooperating manipulators.

The mechanical flexibility of robotic manipulators is introduced by two main factors:
the use of compliant transmission elements and the flexibility of links. In some applications
(for instance, space manipulators), a reduction in the mass of the links is so important that
the flexibility of the link caused by a slender construction or the application of lightweight
materials is accepted. Normally, the flexibility of industrial manipulators results from the
use of flexible joints. Numerous examples of robots with flexible joints are reported in [22].
Mechanical flexibility is common, when motion reduction is performed by belts, long shafts,
cables, harmonic drives and cycloidal gears. Recently, flexible transmission elements have
also been deliberately included in the construction of direct-drive robotic joints using fast,
permanent magnet motors. Some of them are used to reduce rotation axis misalignment,
improving reliability and extending the lifetime, whereas others are aimed at improving
the safety of robot–human cooperation and modifying the movement of the robot arm.
There are multiple constructions of such elements, and different materials are used. For
instance, Figure 1a presents a simple coupling with a polymer insert. Refs. [23,24] describe
the construction of a Variable Stiffness Actuator (VSA), and ref. [25] presents a concept
of serial elastic actuation that utilizes one or more series elastic elements to intentionally
improve the dynamic and control properties of the system.
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Figure 1. Exemplary coupling with a nonlinear stiffness (a) and schematic representation of an elastic
joint (b): φa—angular position of the arm, φm—motor shaft position, mg—gravity, α—angle between
the motor axis and the vertical.

For all these constructions (and numerous others modeled as a two-mass system), it is
common that the torque transmitted by a flexible joint cannot be modeled as proportional
to the torsion angle. It is rather represented by a ‘stiffness curve’, which is a significantly
nonlinear although monotonically increasing convex or concave curve. This observation is
also confirmed by the experiments reported in this paper.

Other phenomena that strongly affect position control are any torques affecting both
sides of the joint. Their main source is friction, and in this case, they oppose movement.
However, they can also come from gravitational forces and other interactions related to
the specific task performed by the two-mass system. These highly nonlinear torques,
together with the flexibility of the joint, are the reason for the most important problem: tor-
sional oscillations that impair the precision of position control and may cause breakdowns
and damages.

Therefore, the main challenge for the position controller for a two-mass system pre-
sented here is to assure sufficiently precise position tracking, despite the following:

• Unknown or changing parameters of the motor, the load and the joint;
• Unknown nonlinear torques acting on both sides of the flexible joint;
• An unknown nonlinear “stiffness curve” describing the transmitted torque as a func-

tion of the torsion angle.

We consider a two-mass model to demonstrate the derivation and the features of
the obtained controller, but the proposed derivation can be generalized to a multi-degree-
of-freedom case. Finally, an appropriate real plant (an arm moved by a flexible shaft
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connecting it with a permanent magnet synchronous motor) is used to demonstrate the
practical applicability of the proposed approach.

Almost all existing solutions for the position control of a two-mass drive with a
flexible shaft assume that the stiffness coefficient is constant and the transmitted torque is
proportional to the torsion angle. Early works come from the 20th century and are mostly
based on linear control theory: PD control, PD with gravity compensation and full-state
feedback. The development of the nonlinear control theory resulted in the application
of its achievements. The feedback linearization approach and passivity-based approach
were the first to be applied to position control but were based on the exact model of the
plant. An extensive bibliography of the subject is discussed in [22]. Some more recent
approaches to the design of controllers for two-mass systems include the linear quadric
regulator (LQR), root locus, etc. [26]; artificial intelligence-based methods—artificial neural
networks [27], linear model predictive control [28] and fuzzy controllers [29]; and nonlinear
control techniques—nonlinear neural networks [30,31], adaptive nonlinear control [32–34]
and the wave-based disturbance observer approach [35]. The control of a robotic arm
with a flexible joint is still a challenging topic, and new publications keep popping up.
Among very recent papers, in [36], a kind of external linearization is used that requires
an arm-mounted accelerometer. Ref. [37] considers the impact of measurement errors on
the nonlinear control of a flexible-joint robot. Ref. [38] is among a few studying nonlinear
friction. In [39], position tracking in a two-mass system is solved with a concept founded on
a robust observer design based on a linear matrix inequality (LMI) solution. The observer
cooperates with the original nonlinear controller.

None of these papers take into account the nonlinear nature of stiffness. A recent
paper [40] refers to nonlinear stiffness but is devoted to the development of a desired
velocity-tracking controller. Therefore, here, we present a novel controller that

• Solves a position tracking problem for a two-mass drive with a flexible joint;
• Takes into account a nonlinear ‘stiffness curve’ of the joint and takes advantage by

using it for control purposes;
• Operates correctly in the presence of unknown nonlinear torques acting on both sides

of the joint;
• Operates correctly even if all plant parameters are unknown.

The derivation of the controller is based on nonlinear adaptive control theory, and a
proof of the uniform ultimate boundedness of tracking errors is presented. The simplicity
of the obtained controller was an important aim of the proposed approach. It was obtained
by eliminating some loops in a backstepping-like design. The dynamic surface approach
(command control filtering) was used to calculate the derivatives of virtual controls with
linear filters, instead of analytically. This prevents ‘the explosion of complexity’ in the
resulting expressions describing the controller. The second-order filters proposed here
enable smoother control. Thanks to a well-thought-out derivation, we obtained a control
algorithm that can be implemented in a DSP processor.

The derived controller was implemented with a DSP in a real control plant. The
constructed laboratory stand imitates a joint with nonlinear stiffness characteristics. The
impact of important factors omitted during the design, such as the sampling time, unmod-
eled dynamics, quantization, etc., was investigated and discussed. It was demonstrated
that the implemented controller is able to operate correctly even if the characteristic of the
joint is changed. All conducted experiments are an important part of the presented novel
result, prove the value of the derived control algorithm and testify to the possibilities of its
practical use.

Finally, we compare the proposed approach with one of the recent solutions presented
in [41,42] and demonstrate that we are able to obtain smaller tracking errors.

2. Plant Model and Problem Statement

Modeling a two-mass system can be achieved using several approaches. If the shaft is
long, axial, torsional and lateral vibrations occur, and distributed parameter models are
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recommended [43,44]. If delays connected with the oscillatory waves traveling through
the shaft are significant, neutral-type time-delay models [45,46] can be applied. But in
numerous applications such as robotic manipulators (and many others), when the flexible
joint is very compact, lumped parameter models obtained from Euler–Lagrange equations
are fully adequate.

Direct-drive permanent magnet motors commonly used in advanced two-mass drives
are very fast. Therefore, it is possible to assume that the torque/current control loop
operates approximately as a proportional element and that the desired current is an actual
control input of the plant. Of course, robustness against the unmodeled current control
loop dynamics should be investigated.

The assumption that both the motor and arm positions are measured is a little restric-
tive, but it is possible in numerous applications. For instance, more and more commercially
available complete robotic joints offer this opportunity (see TECHSOFT ROBOTS, Sierramo-
tion, Celera, etc.).

Friction is modeled as a nonlinear algebraic function of velocity, for instance, the
Stribeck curve, which is commonly acceptable [38].

The damping of the joint is assumed to be negligible. Finally, nonlinear stiffness is
modeled, according to the literature and our own experiments, as a nonlinear monotonically
increasing convex or concave curve with unknown parameters.

All these remarks justify the selected model of the two-mass drive presented below.
A load (for instance, a robotic arm) is modeled as a rigid body, according to Newton’s

dynamic principle:

.
φa = ωa,

Ja
.

ωa = S(φ)− TaTfa(ωa)− caωa − bM(φa),
(1)

where φa denotes the angular position of the load, ωa denotes the angular velocity and Ja
is the unknown inertia of the load. The remaining components in Equation (1) represent
the torques influencing the load. Thus, Ta, Tfa(ωa), caωa represent the friction affecting the
motion of the load. Parameters Ta, ca, are unknown. Function Tfa(ωa) is used to model the
nonlinear part of friction, for instance, to introduce the Stribeck curve effect. Component
bM(φa), where the coefficient b is unknown, characterizes the torque caused by any external
forces, like gravitation, etc. For instance, if the load is an arm situated as in Figure 1b and
works against gravity, we have M(φa) = sin αsin φa. Of course, it is possible to use more
than one unknown parameter to parameterize each of the torques affecting the motion, but
one parameter for each component representing the torque of a different physical nature is
enough because, finally, all components form a scalar function in Equation (1).

The propelling torque in Equation (1), transmitted by a flexible joint, is represented
by S(φ), where φ stands for the torsion angle caused by a flexible joint or shaft; it is the
angular displacement between the motor shaft position φm and the load position.

φ = φm − φa. (2)

This torque is modeled as a linear combination of a linear and nonlinear component:

S(φ) = p1 φ + p2Sn(φ) (3)

with unknown coefficients p1 > 0, p2, where the derivative dSn(φ)
dφ is bounded. It is assumed

that the damping in the flexible joint is negligible, so no torque proportional to
.
φ appears

in Equation (1).
Finally, the motoring part of the drive is described by

.
φm = ωm,

Jm
.

ωm = −S(φ)− TmTfm(ωm)− cmωm + kiir,
(4)
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where ωm is the motor angular velocity, Jm is the motor inertia, Tm Tfm(ωm) + cmωm
represents the motor friction analogously as in Equation (1) and kiir is the propelling torque,
proportional to the reference motor current ir. This assumption is valid for permanent
magnet synchronous motors (PMSMs) with surface-mounted permanent magnets (where
q- and d-axis inductances are equal) or for interior permanent magnet construction if the
d-axis current reference is zero. Parameters Jm, Tm, cm and ki are unknown. The proposed
model is a nonlinear two-mass system with unknown parameters. It includes a nonlinear
stiffness characteristic and nonlinear friction acting on both sides of a flexible joint. All
parameters are unknown, but of course, some estimations that can be used as the starting
values of adaptive parameters could be useful. The reference current ir is the input signal
to the current control loop, including a fast PI controller, so we can assume that the actual
current i equals the desired value ir ≈ i and that the electromagnetic torque is proportional
to the desired current.

The control’s aim is to follow a desired smooth position trajectory φd(t) with the actual
load position φa(t), despite the unknown parameters.

3. Adaptive Controller

Let us define the tracking error as

e = φd − φa (5)

and the augmented tracking error as

ea = e + τ0
.
e = φd − φa + τ0

( .
φd − ωa

)
. (6)

The tracking error e is the response of the inertial filter with the transfer function 1
sτ0+1 to

the input ea, so the filter time constant τ0 > 0 is the first design parameter. The controller is
derived in a recursive way, leading to successive control loops.

Loop 1

It follows directly from Equations (1) and (6) that

.
ea =

.
φd − ωa + τ0

..
φd −

τ0

Ja

(
p1 φ + p2Sn(φ)− TaTfa(ωa)− caωa − bM(φa)

)
. (7)

After introducing notation p21 := p2
p1

and assuming that the unknown parameter p21 is

substituted by the adaptive parameter p̂21, where
∼
p21 := p21 − p̂21 represents the adaptation

error, Equation (7) is transformed into

Ja

τ0 p1

.
ea =

Ja

p1

1
τ0

( .
φd − ωa + τ0

..
φd
)
− φ − p2

p1
Sn(φ) +

Ta

p1
Tfa(ωa) +

ca

p1
ωa +

b
p1

M(φa) (8)

and finally into the abbreviated form

Ja

τ0 p1

.
ea = θT

a ξa − φ − p̂21Sn(φ)− ∼
p21Sn(φ), (9)

where

θT
a =

[
Ja
p1

Ta
p1

ca
p1

b
p1

]
(10)

is the vector of the unknown parameters and

ξT
a =

[
1
τ0

( .
φd − ωa + τ0

..
φd
)

Tfa(ωa) ωa M(φa)
]

(11)

is formed by known functions. The unknown parameters θa are substituted by the adap-
tive parameters θ̂a, and the error of adaptation is denoted by

∼
θ a =θa − θ̂a. The signal
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ψ := φ + p̂21Sn(φ) (a virtual control in Equation (9)), is shaped to follow the desired tra-
jectory ψd (a stabilizing function) to stabilize Equation (9). The gap between ψd and ψ is
denoted by

eψ = ψd − ψ. (12)

Therefore, Equation (9) is considered in the form

Ja

τ0 p1

.
ea = θT

a ξa − ψd + eψ − ∼
p21Sn(φ). (13)

The stabilizing function is selected as

ψd = θ̂T
a ξa + kaea +

1
2

ea, (14)

where ka > 0 is the design parameter responsible for the final dynamics of the signal ea.
Component θ̂T

a ξa in (14) is supposed to cancel θT
a ξa in (13), and kaea +

1
2 ea is used to stabilize

ea. After plugging in the stabilizing Function (14) into Equation (13), we obtain

Ja

τ0 p1

.
ea = −kaea +

∼
θ

T

a ξa + eψ − ∼
p21Sn(φ)− 1

2
ea. (15)

Next, the dynamics of the error eψ must be considered. Instead of deriving an analytical
form of

.
ψd (necessary to find

.
eψ), to avoid an ‘explosion of complexity’, we introduce a

second-order linear filter, the first of two we plan to use, described by

.
z11 = z12,

.
z12 = 1

a12
(ψd − z11 − a11z12).

(16)

To make the design clearer, parameters a11, a12 are selected so that the filter character-
istic polynomial a12s2 + a11s + 1 possesses a double real negative pole −1

τ1
. In this case,

τ1 > 0 represents the filter time constant, and the characteristic polynomial becomes
M(s) = (τ1s + 1)2 = τ2

1 s2 + 2τ1s + 1. In Equation (16), we have a12 = τ2
1 , a11 = 2τ1,

a11
a12

= 2
τ1

. As the transient of the filter vanishes, z11 tends to ψd, so z12 tends to
.
ψd. We

introduce the following new variables:

ρψ = ψd − z11

ρψ1 =
.
ρψ =

.
ψd − z12

. (17)

The dynamic of the variables in (17) can be described by

.
ρψ = ρψ1

.
ρψ1 = − 1

τ2
1

ρψ − 2
τ1

ρψ1 +
..
ψd +

2
τ1

.
ψd

. (18)

Equation (18) can be rewritten in the following form:

.
ρ1 = Aρ1ρ1 + Bρ1

(
..
ψd +

2
τ1

.
ψd

)
= Aρ1ρ1 + Bρ1H1(∗) (19)

where

Aρ1 =

[
0 1

− 1
τ2

1
− 2

τ1

]
, Bρ1 =

[
0
1

]
, ρ1 =

[
ρψ

ρψ1

]
and H1 =

..
ψd +

2
τ1

.
ψd.
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After multiplying both sides by τ1, we have

τ1
.

ρ1 = Aρ1τ1ρ1 + Bρ1

(
τ1

..
ψd + 2

.
ψd

)
= Aρ1τ1ρ1 + Bρ1H1τ(∗) (20)

and H1τ = τ1
..
ψd + 2

.
ψd is a continuous function of variables φd,

.
φd,

..
φd, φ

(3)
d , φ

(4)
d , ea, ρ1,

as well as of some other variables, eψ f , eω f and
∼
θ a,

∼
p21, ρ2, which are defined during the

derivation of the controller. On any compact set, the function H1τ is bounded. In addition,
since |H1τ | decreases with decreasing τ1, for sufficiently small τ1 (τ1 < τ1su f ), we have
|H1τ(∗)| ≤ M1, and M1 does not depend on the filter parameter τ1.

Instead of investigating the error eψ, we define the filtered error as

eψ f = z11 − ψ (21)

which, because of (12) and (17), differs from eψ by component ρψ:

eψ f = z11 − ψ = z11 + eψ − ψd = eψ − ρψ ⇔ eψ = eψ f + ρψ. (22)

The substitution of (22) into (15) provides

Ja

τ0 p1

.
ea = −kaea +

∼
θ

T

a ξa + eψ f + ρψ − ∼
p21Sn(φ)− 1

2
ea. (23)

Loop 2

Next, using Equations (1), (2), (4) and (22), the behavior of eψ f can be described by

.
eψ f =

.
z11 −

.
ψ = z12 − d

dt (φ + p̂21Sn(φ))

= z12 − ωm + ωa −
.
p̂21Sn(φ)− p̂21

dSn(φ)
dφ (ωm − ωa)

= z12 −
(

1 + p̂21
dSn(φ)

dφ

)
ωm +

(
1 + p̂21

dSn(φ)
dφ

)
ωa −

.
p̂21Sn(φ).

(24)

We try to shape ωm (virtual control) to stabilize eψ f . The desired trajectory for ωm is denoted
by ωmd, and the tracking error is denoted by eω = ωmd − ωm. Therefore,

.
eψ f = z12 −

(
1 + p̂21

dSn(φ)
dφ

)
(ωmd − eω) +

(
1 + p̂21

dSn(φ)
dφ

)
ωa

−
.
p̂21Sn(φ).

(25)

The stabilizing function ωmd is supposed to stabilize the system described by Equations
(23) and (25); hence, it is selected as

ωmd = ωa +
1

1 + p̂21
dSn(φ)

dφ

(
z12 −

.
p̂21Sn(φ) + kψeψ f + ea

)
+

1
2

(
1 + p̂21

dSn(φ)

dφ

)
eψ f (26)

where kψ > 0 is the next design parameter responsible for the dynamics of eψ f . The
subsequent components in (26) are supposed to cancel unnecessary components in (25)
or stabilize systems (23) and (25), as becomes clear during the final Lyapunov function
investigation. The factor 1 + p̂21

dSn(φ)
dφ should be kept as far from zero as possible to

avoid singularity and high values of ωmd, and this is assured by the proper adaptation
of parameter p̂21. Under the stabilizing function ωmd defined in (26), the dynamics of eψ f
given by Equation (25) are reduced to

.
eψ f = −kψeψ f − ea +

(
1 + p̂21

dSn(φ)

dφ

)
eω − 1

2

(
1 + p̂21

dSn(φ)

dφ

)2
eψ f , (27)

so both components, −kψeψ f and − 1
2

(
1 + p̂21

dSn(φ)
dφ

)2
eψ f , work for the stabilization of eψ f .
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At the final stage of the design procedure, an investigation of eω is necessary, requiring
the derivative of ωmd. Again, analogous to the previous stage, to avoid an ‘explosion of
complexity’, the derivative is calculated with another filter defined by

.
z21 = z22,

.
z22 = 1

a22
(ωmd − z21 − a21z22).

(28)

Parameters a21, a22 are selected so that the filter characteristic polynomial a22s2 + a21s + 1
possesses a double real negative pole −1

τ2
. In this case, τ2 > 0 represents the filter time constant,

and the characteristic polynomial becomes M(s) = (τ2s + 1)2 = τ2
2 s2 + 2τ2s + 1, τ2 > 0. In

Equation (28), we have a22 = τ2
2 , a21 = 2τ2, a21

a22
= 2

τ2
. As the transient of the filter vanishes,

z21 tends to ωmd, so z22 tends to
.

ωmd. We introduce the following new variables:

ρω = ωmd − z21
ρω1 =

.
ωmd − z22

. (29)

The dynamic of the variables in (29) can be described by

.
ρω = ρω1.

ρω1 = − 1
τ2

2
ρω − 2

τ2
ρω1 +

..
ωmd +

2
τ2

.
ωmd

. (30)

Equation (30) can be rewritten in the following form:

.
ρ2 = Aρ2ρ2 + Bρ2

(
..
ωmd +

2
τ2

.
ωmd

)
= Aρ2ρ2 + Bρ2H2(∗) (31)

where Aρ2 =

[
0 1

− 1
τ2

2
− 2

τ2

]
, Bρ2 =

[
0
1

]
, ρ2 =

[
ρω

ρω1

]
and H2 =

..
ωmd +

2
τ2

.
ωmd.

After multiplying both sides of (31) by τ2, we have

τ2
.

ρ2 = Aρ2τ2ρ2 + Bρ2
(
τ2

..
ωmd + 2

.
ωmd

)
= Aρ2τ2ρ2 + Bρ2H2τ(∗) (32)

and H2τ = τ2
..
ωmd + 2

.
ωmd is a continuous function of variables φd,

.
φd,

..
φd, φ

(3)
d , φ

(4)
d , ea, eψ f ,

eω f ,
∼
θ a,

∼
p21,

∼
θ m, ρ1, ρ2. On any compact set, the function H2τ is bounded. In addition,

since |H2τ | decreases with decreasing τ2, for sufficiently small τ2 (τ2 < τ2su f ), we have
|H2τ(∗)| ≤ M2, and M2 does not depend on the filter parameter τ2.

Instead of investigating the error eω, we define the filtered error as

eω f = z21 − ωm (33)

which differs from eω by a constrained component:

eω f = z21 − ωm = z21 + eω − ωmd = eω − ρω ⇔ eω = eω f + ρω. (34)

The substitution of (34) into (27) provides

.
eψ f = −kψeψ f − ea +

(
1 + p̂21

dSn(φ)

dφ

)(
eω f + ρω

)
− 1

2

(
1 + p̂21

dSn(φ)

dφ

)2
eψ f . (35)

Loop 3

The transient of eω f , which evidently affects eψ f , is described by the following deriva-
tion using Equation (4):

Jm

ki

.
eω f =

Jm

ki

.
z21 −

Jm

ki

.
ωm =

Jm

ki
z22 +

p1

ki
φ +

p2

ki
Sn(φ) +

Tm

ki
Tfm(ωm) +

cm

ki
ωm − ir (36)
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and can be abbreviated to
Jm

ki

.
eω f = θT

mξm − ir, (37)

where

θT
m =

[
Jm
ki

Tm
ki

cm
ki

p1
ki

p2
ki

]
, ξT

m =
[
z22 Tfm(ωm) ωm φ Sn(φ)

]
. (38)

The vector of unknown parameters θm is substituted by adaptive parameters θ̂m, and the
error of adaptation is denoted by

∼
θ m =θm − θ̂m. (39)

The motor current, generating the propelling torque, must stabilize the complete system
described by Equations (23), (35) and (37). Therefore, the control signal ir is selected as

ir = θ̂T
mξm + kωeω f +

(
1 + p̂21

dSn(φ)

dφ

)
eψ f , (40)

where kω > 0 is a design parameter, and using Equation (40), (31) transforms into

Jm

ki

.
eω f = −kωeω f +

∼
θ

T

mξm −
(

1 + p̂21
dSn(φ)

dφ

)
eψ f . (41)

We introduce the notation ρτ1 = τ1ρ1, ρτ2 = τ2ρ2. The closed-loop system is described
by differential Equations (20), (23), (32), (35) and (41). We must also design adaptive
laws describing the behavior of adaptive parameters θ̂a, θ̂m and p̂21, as well as the dy-

namics of adaptation errors
∼
θ a,

∼
θ m,

∼
p21. The state variables of the closed-loop system are

ea, eψ f , eω f ,
∼
θ a,

∼
θ m,

∼
p21, ρτ1, ρτ2. Therefore, final conclusions regarding the stability of the

closed-loop system are derived from the analysis of the Lyapunov function, which, taking
into account the right sides of Equations (23) and (41), is selected as

V
(

ea, eψ f , e
ω f ,

∼
θ a,

∼
θ m,

∼
p21, ρτ1, ρτ2

)
= 1

2

(
Ja

τ0 p1
e2

a + e2
ψ f +

Jm
ki

e2
ω f

)
+ 1

2

(∼
θ

T

a Γ−1
a

∼
θ a +

1
γp

∼
p

2
21 +

∼
θ

T

mΓ−1
m

∼
θ m

)
+ ρT

τ1Q1ρτ1 + ρT
τ2Q2ρτ2

. (42)

The Lyapunov function is parameterized by γp > 0 and positive definite matrices Γa, Γm
and Q1, Q2. Parameters γp, Γa, Γm are design parameters and are used to tune adaptive
laws, but matrices Q1, Q2 are not used in the controller equations and can be defined
arbitrarily. This is shown in Appendix A, proving the main theorem. Parameters Ja

τ0 p1
and

Jm
ki

, which appear in the Lyapunov Function (42) (corresponding with the form of Equations
(23) and (41)), are unknown but positive, and this is sufficient to prove the stability, as
shown in Appendix A.

Finally, the selection of adaptive laws describing the behavior of the adaptive parameters
completes the derivation of the controller. We use robust adaptive control laws for θ̂m and θ̂a:

.
θ̂m = Γm

(
ξmeω f − σm θ̂m

)
,

.
θ̂a = Γa

(
ξaea − σa θ̂a

)
(43)

with small positive ‘leakage parameters’ σm, σa.
Special care is required for the adaptation of p̂21 because it appears in the denominator

of the stabilizing Function (26). Therefore, we use a projection operator:

.
p̂21 = γpProjpm ,pM (γ, p̂21) =


0 i f p̂21 ≤ pm and γ < 0
0 i f p̂21 ≥ pM and γ > 0

−γpγ otherwise
,

γ = −Sn(φ)ea − σP p̂21

(44)
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with parameters pm, pM and σP > 0. This adaptive law guarantees that pm ≤ p̂21 ≤ pM

and that
∼
p21

(
γ − Projpm ,pM (γ, p̂21)

)
≤ 0. (45)

Parameters pm, pM must be selected carefully to assure that, for a certain ε > 0,
∣∣∣1+ p̂21

dSn(φ)
dφ

∣∣∣ >
ε > 0.

The following theorem formulates conclusions regarding the stability of the closed
system and authorizes the use of the derived adaptive control.

Theorem 1. The controller defined by stabilizing functions (14) and (26), filters (18) and (30) and
the control (40), together with adaptive laws (43) and (44), ensures that the load position φa tracks
any sufficiently smooth desired trajectory and that the tracking error is SGUUB (semiglobally
uniformly ultimately bounded [47]), despite the parameters of the model (1)–(4) being unknown.
All closed-loop signals are bounded. The proper choice of design parameters allows narrowing the
set of attraction for uniformly ultimately bounded trajectories.

The proof of the theorem is given in Appendix A.

4. Experimental Verification
4.1. Laboratory Stand

The laboratory stand used to verify the proposed controller is presented in Figure 2a.
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Figure 2. (a) Laboratory stand used to verify the proposed controller (explanations in the text) and
(b) the identified joint stiffness characteristics.

The robotic arm (#1) is propelled by a permanent magnet synchronous motor AKM2G-
41-P (#2) manufactured by Kollmorgen (Marengo, IA, USA). The flexible joint is completed
by a polyurethane short shaft (#3) (length 45 mm, diameter 18 mm) and two elastic cou-
plings. The arm position is measured by an encoder LIKA C80 (#4) (by Lika Electronic,
Carrè, Italy). The motor position is measured by the built-in motor encoder. The resolution
of both encoders is 2π/213rad. The motor is controlled by a PWM inverter controller
AKD-T02406 (Kollmorgen, Radford, VA, USA) using only the current control loop, with
the desired current ir as the plant input. It is initially assumed that the current control
loop works perfectly, so i = ir. The feedback signals φa, φm are encoder outputs. The
motor and arm angular velocities are calculated from the encoder data by inertial differ-
entiating filters with time constants of 1 ms (for the motor) and 5 ms (for the arm). The
complete adaptive algorithm is implemented with MicroLabBox DS1202 (dSPACE GmbH,
Paderborn, Germany).

4.2. Plant Modeling

The model (1)–(4) of the plant was compared with the measurement results. The
final model parameters were tuned after performing several step response experiments
and curve fitting via genetic optimization. This was performed using the Simulink and
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Optimization and Global Optimization toolboxes from Matlab ver. 2020a. But first, the
structure of the model and the initial values of the parameters must be selected.

One can expect that the friction affecting the motor and the arm is quite a compli-
cated nonlinear phenomenon, especially for small velocity values. Unfortunately, the
identification of a complete Stribeck curve, which definitely comes out in real bearings,
requires tedious experiments with precise velocity measurements. Therefore, for design
purposes, the friction model is simplified to the form cmωm+Tmtanh(Kmωm) for the motor
and, analogously, caωa+Tatanh(Kaωa) for the arm.

The current control loop is simplified to a proportional block i = ir, and the torque
constant in Equation (4) is known from the motor data: ki = 0.147 Nm/A. This can be
a good initial guess for the unknown ki. Although no adaptive parameter represents ki

explicitly, ki appears in the set of parameters
[

Jm
ki

Tm
ki

cm
ki

p1
ki

p2
ki

]
, which are substituted

by adaptive parameters θ̂m.
Because of the position of the drive, the action of gravity is modeled by bM(φa) = bsin φa.
The transmitted torque model (3) is slightly modified to include the damping:

S
(

φ,
.
φ
)
= p1 φ + p2Sn(φ) + β

.
φ. (46)

The step responses of the drive were determined for the constant desired currents ir =
0, 1, 2, . . . , 9 A, corresponding to steady-state torques from 0 to 1.32 Nm. For each
experiment, the steady state values of positions φa, φm were recorded, and the corre-
sponding transmitted torque was calculated. The obtained data points are presented
in Figure 2b. The linear mean square approximation of the obtained data by S(φ, 0) =
p1 φ + p2Sn(φ) = p1 φ + p2 tanh(φ)φ2 provides [p1, p2] = [0.731,−0.0704] for the medium
shaft, [p1, p2] = [2.3445,−0.8768] for the hard shaft and [p1, p2] = [0.2815,−0.0136] for
the soft shaft. The obtained stiffness characteristics S(φ, 0) are plotted in Figure 2b. The
stiffness curve was identified several times for a new shaft and after several periods of
exploitation of the drive. The shape of the curve remained unchanged, and the identi-
fied parameters agreed with the limits of numerical precision. The external temperature
may have had some influence on the stiffness curve parameters, but the adaptive control
algorithm derived here was able to compensate for such changes.

The stiffness of the shaft has a decisive influence on the behavior of the drive, which is
shown in Figure 3, presenting the angle of the shaft torsion during the step response for
different couplings.
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The initial values of parameters Jm, Tm, cm, Ja, Ta, ca and β were obtained from the
motor data and geometry of the arm. The final values of parameters were calculated from
the step responses of the open-loop drive via curve fitting with genetic optimization. The
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initial and the final values of parameters are presented in Table 1. The medium flexible
shaft was used during those experiments.

Table 1. Model parameters.

Parameter Initial Final

Jm 7.74 × 10−5 kgm2 7.6 × 10−5 kgm2

Tm 0.023 Nm 0.0106 Nm
cm 4.3 × 10−5 Nms/rad 9.5 × 10−5 Nms/rad
Ja 0.0264 kgm2 0.0271 kgm2

Ta 0.019 Nm 0.0158 Nm
ca 7.1 × 10−3 Nms/rad 8.8 × 10−3 Nms/rad
β 0 0.0022 Nms/rad
b 1.36 Nms/rad 1.347 Nms/rad

The obtained model of the drive was compared with the data obtained from the open-
loop experimental system. In Figure 4, the measured position of the motor and the shaft is
compared with those calculated by the model.
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Figure 4. Step response of the model and the real plant, ir = 7A—motor and arm position for the
model and the plant.

Figure 5 demonstrates the model and the plant response for a variable frequency
signal ir(t) = 2sin

(
2π
(

10
3t

100−1
)

t
)

; the frequency is changed logarithmically from 0.1 Hz
to 100 Hz.

The presented experiments can be summarized by stating that the accuracy of the
obtained model is sufficient but not perfect.
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(

2π
(
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4.3. Numerical Experiments

Before implementing the derived adaptive controller for the real drive, several simu-
lation experiments were conducted to tune the parameters initially and to test the main
features of the controller. The simulations were performed using Simulink ver. 10.1. This
software allows the generation of code executable by an dSPACE DS1102 DSP board
(dSPACE GmbH, Paderborn, Germany). The controller parameters are collected and de-
scribed in Table 2.

Table 2. Controller design parameters.

Parameters Responsibility Values (in Proper SI Units)

τ0 Augmented error filter time constant τ0 = 1

ka, kψ , kω

Error feedback gains, decreasing
steady-state error, shortening the system

transient, increasing control values
ka,= kψ = kω = 1

τi i = 1, 2 Time constants of differentiating filters τi = 10−4, i = 1, 2

γp > 0 and positive definite matrices
Γa, Γm

Lyapunov function coefficients,
increasing the speed of adaptation

γp = 0.01
Γa = diag([0.03, 0.1, 0.03, 1])

Γm = diag
([

10−6, 10−2, 10−4, 1, 0.1
])

σa, σm, σP

Small, positive ‘leakage’ parameters for
adaptive laws; make adaptive laws more
robust, and if too big, they can increase

the quasi-steady-state error

σa = σm = σP = 0.001

pm, pM
Projection parameters for the adaptation
of p̂21 must be selected carefully to assure

that
∣∣∣1 + p̂21

dSn(φ)
dφ

∣∣∣ > ε > 0

pm = 1.5 p2
p1

, (p2 < 0)

pM = 1000;

θ̂a(0), θ̂m(0), p̂12(0)

Initial conditions for adaptive
parameters; should be selected to estimate[

Ja
p1

Ta
p1

ca
p1

b
p1

] [
Jm
ki

Tm
ki

cm
ki

p1
ki

p2
ki

]
and p2

p1

Zero
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During the first simulation, the plant was modeled by Equations (1)–(4) with the
parameters obtained in Section 4.2. The arm was supposed to track the desired position
trajectory φd = 2sin(t)[rad]. This demonstrates the typical operation of a robotic servo.
The initial values of the adaptive parameters were selected as zero, thereby modeling the
complete ignorance of the real parameters. The remaining controller parameters were
taken from Table 2. As demonstrated in Figure 6, the system operates properly—all
errors approach zero (actually, ~3·10−4[rad] for t > 1000 s because of a rather large filter
time constant).
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Figure 6. Tracking errors e, ea, eψ f , eω f .

The history of the adaptive parameters referred to the exact values, i.e.,

θ
T
a = θ̂T

a ./
[

Ja
p1

Ta
p1

ca
p1

b
p1

]
,

θ
T
m = θ̂T

m./
[

Jm
ki

Tm
ki

cm
ki

p1
ki

p2
ki

]
, p21 = p̂21

p21
,

(47)

(./ stands for element-wise division) is presented in Figure 7. The adaptive parameters, as
demonstrated in Figure 7, approach the exact values if the leakage parameters σa, σm, σP
are zero, which proves that the controller is properly derived. This is a typical feature
of non-robust adaptive laws in the presence of persistent excitation. But in this case, the
adaptation is performed by a pure integrator, and this may result in the uncontrolled drift
of the adaptive parameter in a real system. Therefore, small positive leakage parameters
σa, σm, σP are used, which stabilize the adaptive laws (43)–(44), but in the case of very
small tracking errors, the adaptive parameters approach zero. This is demonstrated in
Figure 8. In a real system, the convergence of adaptive parameters to exact values is not as
important as robustness. It is critical that the adaptive parameters remain bounded during
the whole transient, as demonstrated in Figures 7 and 8. The current also remains inside
the constraints imposed by a real motor.

The controller was derived for a plant without damping in the shaft: β = 0. The same
controller was applied for the plant with damping ( β = 0.0022 Nms/rad). It is visible
in Figure 9 that the closed-loop system is robust in the presence of such unmodeled
damping; the resulting quasi-steady-state error (oscillating slowly) is smaller than four
times the encoder resolution. In a real system, we can expect more disruptive factors like
discretization, on-line differentiation, unmodeled friction, etc.
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Figure 9. Tracking error for the plant with and without damping.

The subsequent experiments investigated the robustness against possible errors in the
stiffness modeling. The selection of the approximating function Sn(φ) used in the control
algorithm is always an arbitrary decision, and one can wonder how much it influences
the closed-loop system’s performance. Therefore, we consider three cases: when the
stiffness characteristics of the plant is linear (p2 = 0), convex (p2 = 0.0704) and concave
( p2 = −0.0704). For each of these three cases, the following models were used in turn in
the control algorithm:

• Sn(φ) = 0, which means that the controller does not attempt to compensate for the
stiffness nonlinearity;

• Sn(φ) = tanh(φ)φ2, which means that the controller is able to compensate for the
stiffness nonlinearity exactly, if the adaptive parameters are tuned properly;

• Sn(φ) = φ3, which means that the controller uses the wrong nonlinear model to
compensate for the stiffness nonlinearity of the plant.
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The RMSE for the tracking error e calculated for an interval of 20 s during a quasi-
steady-state for all nine combinations is presented in Table 3. The initial value of the
adaptive parameters was zero for all cases. The plots corresponding to the values presented
in Table 3 are given in Figure 10.

Table 3. RMSE [rad] for the tracking error e calculated for an interval of 20 s during a quasi-
steady state.

Plant Stiffness Characteristics:
S(φ)=p1φ+p2Sn(φ)=p1φ+p2tanh(φ)φ2

Stiffness Nonlinearity Model Used
by the Controller p2= 0 p2=−0.0704 p2=0.0704

Sn(φ) = 0 0.000861 0.0180 0.00533
Sn(φ) = tanh(φ)φ2 0.000851 0.0014 0.00051

Sn(φ) = φ3 0.000847 0.0023 0.00057
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If the plant stiffness characteristics are linear, it is not necessary to include a nonlinear
model in the controller, so it is not surprising that all three controllers perform similarly.
Simply, adaptive parameters corresponding to p2 are kept close to zero.

If the plant stiffness characteristics are nonlinear, it is smart to include any nonlinear
model with similar characteristics. If the model is properly guessed (Sn(φ)= tanh(φ)φ2),
the RMSE is the smallest. If the model is inaccurate (Sn(φ) = φ3), the RMSE is twice
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as big, but the error waveform is similar. If the model neglects the stiffness nonlinearity
(Sn(φ) = 0), the RMSE and the amplitude of the error are 10 times bigger.

4.4. Real Experiments

After carrying out the numerical experiments, the proposed controller was imple-
mented in a real controller with a real plant. Of course, it is impossible to obtain exactly
the same results in a real plant like in a simulation. Many additional factors, such as the
coupling elasticity, nonlinear current–torque characteristics and unmodeled friction, affect
a real plant. The parameters of the controller were the same as those during the simulation
(Table 2) except σP = 0.01. Real experiments were carried out for three shafts differing in
stiffness (Figure 11). It is assumed that the initial values of the adaptive parameters θ̂a(0)
are zero. The initial values of the adaptive parameters concerning the motor were taken
from the documentation. The initial values of the parameters of the elastic shaft were also
equal to zero, so p̂21(0) = 0 and θ̂m(0) =

[
5·10−4, 7·10−2, 6·10−4, 0, 0

]
.
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Figure 11. Laboratory stand with three different elastic shafts: soft (red), medium (green) and
hard (yellow).

Examples of plots collected during the run of the robotic arm are presented below.
Figures 12–14 demonstrate the tracking error e for different shafts. After the initial part

of the transient, the error e reaches a quasi-steady state. In the steady state, the error does
not exceed 0.1 [rad] for the soft shaft and 0.05 [rad] for the hard and medium shafts. The
adaptive parameters remain bounded, as demonstrated by the plots of

∥∥θ̂a
∥∥,
∥∥θ̂m

∥∥, | p̂m21|.
A comparison of angles φa and φm indicates that the torsion angle of the shaft reaches
up to 3 [rad], so the shaft works in the nonlinear part of the characteristic, as shown in
Figure 2b. The upper figures demonstrate the complete tracking history: the transient,
the period of fast-changing adaptive parameters and the quasi-steady state with almost
constant adaptive parameters. The lower figures present the initial period of the position
and current time history. After 15–30 s, the plots of the desired and actual values overlap.
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4.5. Comparison with Previous Results

The controller derived in this paper (denoted by AB) was compared with the other
one (denoted as PP):

ir = −k1(φa − φd)− k2
(
ωa −

.
φd
)
− k3

(
φm − φd − b

p sin(φd)
)

−k4

(
ωr −

.
φd − b

p cos(φd)
.
φd

)
+ bsin(φa).

(48)

Controller PP is derived from a linear model of the drive. Gains k1 = 3.57, k2 = 0.42, k3 =
0.20, k4 = 0.01 were selected to place the closed-loop poles at [−20, −30, −40, −50]. This
control concept was presented in [42] and modified in [41]. Our modification relies on using
pole placement to calculate the gains. The original approach, based on the inertia of the
load, provides a very slow response for the drive. The selection of the poles’ positions was
motivated by obtaining a fast a-periodical transient with gains that are acceptable in a real
plant, as was achieved using the AB controller. Both controllers, PP and AB, use the same
measured outputs of the drive. Controller PP is not an adaptive one, and its operation without
accurate drive parameters is impossible. The operation of the controllers was compared
using reference signals, as presented in Figure 15. First, simulations for the medium shaft
(p1 = 0.731) were performed for different stiffness characteristics: linear (p2 = 0) and
nonlinear (p2 = −0.0704). The results are presented in Table 4.

Table 4. Tracking RMSE [rad] for different stiffnesses.

RMSE for 1 Revolution PP AB

Linear stiffness 0.0064 0.0063
Nonlinear stiffness 0.0221 0.0063

As follows from the data presented in Table 3, if the stiffness characteristics are linear,
the operation of both controllers is similar. In the case of nonlinear stiffness, the controller
derived here (AB) outperforms PP, achieving an RMSE that is three times smaller. Next,
both controllers were tested with a real drive. As demonstrated in Figure 15, the controller
derived here provides an amplitude for the quasi-steady-state tracking error that is twice
as small. Moreover, the tracking accuracy is continuously improved when the adaptation
goes on.
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Figure 15. Desired acceleration
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φd, velocity
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φd, position φd, load position φa and tracking error e for

the AB and PP controllers.

The tracking accuracy of the PP controller deteriorates if the nonlinear stiffness appears
(despite all other parameters being known exactly), and the adaptive controller AB keeps
the tracking error low.

Also, for the real plant, when many parameters are not known precisely and many
other factors deteriorate the performance of both controllers, the AB controller outperforms
the PP controller, offering a better tracking quality with the same measurements and motor
current constrains.

It was checked whether the operation of each controller could be improved by better
selection of the parameters. For the same reference as in Figure 15, and taking into account
encoder quantization, each controller was optimized using the Matlab Global Optimization
toolbox from Matlab ver. 2020a (procedure gamultiobj). For the PP controllers, the decision
parameters were the poles’ positions (each inside the interval [−200, −10]), and for the AB
controller, the parameters were τ, ka, kψ, kω (within [0.01, 200]). The objectives were the
tracking RMSE (as in Table 4) and

∫ to+tr
to

i2r (t)dt, where tr is the time required to perform a
revolution of 360o. Multicriterial genetic optimization was performed with the parameters
of PopulationSize = 100 and MaxGenerations = 50. The obtained Pareto fronts are presented
in Figure 16.
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It is visible that, if the PP controller is used, decreasing the tracking error requires
much higher energy consumption. In addition, smaller values of the tracking RMSE
are unavailable because of current constraints, and the AB controller achieves a smaller
tracking RMSE with practically the same current. Also, the comparison of the current plots
corresponding to the same tracking RMSE proves the superiority of the AB controller over
the PP one.

5. Conclusions

A new, adaptive, position-tracking controller for a two-mass drive with a flexible joint
possessing a nonlinear stiffness characteristic is presented. The control was derived in a
strictly mathematical manner and tested via implementation in a DSP system controlling a
real drive.

The derived nonlinear adaptive controller ensures accurate tracking of the desired
position despite the unknown parameters of the motor and the load. It operates correctly,
even if the applied joint is very flexible, allowing for high torsion angle values. It is shown
that taking into account the nonlinear stiffness characteristics allows for a several-fold
reduction in the tracking error, compared to the results obtained assuming that the stiffness
coefficient is constant and that the transmitted torque is proportional to the torsion angle.

The application of several smart design techniques, such as using an augmented
tracking error, virtual control command filtering and robust adaptive laws, allowed for the
simplification of the controller and enabled its implementation in a real plant using a DSP
processor. It was demonstrated that the implemented controller is robust against discretiza-
tion and modeling errors, concerning friction, shaft damping, current–loop dynamics, etc.
Second-order differentiator filters used to compute virtual control derivatives enabled
smoother control, although this approach complicated the derivation compared to the
first-order filter technique. The experiment proved that the adaptive mechanism is strong
enough to cope with changing the flexible joint to another with different characteristics.

Of course, some decisions, like the type of adaptive laws used, tuning techniques, etc.,
are arbitrary, and further research can be conducted on their impact on the overall system
performance.
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Appendix A

In the first step, we formulate Lemma A1, describing the properties of the proposed
linear second-order filters.

Lemma A1. For a linear system described by the equation

.
x = Ax + Bu (A1)

where

A =

[
0 1

− 1
τ2 − 2

τ

]
, B =

[
0
1

]
, τ > 0
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1. Matrix A has a double eigenvalue − 1
τ .

2. For any k0 > 0, there exists τk0 > 0 such that, for any 0 < τ < τk0 , matrix A+ k0
2 I2 is stable.

3. For any w > 0, there exists τw > 0 such that, for any 0 < τ < τw, there exists a positive
definite solution Q for the Lyapunov equation:(

AT +
k0

2
I2

)
Q + Q

(
A +

k0

2
I2

)
= −wI2 (A2)

4. For any C > 0 and w > 1
2 , there exists τCw > 0 such that, for any 0 < τ < τCw, the matrix

R =

(
AT +

k0

2
I2

)
Q + Q

(
A +

k0

2
I2

)
+ CQBBTQ +

1
2

I2 (A3)

is negative definite.

Proof of Lemma A1.

1. The eigenvalues of matrix A are the roots of the characteristic polynomial

M(s) = det(sI2 − A) = det
[

s −1
1

τ2 s + 2
τ

]
= s2 +

2
τ

s +
1
τ2 =

(
s +

1
τ

)2
. (A4)

Polynomial (A4) possesses a double root s = − 1
τ , so matrix A has a double eigen-

value − 1
τ .

2. The characteristic polynomial of the matrix

A1 = A +
k0

2
I2 =

[
k0
2 1

− 1
τ2

k0
2 − 2

τ

]
(A5)

is

M(s) = det(sI2 − A1) =

∣∣∣∣∣s − k0
2 −1

1
τ2 s + 2

τ − k0
2

∣∣∣∣∣ = (s − k0
2

)(
s + 2

τ − k0
2

)
+ 1

τ2

= s2 +
( 2

τ − k0
)
s + (k0τ−2)2

4τ2 =
(

s − k0τ−2
2τ

)2
(A6)

Polynomial (A6) possesses a double root s = k0τ−2
2τ , which is stable if the condition k0τ −

2 < 0 is fulfilled. So, τk0 = 2
k0

.

3. If the condition τk0 < 2 is met, the matrix
(

A + k0
2 I2

)
is stable, so for any w > 0, there

exists a unique positive definite solution Q =

[
q1 q2
q2 q3

]
for the Lyapunov equation:

(
AT +

k0

2
I2

)
Q + Q

(
A +

k0

2
I2

)
= −wI2 (A7)

which has the form
q2 = wτ

(k0τ2−4τ−k0)
(τk0−2)3

q3 = wτ
((k0τ2−4τ−k0)(k2

0τ2−2k0τ+2)−τ (τ k0−2)3)
k0(τk0−2)3

q1 = −w(k0τ2−4τ−k0)
(τk0−2)2 + 1

τ w (k0τ2−4τ−k0)(k2
0τ2−2k0τ+2)−τ(τk0−2)3

k0(τk0−2)3

. (A8)

So, τw = τk0 .
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4. Matrix QBBTQ has the form

P = QBBTQ =

[
q1 q2
q2 q3

][
0
1

][
0 1

][q1 q2
q2 q3

]
=

[
q2
q3

][
q2 q3

]
=

[
q2

2 q2q3
q2q3 q2

3

]
. (A9)

The eigenvalues of matrix P can be determined from the characteristic equation

det(sI2 − P) =
∣∣∣∣s − q2

2 −q2q3
−q2q3 s − q2

3

∣∣∣∣ = (s − q2
2
)(

s − q2
3
)
− q2

2q2
3 = s2 −

(
q2

2 + q2
3
)
s

= s
(
s −

(
q2

2 + q2
3
))

= 0.
(A10)

The minimal eigenvalue of P equals zero, and the maximal eigenvalue λM equals

λM(P) = q2
2 + q2

3 =

(
wτ

(k0τ2−4τ−k0)
(τk0−2)3

)2

+

(
wτ

((k0τ2−4τ−k0)(k2
0τ2−2k0τ+2)−τ (τ k0−2)3)
k0(τk0−2)3

)2

= w2τ2

((
k0(k0τ2−4τ−k0)

k0(τk0−2)3

)2

+

(
((k0τ2−4τ−k0)(k2

0τ2−2k0τ+2)−τ (τ k0−2)3)
k0(τk0−2)3

)2
)

= w2τ2 (k0τ2−4τ−k0)
2

k2
0(τk0−2)6

[
k2

0

+
((

k2
0τ2 − 2k0τ + 2

)
− τ (τ k0 − 2)3

)2
]
= w2τ2 f (τ)

(A11)

where f (τ) = (k0τ2−4τ−k0)
2

k2
0(τk0−2)6

[
k2

0 +
((

k2
0τ2 − 2k0τ + 2

)
− τ (τ k0 − 2)3

)2
]

.

For any ϵ > 0 and τk0 < 2 − ϵ, the function f (τ) is bounded by F = f
(

2−ϵ
k0

)
> 0. In

addition, τ → 0 decreases monotonically to f (0) = 1
26

[
k2

0 + 2
]
, so

lim
τ→0

λM(P) = w2 lim
τ→0

τ2 f (τ) = 0. (A12)

Matrix R =
(

AT + k0
2 I2

)
Q + Q

(
A + k0

2 I2

)
+ CQBBTQ + 1

2 I2 = CQBBTQ +
(

1
2 − w

)
I2 is

negative definite if the condition

CλM

(
QB1BT

1 Q
)
+

(
1
2
− w

)
= Cw2τ2 f (τ) +

(
1
2
− w

)
< 0 (A13)

is met. Since the function f (τ) is bounded, the inequality

Cw2τ2 f (τ) +
(

1
2
− w

)
≤ Cw2τ2F +

(
1
2
− w

)
(A14)

is true. If the inequality τ2 <
w− 1

2
Cw2F is true, inequality (A13) is true, so τCw = min

{
2−ϵ
k0

,

√
w− 1

2
Cw2F

}
.

□

Lemma A2. For any scalar χ, column vectors α and β and any ε > 0, we have χαT β + χβTα ≤
χ2

ε

(
αT β

)2
+ ε = χ2

ε αT ββTα + ε = χ2

ε βTααT β + ε.

Proof of Lemma A2. Indeed, 2χαT β = χ2

ε

(
αT β

)2 −
(

χ√
ε
αT β −

√
ε
)2

+ ε ≤ χ2

ε

(
αT β

)2
+ ε.

□
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Proof of Theorem1. We consider the Lyapunov function defined by Equation (42). Let us
repeat that the symmetric positive definite matrices Q1 and Q2 are not specified yet and
are not used in the designed controller equations.

The derivative of the Lyapunov function along the system trajectories is given by

.
V = ea

Ja
τ0 p1

.
ea + eψ f

.
eψ f + eω f

Jm
ki

.
eω f +

∼
θ

T

a Γ−1
a

.
∼
θ a +

1
γp

∼
p21

.
∼
p21 +

∼
θ

T

mΓ−1
m

.
∼
θ m

+
.
ρ

T
τ1Q1ρτ1 + ρT

τ1Q1
.
ρτ1 +

.
ρ

T
τ2Q2ρτ2 + ρT

τ2Q2
.
ρτ2.

(A15)

After substituting Equations (20), (23), (32), (35) and (41) into (A15), we obtain

.
V = ea

(
−kaea +

∼
θ

T

a ξa + eψ f + ρψ − ∼
p21Sn(φ)− 1

2 ea

)
+eψ f

(
−kψeψ f − ea +

(
1 + p̂21

dSn(φ)
dφ

)(
eω f + ρω

)
− 1

2

(
1 + p̂21

dSn(φ)
dφ

)2
eψ f

)
+ eω f

(
−kωeω f +

∼
θ

T

mξm −
(

1 + p̂21
dSn(φ)

dφ

)
eψ f

)
+

∼
θ

T

a Γ−1
a

.
∼
θ a

+ 1
γp

∼
p21

.
∼
p21 +

∼
θ

T

mΓ−1
m

.
∼
θ m + ρT

τ1 AT
ρ1Q1ρτ1 + ρT

τ1Q1 Aρ1ρτ1 + BT
ρ1Q1ρτ1H1τ

+ρT
τ1Q1Bρ1H1τ + ρT

τ2 AT
ρ2Q2ρτ2ρT

τ2Q2 Aρ1ρτ2 + BT
ρ2Q2ρτ2H2τ

++ ρT
τ2Q2Bρ2H2τ .

(A16)

Components BT
ρiQiρτi Hiτ + ρT

τiQ1Bρi Hiτ , i = 1, 2, which are linear in ρτi, must be con-
strained by quadratic forms with respect to ρτi. This is performed by applying Lemma
A2 to each of the components i = 1, 2. Also, taking into account that all parameters are

constant, we have
.
∼
θ a = −

.
θ̂a,

.
∼
θ m = −

.
θ̂m,

.
∼
p21 = −

.
p̂21. Hence, Equation (A16) can be

reduced to obtain an inequality:

.
V ≤ −kae2

a − kψe2
ψ f − kωe2

ω f −
1
2
(
ea − ρψ

)2
+ 1

2 ρ2
ψ + 1

2 ρ2
ω+

− 1
2

((
1 + p̂21

dS2(φ)
dφ

)
eψ f − ρω

)2
+

∼
θ

T

m

(
ξmeω f − Γ−1

m

.
θ̂m

)
+

−∼
p21

(
1

γp

.
p̂21 + Sn(φ)ea

)
+

∼
θ

T

a

(
ξaea − Γ−1

a

.
θ̂a

)
+ρT

τ1 AT
ρ1Q1ρτ1 + ρT

τ1Q1 Aρ1ρτ1 +
H2

1τ
ε1

ρT
τ1Q1Bρ1BT

ρ1Q1ρτ1 + ε1

+ρT
τ2 AT

ρ2Q2ρτ2 + ρT
τ2Q2 Aρ2ρτ2 +

H2
2τ

ε2
ρT

τ2Q2Bρ2BT
ρ2Q2ρτ2 + ε2

(A17)

for any ε1 > 0 and ε2 > 0.
After substituting the adaptive laws (43) and (44) into (A17), we obtain

.
V = −kae2

a − kψe2
ψ f − kωe2

ω f −
1
2
(
ea − ρψ

)2
+ 1

2 ρ2
ψ + 1

2 ρ2
ω

− 1
2

((
1 + p̂21

dS2(φ)
dφ

)
eψ f − ρω

)2
+ σm

∼
θ

T

m θ̂m + σa
∼
θ

T

a θ̂a

−∼
p21

(
Projpm ,pM (γ, p̂21) + Sn(φ)ea

)
+ ρT

τ1 AT
ρ1Q1ρτ1 + ρT

τ1Q1 Aρ1ρτ1

+
H2

1τ
ε1

ρT
τ1Q1Bρ1BT

ρ1Q1ρτ1 + ε1 + ρT
τ2 AT

ρ2Q2ρτ2 + ρT
τ2Q2 Aρ2ρτ2

+
H2

2τ
ε2

ρT
τ2Q2Bρ2BT

ρ2Q2ρτ2 + ε2.

(A18)
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Using (44) and (45), we obtain

−∼
p21

(
Projpm ,pM (γ, p̂21) + Sn(φ)ea

)
=

∼
p21

(
−Sn(φ)ea − σP p̂21 − Projpm ,pM (γ, p̂21)

)
+ σP

∼
p21 p̂21

=
∼
p21

(
γ − Projpm ,pM (γ, p̂21)

)
+ σP

∼
p21 p̂21 ≤ σP

∼
p21 p̂21.

(A19)

Because

∼
θ

T

m θ̂m ≤ −1
2

∼
θ

T

m
∼
θ m +

1
2

θT
mθm,

∼
θ

T

a θ̂a ≤ −1
2

∼
θ

T

a
∼
θ a +

1
2

θT
a θa,

∼
p21 p̂21 ≤ −1

2
∼
p

2
21 +

1
2

p2
21, (A20)

it follows from (A19) and (A20) that

.
V ≤ −kae2

a − kψe2
ψ f − kωe2

ω f −
σa
2

∼
θ

T

a
∼
θ a − σm

2

∼
θ

T

m
∼
θ m − σP

2
∼
p

2
21 +

σm
2 θT

mθm + σa
2 θT

a θa

+ σP
2 p2

21 + ρT
τ1 AT

ρ1Q1ρτ1 + ρT
τ1Q1 Aρ1ρτ1 +

H2
1τ

ε1
ρT

τ1Q1Bρ1BT
ρ1Q1ρτ1 + ε1

+ρT
τ2 AT

ρ2Q2ρτ2 + ρT
τ2Q2 Aρ2ρτ2 +

H2
2τ

ε2
ρT

τ2Q2Bρ2BT
ρ2Q2ρτ2 + ε2

+ 1
2 ρT

τ1ρτ1 +
1
2 ρT

τ2ρτ2.

(A21)

Let us assume that the desired trajectory is smooth enough in the sense that φd and its
derivatives are bounded. Therefore, there exists R0 > 0 such that, for any t ≥ 0, the five(

φd,
.
φd,

..
φd, φ

(3)
d , φ

(4)
d

)
belong to a compact set

B0 :=
{(

φd,
.
φd,

..
φd, φ

(3)
d , φ

(4)
d

)
: φ2

d +
.
φ

2
d +

..
φ

2
d +

(
φ
(3)
d

)2
+
(

φ
(4)
d

)2
≤ R2

0

}
⊂ R5.

Let us consider any arbitrary but specified r > 0 and any trajectory
(

ea, eψ f , e
ω f ,

∼
θa,

∼
θm,

∼
p21, ρτ1, ρτ2

)
starting inside the compact set B1 :=

{(
ea, eψ f , e

ω f ,
∼
θa,

∼
θm,

∼
p21, ρτ1, ρτ2

)
: V ≤ 2r

}
⊂ R17.

Functions H1τ and H2τ defined by (20) and (32) are bounded as continuous functions of

φd,
.
φd,

..
φd, φ

(3)
d , φ

(4)
d , ea, eψ f , e

ω f ,
∼
θ a,

∼
θ m,

∼
p21, ρτ1, ρτ2 on a compact set B0 × B1 ⊂ R22; there-

fore, if the argument ∗ ∈ B0 × B1, then |H1τ(∗)| ≤ M1 and |H2τ(∗)| ≤ M2. For sufficiently
small τ1 and τ2, constraints M1 and M2 do not depend on τ1 and τ2.

Hence, by calculating the Lyapunov function derivative along any trajectory in B1, we have

.
V ≤ − 2kaτ0 p1

Ja
Ja

2τ0 p1
e2

a − 2kψ
1
2 e2

ψ f −
2kikω

Jm
Jm
2ki

e2
ω f −

σa
2λM(Γ−1

a )

∼
θ

T

a Γ−1
a

∼
θ a

− σm
2λM(Γ−1

m )

∼
θ

T

mΓ−1
m

∼
θ am − γpσP

2
1

γp

∼
p

2
21

+ρT
τ1

(
AT

ρ1Q1 + Q1 Aρ1 +
M2

1
ε1

Q1Bρ1BT
ρ1Q1 +

1
2 I2

)
ρτ1

+
H2

1τ−M2
1

ε1
ρT

τ1Q1Bρ1BT
ρ1Q1ρτ1

+ρT
τ2

(
AT

ρ1Q2 + Q2 Aρ1 +
M2

2
ε2

Q2Bρ2BT
ρ2Q2 +

1
2 I2

)
ρτ2

+
H2

2τ−M2
2

ε2
ρT

τ2Q2Bρ2BT
ρ2Q2ρτ2 + Ω

(A22)

where the operator λM(·) states the maximum eigenvalue of a symmetric matrix and
Ω = σm

2 θT
mθm + σa

2 θT
a θa +

σP
2 p2

21 + ε1 + ε2. Let wi > 1
2 , i = 1, 2. According to Lemma

A1, for any k0 > Ω
r > 0, there exist sufficiently small τi > 0, i = 1, 2, such that the

Lyapunov equation (
AT

ρi +
k0

2
I2

)
Qi + Qi

(
Aρi +

k0

2
I2

)
= −wi I2 (A23)
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possesses a positive definite solution Qi , i = 1, 2. Let these matrices Q1, Q2 be used in the
Lyapunov function.

Let us consider matrices (i = 1, 2)

Ri = AT
ρiQi + Qi Aρi +

M2
i

εi
QiBρiBT

ρiQi +
1
2

I2 + k0Qi =
M2

i
εi

QiBρiBT
ρiQi −

(
wi −

1
2

)
I2. (A24)

By Lemma A1, there exists τmin such that, for τi < τmin i = 1, 2, each of the matrices Ri is
negative definite, and then

.
V ≤ − 2kaτ0 p1

Ja
Ja

2τ0 p1
e2

a − 2kψ
1
2 e2

ψ f −
2kikω

Jm
Jm
2ki

e2
ω f −

σa
2λM(Γ−1

a )

∼
θ

T

a Γ−1
a

∼
θ a

− σm
2λM(Γ−1

m )

∼
θ

T

mΓ−1
m

∼
θ am − γpσP

2
1

γp

∼
p

2
21 − ρT

τ1(k0Q1)ρτ1

+
H2

1τ−M2
1

ε1
ρT

τ1Q1Bρ1BT
ρ1Q1ρτ1 − ρT

τ2(k0Q2)ρτ2

+
H2

2τ−M2
2

ε2
ρT

τ2Q2Bρ2BT
ρ2Q2ρτ2 + Ω.

(A25)

Inequality (A25) can be rewritten in the following form:

.
V ≤ −kmV +

H2
1 − M2

1
ε1

ρT
τ1Q1Bρ1BT

ρ1Q1ρτ1 +
H2

2 − M2
2

ε2
ρT

τ2Q2Bρ2BT
ρ2Q2ρτ2 + Ω (A26)

where

km := min

2kaτ0 p1

Ja
, 2kψ ,

2kikω

Jm
,

σa

λM

(
Γ−1

a

) ,
σm

λM

(
Γ−1

m

) , γpσP, k0

. (A27)

Inside the set V
(

ea, eψ f , e
ω f ,

∼
θ a,

∼
θ m,

∼
p21, ρτ1, ρτ2

)
≤ r, inequalities |H1| ≤ M1 and

|H2| ≤ M2 are satisfied, and matrices QiBρBT
ρ Qi i = 1, 2 are positive semi-definite. So, it

follows from (A26) that
.

V ≤ −kmV + Ω. (A28)

If Ω
km

< r, then the set

A :=
{(

ea, eψ f , e
ω f ,

∼
θ a,

∼
θ m,

∼
p21, ρτ1, ρτ2

)
: V
(

ea, eψ f , e
ω f ,

∼
θ a,

∼
θ m,

∼
p21, ρτ1, ρτ2

)
≤ Ω

km
< r
}

(A29)

is contained in B1, and any trajectory starting in B1 is bounded and uniformly ultimately
bounded to the compact set of attraction A [48,49]. Therefore, this trajectory is SGUUB,
according to the definition given in [47]. The set of attraction A can be narrowed by a
proper choice of design parameters, according to (A27) and (A29).

As the tracking error e is the response of the inertial filter with the transfer function
1

sτ0+1 to the input ea, it is SGUUB as ea is, and because of the definition of ea,
.
e is also

bounded. Therefore, the position φa and velocity ωa are bounded. As the adaptation errors
∼
θ a,

∼
θ m,

∼
p21 and the exact parameters are bounded, the adaptive parameters θ̂a, θ̂m, p̂21 are

also bounded and possess bounded derivatives.
Step by step, starting from the internal loop, the boundedness of all signals in the

closed-loop system follows. The first loop stabilizing function ψd is bounded, and con-
sequently, the filter state variables (16) are bounded. The next stabilizing function ωmd
is bounded, and consequently, the second filter state variables, the motor’s position and
velocity and, finally, the desired current are all bounded. □
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30. Kamiński, M.; Szabat, K. Adaptive Control Structure with Neural Data Processing Applied for Electrical Drive with Elastic Shaft.
Energies 2021, 14, 3389. [CrossRef]

31. Shang, D.; Li, X.; Yin, M.; Li, F. Dynamic Modeling and Control for Dual-Flexible Servo System Considering Two-Dimensional
Deformation Based on Neural Network Compensation. Mech. Mach. Theory 2022, 175, 104954. [CrossRef]

32. Kabzinski, J.; Mosiolek, P. Adaptive Control of Nonlinear Resonant Systems with Damping. In Proceedings of the 2015 20th
International Conference on Methods and Models in Automation and Robotics, MMAR, Miedzyzdroje, Poland, 24–27 August
2015; pp. 659–664.
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