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Abstract: Microgrids can assist in managing power supply and demand, increase grid resilience
to adverse weather, increase the deployment of zero-emission energy sources, utilise waste heat,
and reduce energy wasted through transmission lines. To ensure that the full benefits of microgrid
use are realised, hybrid renewable energy-based microgrids must operate at peak efficiency. To
offer an optimal solution for managing microgrids with hybrid renewable energy sources (HRESs)
while taking microgrid reserve margins into account, the particle swarm optimisation (PSO) method
is suggested. The suggested approach demonstrated good performance in terms of charging and
discharging BESS and maintaining the necessary reserve margins to supply critical loads if the grid
and renewable energy sources are unavailable. On a clear day, the amount of electricity sold to the
grid increased by 58%, while on a partially overcast day, it increased by 153%. Microgrids provide a
good return on investment for their operators when they are run at peak efficiency. This is because
the BESS is largely charged during off-peak hours or with excess renewable energy, and power is
only purchased during less expensive off-peak hours.

Keywords: particle swarm optimisation; hybrid renewable energy resources; microgrids; reserve margins

1. Introduction

A collection of linked loads and dispersed energy sources that operate as a single,
controllable unit is known as a microgrid. It can function in two modes: connected to the
grid (grid-connected mode) and disconnected from the grid (islanded mode). Microgrids
can help customers become more dependable and resilient to power outages. Renewable
resources are those that are known to replenish on their own over time. For this reason, it
is viable even after human use. Renewable resources are considered especially important
since they have the potential to replace non-renewable, or finite, resources in the energy
production process. Examples of renewable resources are solar power and wind turbine
generators. The reserve margin, which is typically used for load balancing or supplying
important loads during times of supply scarcity, is the amount of an electric power system’s
unused available capability expressed as a percentage of the total capability. Microgrids are
essential parts of modern grids as they provide many advantages, including improved grid
stability, reliability, and resilience. Hybrid renewable energy resource microgrids provide
even more advantages as they assist in achieving the United Nations 2050 net zero goals by
using natural resources to reduce the carbon footprint. Microgrids also assist in reducing
energy poverty in communities in remote and isolated areas where the grid cannot reach.
The intermittent nature of renewable energy sources poses challenges regarding microgrid
operation and management. Studies should be performed to determine the optimal cost
of operating microgrids, considering the grid integration costs, battery energy storage
charging/discharging, renewable energy source usage, etc., while meeting load demand.
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The optimisation of power system operation has a long history; it has been enriched
over time by advances in mathematical programming techniques and computational meth-
ods, but predating the advent of digital computers, which revolutionised numerical opti-
misation and computation in general [1]. The global maximum power point (GMPP) of
standalone battery charging systems under partial shading conditions (PSCs) is tracked
using a novel hybrid Series Salp Particle Swarm Optimisation (SSPSO) algorithm. Under
PSC, photovoltaic (PV) characteristics such as power current (P-I) and power voltage (P-V)
have a global peak as well as several local peaks with intricate forms [2]. The construction
of multi-energy microgrids, which include hydrogen and electricity loads, storage alter-
natives, and low-carbon energy sources, is required. To increase the economic feasibility
of microgrid components, the size must always be measured exactly, and energy must
constantly be delivered most economically. Here, we describe a two-level optimisation for
energy management and sizing applied to an original multi-energy scenario employing
electricity and hydrogen as energy vectors to promote the deployment of multi-energy
microgrids in industrial areas. A financial profitability target is considered, together with
restrictions relating to the cost, dependability, and accessibility of sources and storage alter-
natives [3]. Microgrids can incorporate renewable energy sources (RESs) and provide local
customers with electricity. However, microgrid operation is challenging due to load and
RES uncertainty. Moreover, a precise nonlinear degradation cost model of battery energy
storage systems (BESSs) ought to be put out, since BESSs are essential dispatchable devices
for reducing the adverse effects of uncertainty. This study suggests an affine arithmetic-
based microgrid interval optimisation (IO) technique that considers uncertainty and BESS
deterioration to address these problems [4]. Off-grid microgrids are often used for power
distribution in rural areas. A mathematical model that integrates N-1 security analysis
for topology design, capacity planning, and the operation of distributed energy resources
in microgrids is created to address the dependability challenges for these microgrids. A
rolling-horizon technique combined with scenario-based deconstruction is intended to
effectively solve the model because the optimisation problem is too big [5]. An efficient
solution to the issue of local renewable energy consumption is the growing popularity of
microgrids. In contrast, power fluctuations pose a serious risk to the widespread deploy-
ment of renewable energy-powered grid-connected microgrids. A mathematical model of
a microgrid with grid-connected power constraints and a supercapacitor–battery hybrid
energy storage system, as well as a novel rolling optimisation technique, is presented for
smoothing grid-connected power fluctuations for microgrids [6]. The growing percent-
age of electric vehicles on the road means that vehicle charging is having an increasingly
detrimental effect on the power supply. The microgrid’s load dispatch multi-objective opti-
misation model and the vehicle charging–discharging model are set. By merging particle
swarm optimisation (PSO) and the gravitational search algorithm (GSA), a hybrid modified
GSA-PSO (MGSAPSO) method is proposed to optimise the load dispatch of a microgrid
consisting of electric vehicles. The global search performance of the GSA algorithm is
improved by the proposed method, which integrates the PSO’s global memory capacity
into the GSA. Concurrently, the hybrid approach is improved by generating a chaotic
initialisation population, a learning factor, and an adjustable inertia vector [7].

An operation planning and management support management system for microgrids
is being presented by the microgrid aggregator, the new electrical market agent. To achieve
the best market participation, the aggregator controls the energy consumption, electric
vehicles, energy storage, wind and photovoltaic systems, microturbines, and energy usage.
As a crucial feature of a microgrid support management system, a support and information
system are now necessary for decision making when participating in the electrical market.
A stochastic mixed-integer linear programming problem that relies on understanding
the stochastic processes defining the unknown parameters forms the foundation for the
presented microgrid support management system [8]. Academic and industrial interest
in DC microgrids is growing due to advancements in power electronics, the growing
usage of DC loads, DC renewable energy sources, battery storage systems, and a lack of
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reactive power or frequency stability issues. DC microgrids require careful consideration of
demand response incentives for user participation and battery degradation cost modelling
to operate efficiently. To achieve a practical degradation cost model for a Li-ion battery
and optimise battery scheduling, a realistic operational cost is required. Apart from the
energy price, a planned islanding responsive demand response incentive is put in place
to incentivise customers to change their load during prearranged grid-tie periods [9]. The
fundamental electricity needs of remote and rural areas could be well served by renewable
energy sources (RESs). An optimisation strategy and a potential power management
plan (PMS) designed for a hybrid renewable energy system (HRES) that combines wind,
a battery, and a converter to provide customers with highly reliable and high-quality
power is required [10]. Long-term access to electricity is ensured by an isolated microgrid
system that is fuelled by renewable energy and energy storage technologies. This type of
system is especially well suited to address inadequate electrical infrastructure in rural areas.
The stochastic behaviour of electric vehicle (EV) users and the uncertainty surrounding
residential user behaviour and renewable energy sources impact the system’s capacity
design [11]. Power quality (PQ) issues occur when non-linear loads and power electronic
components are included in microgrids. These issues could also be brought on by an
unequal load on the microgrid. They undoubtedly affect the daily operating schedule
of the microgrid. An optimal harmonic power flow (OHPF) framework for the daily
optimal scheduling of a grid-connected microgrid is created by combining an optimisation
formulation with harmonic power flow (HPF). The framework for evaluating PQ uses three
indices: voltage imbalance factor (VUF), voltage magnitude, and voltage total harmonic
distortion (THDV) [12]. Environmental harm and energy scarcity have become major
issues for business and human progress. Thus, focusing on the research on distributed
energy sources (DERs) and renewable energy sources is both advantageous and required.
Because of its versatility, a microgrid can function in both isolated and grid-connected
configurations. To maximise the economic benefits for MG users, optimisation models
should balance energy usage, battery preservation, and other parameters while considering
the limitations of the power infrastructure and the current price of electricity [13]. A
domain-enriched optimisation method was developed to enhance the overall dynamic
resilience and small-signal stability of islanded microgrids. An exclusive eigen-value-
oriented objective function and associated restrictions are used to optimise the controller
settings for the power electronic interfaces of distributed energy resources (DERs). The
system’s dynamic resilience depends on these interfaces. By utilising the comprehension
of the microgrid domain, an additional loss component in the optimisation variables that
functions as a multivariate polynomial is proposed to assist in resolving the resulting
non-smooth and non-convex optimisation problem [14].

Grid-tied microgrids play crucial roles in resilience and sustainability as they establish
a balanced and efficient connection between renewable energy sources and the main power
grid. The dynamic interaction between the intermittent nature of renewable energy sources
and the volatility of load changes, however, presents a complex spectrum of technical
energy management issues [15]. Because renewable energy is erratic and electric vehicles
(EVs) have an unorganised grid link, the power system will have challenges in maintaining
stable and safe operations. The symmetry and dependability of the microgrid operation
are ensured by the suggested microgrid optimisation scheduling method, which takes EV
access into consideration. When examining each microgrid unit’s operating constraints,
the network active power loss and node voltage variance are considered. To improve
the efficiency of its solution, the developed microgrid model is accordingly modified by
second-order cone relaxation [16]. Examining microgrid scheduling for multi-objective
optimisation is necessary to improve the comprehension of the multi-objective optimisation-
based microgrid scheduling technique. Before they can manage the microgrid, each energy
storage device’s maximum charging power, maximum discharging power, and remaining
capacity need to be determined. Above all, a mathematical model of the microgrid is
built. A multi-objective optimisation microgrid operating model was created for several
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microgrid states, including the grid-connected state and the island state, building on the
previously produced microgrid mathematical model [17].

In this paper, we provide an optimised microgrid operation solution that accounts
for variable electricity prices, intermittent renewable energy resources, and battery energy
storage system (BESS) charging and discharging schedules. This will help ensure that the
reserve margins for critical loads are covered if the grid is unavailable and the generation
from renewable energy sources is insufficient or unavailable. Two major contributions of
this research are that it is the first of its kind in the literature to study reserve margins for
important loads, and it proposes that instead of using the grid, excess renewable energy
should be the only source used to charge batteries.

The work is organised as follows: Section 1 contains an introduction, and Section 2
presents the hybrid microgrid’s mathematical problem formulation, which includes infor-
mation on the pricing, load profiles, and the size of the various generating units. A PSO
algorithm is shown in Section 3 in both the standard format and the hybrid microgrid-
specific implementation. The results of the simulation for hybrid microgrid optimisation
are shown in Sections 4 and 5, respectively, along with a discussion of the results.

2. Problem Formulation of the Hybrid Renewable Energy Microgrid System

A grid-integrated microgrid, which consists of wind, photovoltaic systems, battery
energy storage systems, and electric vehicles, is presented in Figure 1. The uncertainties of
renewable energy sources and the uncertain behaviour of electric vehicles are considered in
the modelling of the microgrid system. The modelling of individual systems is discussed
in the following sections.
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2.1. PV System Modelling

Solar energy is another form of renewable energy that assists in decarbonisation to
curb global warming. Power generated by a single solar panel is given by [11]

Ppv = SI ∗ Apv ∗
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whereby Ppv is the solar-generated power, SI is the solar irradiance, Apv is the area of the
solar panel, and
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pv is the solar panel efficiency. To get the total power generated by the
solar system, Equation (2) is used.

PTpv = Npv ∗ Ppv (2)
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whereby Npv is the number of solar panels. It assumed that the inverter has a dc/ac
ratio of 1 and no losses. The temperature effect has also been ignored in the calculation
for simplicity.

The solar panel size used in the simulation is 2100 m2, and the efficiency of the solar
panel is 30%.

PV System Operation Cost Modelling

Cpv = ∑t€T (Cpv,om ∗ Ppv
i,t ) (3)

whereby Cpv is the operation cost of the PV system, Cpv,om is the cost of operation and
maintenance of the PV system, and Ppv

i,t is the PV power generated.

2.2. Wind Turbine Power System Modelling

Calculating power generation from wind turbines [11], as shown in Equations (4)
and (5).

Pwind =

Pr

0, v ≤ vcin
0, v ≥ vcout

v−vcin
vr−vcin

, vcin < v < vr

Pr, vr ≤ v < vcout

(4)

whereby Pwind is the power generated by a single turbine, Pr is the wind turbine-rated
power, v is the actual wind speed, vcin is the wind turbine cut-in wind speed, vcout is the
wind turbine cut-out wind speed, and vr is the wind turbine rated wind speed. The effect
of air density was ignored in the calculation. The total power generated from a wind farm
is given by

PTwind = Nwind ∗ Pwind (5)

whereby Nwind is the number of wind turbines.
The wind turbine cut-in wind speed is 5 m/s, cut-out wind speed is 25 m/s, and the

wind turbine rated wind speed is 11 m/s, while the wind turbine rated power is 3.2 MW.

Wind Turbine Power System Operation Cost Modelling

Cwt = ∑i€T (Cwt,om ∗ Pwt
i,t ) (6)

whereby Cwt is the operation cost of the WTG system, Cwt,om is the cost of operation and
maintenance of the WTG system, and Pwt

i,t is the WTG power generated.

2.3. Battery Energy Storage System Modelling

Because renewable energy sources, such as wind and solar energy, are intermittent in
nature, energy storage systems are critical in microgrid systems, especially when operating
in islanded mode. An energy storage system is required to improve system reliability.
The battery energy storage system size is 3000 MWh, and the maximum charging and
discharging power is 400 kW. The charging and discharging power flow equation for
batteries is

Ebat(t + 1) = Pbatchar(t) ∗
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whereby Pbatchar(t) is the battery charging power flow, Pbatdischar(t) is the battery discharg-
ing power flow,
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bat is the battery charging/discharging efficiency, ∆t is the time interval,
Ebat(t) is the battery energy at time t, and Ebat(t + 1) is the battery energy at time t + 1.
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2.4. Electric Vehicle Modelling

The use of electric vehicles has become increasingly significant due to environmental
issues such as carbon emissions. The EV batteries serve as both a load (they must be charged
from the system) and a power source (they provide energy to the microgrid system).

EEV(t + 1) = PEVchar(t) ∗
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whereby PEVchar(t) is the EV charging power flow, PEVdischar(t) is the EV discharging power
flow,
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EV is the EV charging/discharging efficiency, EEV(t) is the EV energy at time t, and
EEV(t + 1) is the EV energy at time t + 1.

Ten electric vehicles with a battery capacity of 60 kWh are considered in the simulation.

2.5. Battery Energy Storage System Degradation Modelling

Battery degradation costs are one vital aspect contributing to the total microgrid
operation costs. Hence, an accurate degradation cost model is essential, which should be
represented as a direct function of the BESS basic parameters [4]. The BESS degradation
costs are given by

CBESS = ∑iEUR T Ebatcap ∗
∫ SOCT

SOC0

w(s)|ds| (9)

whereby Ebatcap is the battery capacity, SOC0 and SOCT represent the initial SOC and SOC
at time, T, respectively, and w(s) is the wear density function. The formula for calculating
the wear density function is given by

w(s) =
Cbatrepl

2∗
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bat

∗ B(1 − SOC)B−1

A
(10)

whereby Cbatrepl is the battery replacement cost, and A and B are the battery-specific
parameters given by the manufactures.

2.6. Grid Interaction Cost Modelling

The grid interaction costs are the costs associated with buying electricity from the grid
during less or no production times and selling excess electricity to the grid. The buying
and selling price are usually different. The equation that defines this phenomenon is given
as follows:

Cgrid = ∑t€T(C
pur ∗ Prec−Csell ∗ Psent

)
(11)

whereby Cpur is the cost of buying electricity from the grid, Prec is the power received from
the grid, Csell is the price of selling electricity to the grid, and Csent is the power sent to
the grid.

2.7. Microgrid Operation Cost Modelling

The operation costs of the microgrid consider all of the individual system operation
costs, as shown in the equation below. The objective function seeks to minimise the costs of
microgrid operations.

CMG = Cpv + Cwt + CBESS + Cgrid (12)
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2.8. System Constraints

The following constraints are considered while solving the minimisation objective
function. These constraints are a mix of nonlinear, linear, and discrete variables.

2.8.1. Power Balance

Ppv + Pwind + Pbatdisc + Prec + PEVdischar − PEVchar − Pbatchar − Pload − Psent = 0 (13)

2.8.2. Grid Power

Prec ≤ Pload + PEVchar (14)

Psent ≥ Ppv + Pwind + Pbatdischr + PEVdischar (15)

2.8.3. Generation Limits

Ppvmin < Ppv < Ppvmax (16)

Pwindmin < Pwind < Pwindmax (17)

Pbatchar ≤ Pbatcharmax (18)

Pbatdischar ≤ Pbatdischarmax (19)

DODgridon = 80% (20)

DODgrido f f = 50% (21)

2.8.4. Battery Charging

Ppv + Pwind > Pload + PEVchar (22)

Prec = 0 (23)

2.8.5. Battery Discharging

Ppv + Pwind < Pload + PEVchar (24)

2.8.6. Reserve Margins

Pres = Pload ∗
5

100
(25)

3. Particle Swarm Optimisation Method for Hybrid Renewable Energy Micro Grid

When the PSO algorithm is compared to classical mathematical algorithms and other
heuristic optimisation techniques, its key advantages can be summed up as follows: com-
puting efficiency, robustness to control parameters, simplicity of idea, and ease of im-
plementation. These are some of the reasons why the PSO algorithm was chosen over
the others.

3.1. Standard PSO Algorithm

The particle swarm optimisation (PSO) algorithm was first introduced by Kennedy
and Eberhart in 1995. The method is based on the natural process of the school of fish
or the flock birds follow when they are searching for food. When birds are flying and
searching randomly for food, birds in the flock share their discovery and help the entire flock
achieve the best hunt, which results in increased search efficiency. PSO is an optimisation
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algorithm that offers a population-based search method in which individual particles utilise
the information supplied by other particles to adjust their positions over time based on
their own experiences as well as the experiences of other particles. Finding a function’s
maximum or minimum on a multidimensional vector space is the ideal application for PSO.

The PSO algorithm can be defined as a stochastic multi-agent parallel search technique,
wherein individual particles within a swarm symbolise the potential solutions to an optimi-
sation issue. Based on its own and the swarm’s collective flight experiences, a particle can
be viewed as an autonomous intelligent agent that “flies” around a multi-dimensional issue
space in pursuit of the best solution to the optimisation problem. Three n-dimensional
vectors make up each particle i in the swarm (with n being the dimensionality of the search
space, Rn), which, at time, t, can be represented as the current location, Xi

t, the previous best
position, pbesti, and the velocity, Vi

t [18]. The iterative velocity update, which modifies each
particle’s position to guide the entire swarm towards the best solution to the optimisation
issue, is the fundamental portion of the PSO method, as shown in Equation (28).

Vi(t + 1) = wVi(t) + c1r1(pbest i − Xi(t)) + c2r2(gbest i − Xi(t)) (26)

whereby r1 and r2 are random numbers between 0 and 1; w, c1, and c2 are constant PSO
parameters; pbest is the best position that gives the best function evaluation; while gbest is
the global best for all of the particles under evaluation. The current position of each particle
Xi

t is assessed for “fitness” at each iteration using the optimisation problem’s objective
function. The particle velocity Vi

t is used to update a particle’s position to move it towards
a “better” position, as determined by the particle achieving an enhanced fitness evaluation.
It represents the composite flying experience of the individual particle and the rest of the
swarm. Every particle records the position that corresponds to its highest fitness value up
to the most recent iteration, represented by the symbol pbesti. This position is then updated
to the current location whenever the current position has a higher fitness value than the
most recent best. Like a flock of birds searching for food, the swarm is likely to move
toward the ideal location in the search space as the iterations go on. One crucial aspect of
the PSO algorithm is the social interaction and information sharing that occurs amongst
the particles in the swarm. The swarm’s collective behaviour is what allows the program
to search as efficiently as possible [18]. Figure 2’s flowchart presents the standard PSO
algorithm. Table 1 lists the unique characteristics of the PSO algorithm when compared to
other heuristic optimisation techniques.

Table 1. PSO algorithm’s unique parameters.

Parameter Description

Swarm Size

The particle swarm’s population size or number of particles.
A bigger swarm size suggests a higher processing cost but also a wider
search space.
It has been discovered that swarm sizes between 20 and 60 work well for
many applications.

Iterations

Finding the best option is more likely when the number is sufficiently large.
An excessively high number could result in an unaffordable
computing cost.
The choice of the appropriate maximum number of iterations may depend
on the nature of the problem.

Velocity

The contribution of each element to the total velocity update is determined
by the relative values of the acceleration constants.
Numerous problem types have been discovered to benefit from a good
balance between cognitive and social components.
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3.2. PSO Algorithm Implementation to the Microgrid Optimisation Problem

The PSO algorithm’s mechanics must be transferred to the optimisation problem’s
structure to be applied to any kind of optimisation problem. In particular, when look-
ing for the best solution to the problem, a mapping between the particle positions and
velocities and the optimisation problem’s decision vector must be constructed, as well
as an adjustment process for the decision vector. The PSO method resolves the hybrid
microgrid optimisation issue presented in Equations (4)–(12), subject to the limitations
specified in Equations (13)–(25). The structure of the location and velocity Equation (26)
must therefore be mapped to the structure of the hybrid microgrid optimisation problem.
This is accomplished as follows:

• The number of individuals in each distinct particle within the swarm is assigned to
correspond with the number of generating units. The positions of the particle members
represent the active power generated by the generators for the dispatch problem.

• The velocities are variables that are used to search in the constraint’s domain, but they
have the same meaning as the active power.

• It is considered that the swarm has Np particles in total.

The PSO algorithm for the solution of an optimal hybrid renewable energy microgrid
is developed using the following steps [19]:
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Step 1. Set the initial values for the PSO parameters, including the maximum number
of iterations (MaxIt), uniform random number values, r1 and r2, acceleration constants, c1
and c2, and inertia weight ω.

Step 2. Determine the starting velocity’s lowest and maximum values by applying the
generator limit constraint, as stated below.

−0.5Xmin
t ≤ Vi(t) ≤ +0.5Xmax

t (27)

X = 1, Np i = 1, n − 1

whereby Np is the number of particles in a swarm, and n is the number of members in one
particle, which is equal to the number of generating units.

Step 3. Determine the starting velocities of each particle, as shown in Equation (28).

Vi(t) = Vmin
t + r

(
Vmax

t − Vmin
t

)
(28)

whereby Vmin
t and Vmax

t are the previously calculated minimum and maximum veloci-
ties, respectively.

Step 4. Determine the particle members’ starting positions as follows while ensuring
the constraints are met:

Xi(t) = Xmin
t + r

(
Xmax

t − Xmin
t

)
(29)

A slack bus, Generator (PV) bus, and Load (PQ) bus are the three types of buses in the
power system. Slack buses, also known as reference buses, are utilised in electrical power
systems to balance the active and reactive powers of the system during load flow analyses.
By delivering and receiving active and reactive power to and from the system, the slack
bus compensates for system losses. In the microgrid simulation, two buses are regarded as
slack buses (the grid bus and the BESS bus). The slack bus in the PSO algorithm serves to
fulfil the power balance constraint provided in Equation (13).

Step 5. Calculate the objective function for the initial positions of the particles, as
defined in Equation (14), which was modified to consider only the BESS and grid costs as
the PV and wind system costs are constant.

CMG = CBESS + Cgrid (30)

Step 6. Choose the optimal starting point and the global optimal starting point in the
manner described below.

• The initial positions of the particles within the swarm are deemed to be their opti-
mal positions.

• Global best is defined as the position that is optimal among all optimal particles.

Step 7. Calculate the new velocities using Equation (26) and check the constraints
defined in Equations (13)–(25).

Vinew = wVi−1 + c1r1(pbest i−1 − Xi−1
)
+c2r2(gbest i−1 − Xi−1

)
(31)

Step 8. Calculate the new position of the generator in the particles using the following
equation and check the constraints:

Xinew = Xi−1
t + Xinew

t (32)

Step 9. Determine the updated real power of the generators and use the limitations to
verify the generator’s new location within the particles.

Step 10. Check the objective function results as defined in the PSO flow chart.

If Finew < Fibest−1 then Fibest = Finew and Xibest = Xinew
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Else Fibest = Fibest−1 and Xibest = Xibest−1, Gibest = Xibest−1

Step 11. Repeat Steps 5–10 until the maximum number of iterations is reached or the
algorithm has converged.

4. Hybrid Renewable Energy Microgrid Simulation Results

The system described in Section 2 above was modelled and simulated using MATLAB
R2023b run on a laptop with Windows 10 Enterprise, Lenovo ThinkPad, i5-8365 CPU @ 1.6 GHz,
4 Cores in South Africa. The weather data for a PV system, solar irradiance, and wind speed
data for a wind turbine system are used to simulate the intermitted nature of the renewable
sources. For a PV system, irradiance data for clear day and cloudy day scenarios are provided.
The load profile as well as electricity price data for purchasing electricity from the grid and
selling electricity to the grid are included in the WindPvLoadPriceData file (Supplementary
Materials) taken from MATLAB examples and updated accordingly to include all of the
required data. The price data are shown in South African currency, ZAR. The data provided
are for a full day, 24 h, with a 1 min average. For simulation purposes, the data were further
broken down into 5 min average samples for ease of computation. The PSO algorithm was
run for 48 s to provide the simulation results.

4.1. Grid Interaction Cost Data

The grid interaction costs, which are made up of the cost of selling electricity to the
grid as well as the cost of purchasing electricity from the grid, are divided into three price
levels, which are off-peak, standard, and peak, as shown in Figure 3. The off-peak period
electricity price is 2.89 ZAR/kWh, the standard price is 4.35 ZAR/kWh, and the price is
9.82 ZAR/kWh during the peak period. The time zones are defined as follows: the off-peak
is between 22:00 and 06:00, the standard is between 06:00 and between 07:00 and 10:00 and
18:00, while peak periods are between 08:00 and 10:00, and between 18:00 and 22:00.
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4.2. Photovoltaic System

The nature of the photovoltaic system’s behaviour during a clear day is shown in
Figure 4. It is shown that the system producing energy only during the day between
sunrise and sunset. Peak power is reached between 11:00 and 15:00 before the power starts
dropping. A partly cloudy day simulation photovoltaic system simulation is indicated in
Figure 5 using the cloudy day irradiance data. An erotic behaviour is witnessed as clouds
pass by, causing sudden drops in production in comparison to a clear day simulation graph,
as shown in Figure 4, which is more predictable.
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4.3. Wind Turbine Generation

The wind speed data provided in the WindPvLoadPriceData file (Supplementary Ma-
terials) provide the wind turbine generation profile, as indicated in Figure 6. As mentioned
in [20], wind turbine generators generate electricity at night because the wind speeds are
typically higher. Figure 6 illustrates this observation, which appears to be the reverse of
what the solar system is doing, with production only visible during the day, as depicted in
Figures 4 and 5.
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4.4. Microgrid Load Profile

The microgrid load profile is given in Figure 7 as per the data provided in the Wind-
PvLoadPriceData file (Supplementary Materials).
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4.5. Microgrid Operation without Battery Energy Storage System
4.5.1. MG Operation during a Clear Day

The microgrid operation without the operation of BESS is indicated in Figure 8. The
microgrid load is supplied, generally, from renewable energy sources (wind and solar),
and when the load demand is not met, additional electricity is purchased from the grid.
This is evident in the graph, which shows that energy was imported from the grid between
08:20 and 08:50, and between 14:25 and around 23:30. In contrast, when the load demand is
lower than the produced energy from the renewable sources, excess energy is sold to the
grid operator. Between 23:30 and around 08:20, and between 08:50 and 14:25, energy was
sold to the grid operator. During the morning, the microgrid sells power to the grid at high
prices, and during the standard pricing period, excess renewable energy is sold. However,
during the evening peak, before the wind turbine generator reaches its peak, an additional
supply of energy is required to meet the load demand, and that is purchased from the grid
operator at high prices.
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4.5.2. MG Operation during a Partly Cloudy Day

The microgrid operation without the operation of the BESS during a partly cloudy
day is indicated in Figure 9. The microgrid load is supplied from renewable energy sources
during off-peak periods, and when the load demand is not met, additional electricity is
purchased from the grid. With the very unpredictable generation of energy from renewable
sources, more energy is purchased from the grid, even during peak periods, resulting in a
high cost for the microgrid operator. The use of the BESS has proven valuable in operation
costs of the microgrid, as discussed in Section 4.6.
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4.6. Microgrid Operation with Battery Energy Storage System
4.6.1. MG Operation during a Clear Day

It is a known fact that renewable energy resources are stochastic in nature and, as such,
energy generation is intermitted. Battery energy storage systems are therefore necessary
to supplement renewable energy sources while avoiding the use of diesel generators to
improve carbon emissions. Figure 10 shows a microgrid operation with a BESS connected
and in operation on a clear day. The graph shows that the BESS charges during off-peak
periods, from late at night until the morning, from excess energy generated from renewable
sources. When the BESS is fully charged, around 6/7, excess energy from renewables is
sold to the grid operator, during the peak period, which has a high price. Also, during the
day, for clear day forecasting, when the solar system reaches its peak generation, which is
greater than the load demand, and the battery is fully charged, excess energy is sold to the
grid during the standard pricing period. In the afternoon, the load demand starts peaking
up, and the solar system production drops, while the wind energy is zero. This results in
the battery system discharging to supply the load while the wind turbine generation slowly
peaks up to assist in energy supply and reduce the burden from the BESS. Also, this is the
peak period, and the microgrid manages to avoid drawing energy from the grid, as it is
very costly.
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4.6.2. MG Operation during a Partly Cloudy Day

Figure 11 shows the microgrid operation with a BESS connected and in operation on a
partly cloudy day. Similarly, and as explained in Section 4.6.1, the graph shows that the
BESS is charging during off-peak periods, from late at night until the morning, from the
excess energy generated from renewable sources. When the BESS is fully charged, around
6/7, excess energy from renewables is sold to the grid operator, during the peak period,
which has a high price. Also, during the day, for a partly cloudy day forecasting, when
the solar system is unpredictable, at times, generation exceeds the load demand for short
periods, and at other times, generation is reduced below the load demand, and the BESS is
used to supplement energy generation during energy dips, while during over-generation,
excess energy is sold to the grid during the standard pricing period. From the afternoon,
the load demand starts peaking up, and the solar system production drops, while the wind
energy is zero and the BESS becomes used more, while the wind turbine generation slowly
peaks up to assist in energy supply and reduce the burden from the BESS. Also, this is the
peak period, and the microgrid manages to avoid drawing energy from the grid, as it is
very costly.
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4.6.3. Microgrid Reserve Margins using BESS

Figure 12 shows the microgrid operation with BESS reserve margins during a clear
day. The technical requirements for supplementary services in South Africa outline the
conditions for each reserve category and list the following five kinds of reserves [21]:

• Regulating reserves, which are used for second-by-second supply and demand balanc-
ing under AGC control;

• Instantaneous reserves, which are used to arrest the frequency within acceptable
bounds following a contingency;

• Ten-minute reserves, which are used to balance the supply and demand for varia-
tions between the day-ahead market and real time, such as load forecast errors and
unit unreliability;

• Emergency reserves, which are utilised to restore normalcy to the interconnected
power system while slower reserves are being drawn upon, and when the system is
not operating normally;

• Supplemental reserves, which are meant to guarantee a manageable risk for the
day ahead.
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Figure 12. Microgrid operation with BESS reserve margins on a clear day.

The figure shows the BESS state of charge with a minimum of 50%. The depth
of discharge during normal operation (grid and/or renewable energy available) is 50%.
When the grid and/or renewable energy sources are not available, the minimum depth of
discharge is 30%, with the BESS only supplying critical loads.

5. Discussion

Hybrid renewable energy-based microgrids must run as efficiently as possible to guar-
antee that the full benefits of microgrid use are achieved. The particle swarm optimization
(PSO) method, with the background given in [22], is proposed as an optimal strategy to
manage microgrids with hybrid renewable energy sources (HRESs) while considering
microgrid reserve margins. The intermittent nature of renewable energy resources, such
as wind and solar energy, has been simulated using weather data, wind speed for wind
turbine generators, and solar irradiance for the solar PV system. During the summer, wind
speeds are generally higher at night than they are during the day [20]. This serves as
the foundation for the simulation’s wind speed data. On clear days, the solar system’s
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production curve is understood, but on cloudy days, it is rather unpredictable. For this
reason, two sets of solar irradiance data were used: one set for a clear day to generate power
predictably, and another set for a partially cloudy day to generate power infrequently. The
simulated curves for a clear and partly cloudy day using the given data are shown in
Figures 4 and 5, respectively. The wind turbine generation profile, according to the used
data, is displayed in Figure 6. Figure 3 displays the electricity price data with three pricing
tiers: off-peak, regular, and peak hours.

Figure 13 depicts both the electricity pricing schedule and the microgrid operation
simulation on a clear day with a BESS connection. The simulation findings demonstrate that
extra generated energy is sold to the grid operator during normal and peak periods, and
buying electricity from the grid is entirely avoided during these times. This demonstrates
that the PSO approach is operating correctly and optimally.
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Figure 13. Electricity pricing schedule and microgrid operation with BESS on a clear day.

A partially overcast day with a BESS is depicted in Figure 14 along with the microgrid
operation simulation and electricity pricing schedule. It is challenging to avoid using the grid
to purchase electricity during regular and peak hours due to the solar system’s irregular gen-
eration. Moreover, the BESS is utilised for extended periods as long as the predetermined 50%
depth of discharge for critical loads is maintained. By protecting the established limitations,
the PSO algorithm was able to maximise the microgrid’s performance.

Figures 15–18 illustrate the effect of the number of iterations parameter selected
for the PSO algorithm. On a clear day, the PSO maximum iteration count is set to 10
and 100, respectively, as shown in Figures 15 and 16. The PSO algorithm finds that the
optimal cost is ZAR 1,283,990 per day when the maximum iteration is set to 10, and ZAR
1,281,040 per day when the maximum iteration is set to 100. This represents a difference
of ZAR 2950 per day. For a partially overcast day, the same comparison is made, as
shown in Figures 17 and 18. The PSO algorithm determined that ZAR 1,025,005 per day
was the optimal cost at a maximum iteration of 10, and ZAR 1,023,190 per day was the
optimal cost at a maximum iteration of 100, resulting in a difference of ZAR 1815 per day.
The contrast observed on partially cloudy and clear days emphasises how crucial it is
to choose the right PSO parameters to guarantee the method’s successful and efficient
operation. As seen in Figures 15 and 17, an additional phenomenon to be observed is the
PSO algorithm terminating early. Two techniques are employed as the stopping criteria in
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the PSO algorithm flowchart (Figure 2): maximum iteration and convergence. The former
has already been covered. PSO convergence is the term used to describe the effective
convergence of swarm particles to a single solution. To decide how much the current global
best can deviate from the prior global best, a threshold is typically imposed. Once it is
determined that the optimal solution has not been altered by more than a specific amount,
the algorithm is said to have converged.
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Figure 15. PSO solution on a clear day with an iteration of 10.
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Figure 17. PSO solution on a partly cloudy day with an iteration of 10.
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Figure 18. PSO solution on a partly cloudy day with an iteration of 100.

6. Conclusions

Table 2 compares the grid interaction costs for selling excess generated electricity to
the grid and purchasing electricity from the grid at times when renewable energy sources
are producing little or no electricity. The positive signs represent energy that is received
from the grid, while the negative signs represent energy that is sold to the grid. The Table
shows that, on a clear day, running the microgrid without the battery energy storage system
has a net cost of roughly ZAR 538,320 per day. The partly cloudy day net cost, with a
daily total of ZAR 1,917,400.00, is positive, indicating that more energy has been bought
from the grid. Using the PSO algorithm and adding a BESS significantly reduced the grid
interaction costs; on a clear day, the cost was ZAR 1,281,040, which was up 58%, and on
a partly cloudy day, it was ZAR 1,023,190, which was up 153%. When deciding when to
buy/sell electricity and when to charge/discharge batteries to achieve the greatest cost
savings, the PSO algorithm can help to determine the best time to operate the microgrid.

Table 2. Total cost of grid interaction over 24 h.

Renewable Sources PSO Total Grid Interaction Cost on Clear
Day (k ZAR/Day)

Total Grid Interaction Cost on Partly
Cloudy Day (k ZAR/Day)

Wind, Solar N/A −538.32 1917.40

Wind, Solar, BESS Applied −1281.04 −1023.19

Table 3 displays a tabular representation of the maximum iteration value impact of
the PSO algorithm on the final solution. The efficiency and performance of the algorithm
depend on choosing the right value to prevent early termination. Over a 24 h period, the
difference might not seem significant, but over a year, for example, this could result in lost
revenue exceeding ZAR one million.
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Table 3. Impact of maximum number of iterations summary.

Total Maximum Iteration Total Grid Interaction Cost on Clear
Day (k ZAR/Day)

Total Grid Interaction Cost on Partly
Cloudy Day (k ZAR/Day)

10 −1283.99 −1025.01

100 −1281.04 −1023.19

Difference
(k ZAR/day) −2.95 −1.82

7. Future Work

Utilising real-time simulators, future work will run EV simulations to capture the EV
behaviour during transient periods instead of relying on load profile data.

A performance evaluation of the PSO algorithm with alternative heuristic optimisation
techniques will also be conducted.
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