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Abstract: In response to challenges in constructing charging and hydrogen refueling facilities during
the transition from conventional fuel vehicles to electric and hydrogen fuel cell vehicles, this paper
introduces an innovative method for siting and capacity determination of Electric Hydrogen Charg‑
ing Integrated Stations (EHCIS). In emphasizing the calculation of vehicle charging and hydrogen
refueling demands, the proposed approach employs the Voronoi diagram and the particle swarm
algorithm. Initially, Origin–Destination (OD) pairs represent car starting and endpoints, portraying
travel demands. Utilizing the traffic network model, Dijkstra’s algorithm determines the shortest
path for new energy vehicles, with the Monte Carlo simulation obtaining electric hydrogen energy
demands. Subsequently, the Voronoi diagram categorizes the service scope of EHCIS, determin‑
ing the equipment capacity while considering charging and refueling capabilities. Furthermore, the
Voronoi diagram is employed to delineate the EHCIS service scope, determine the equipment capac‑
ity, and consider distance constraints, enhancing the rationality of site and service scope divisions.
Finally, a dynamic optimal current model framework based on second‑order cone relaxation is es‑
tablished for distribution networks. This framework plans each element of the active distribution
network, ensuring safe and stable operation upon connection to EHCIS. To minimize the total social
cost of EHCIS and address the constraints related to charging equipment and hydrogen production,
a siting and capacity model is developed and solved using a particle swarm algorithm. Simulation
planning in Sioux Falls city and the IEEE33 network validates the effectiveness and feasibility of the
proposedmethod, ensuring stable power grid operationwhilemeeting automotive energy demands.

Keywords: electric vehicles; hydrogen fuel cell vehicles; site selection and fixed capacity; Voronoi
diagram; electric hydrogen charging integrated station

1. Introduction
With the large‑scale use of fuel vehicles, the environmental problems caused by them

have gradually attracted people’s attention. In order to reduce carbon emissions and real‑
ize low‑carbon environmental protection from traditional fuel vehicles, it is imperative to
promote the application of new energy vehicles [1]. New energy vehicles mainly include
electric vehicles and hydrogen fuel cell vehicles [2].

Hydrogen energy, as a green energy source, will play a significant role in upgrading
and transforming traditional fuel vehicles and realizing a low‑carbon process. Due to the
actual factors, such as the power grid structure, vehicle energy storage capacity, and replen‑
ishment method, there are significant differences between the siting and sizing of EHCIS
and the traditional fuel vehicle refueling station site: the large‑scale centralized charging
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of electric vehicles will impact the power grid, affecting the frequency and voltage stabil‑
ity, and compared with the short‑term refueling of fuel vehicles, the charging of electric
vehicles takes a long time, so a reasonable site layout of the charging station is needed to
avoid the centralized charging of electric vehicles. With the increasing proportion of new
energy vehicles, it is of great significance to carry out a study on the location and capacity
of EHCIS in order to meet the energy demand of electric vehicles (EV) and hydrogen fuel
cell vehicles (HFCV).

For the planning study of EHCIS, firstly, the planning methodology of the charging
station can be borrowed. In [3], on the basis of candidate charging station sites, charging
stations are planned with the objective of minimizing the distance traveled by cars to the
charging station. This approach meets the energy demand of electric vehicles but ignores
the influence of roads on the car’s driving behavior. In [4], the charging station planning
model is established with the objective of minimizing the cost of charging station construc‑
tion and management as well as the cost of EV driving losses, but it is specific in that it
considers the airport road as a one‑dimensional road. In [5], considering the influence of a
transportation road network on electric vehicle charging demand, a two‑stage method is
used, in which the first stage obtains the spatial and temporal distribution of automobile
electric energy demand, and the second stage establishes a model for optimal siting and
capacity determination of charging stations with the objective of minimizing charging sta‑
tion operation and investment costs. Secondly, the planning methodology for hydrogen
refueling stations can be drawn upon. In [6], the authors propose a hydrogen network sup‑
ply system for wind power generation, and the model can be used for hydrogen refueling
station planning and provides a rational hydrogen infrastructure layout scheme. In [7],
the authors propose a hydrogen refueling site sizing model based on the life cycle cost of
hydrogen, yet only a one‑dimensional highway is used as the study object, which does
not have the two‑dimensional characteristics of the urban transportation plane. In [8], the
authors propose to establish a cross‑regional transportation fuel cell vehicle hydrogen refu‑
eling station sitingmodel based on the traffic flow capturemodel, which takes into account
the average road vehicle speed, the road traffic flow, the maximum vehicle mileage, and
the maximum number of hydrogen refueling stations constructed to obtain the hydrogen
refueling station siting scheme between different regions.

Finally, for the study of an EHCIS, the authors [9] propose a market‑based power pur‑
chase strategy for EHCIS based on peak shaving and valley filling, wind and solar energy
consumption, and hydrogen energy supply and verify that the integrated station effec‑
tively improves the capacity of peak shaving and valley filling and new energy consump‑
tion of the power grid. In [10], sampling is conducted on the basis of four uncertainties:
wind, light, electricity, and hydrogen to demonstrate the economy and effectiveness of
capacity planning for EHCIS under different scenarios.

In summary, the existing research focuses on the location and capacity of individual
EV charging stations or HFCV refueling stations without considering the driving charac‑
teristics of EVs and HFCVs in the city, the lack of a simultaneous supply of electricity and
hydrogen and the lack of related equipment capacity planning, and the lack of research on
the large‑scale access to the grid for EVs and HFCVs.

This paper proposes a planningmethod for EHCIS to meet the energy demand of EVs
and HFCVs. The main contributions of this paper are as follows:
(1) The OD travel matrix is used to portray the transportation demand, and then Dijk‑

stra’s algorithm is used to plan the shortest driving paths of the vehicles to calculate
the electric energy demand of EVs and the hydrogen energy demand of HFCVs.

(2) The Voronoi diagram is used to divide the service area of each EHCIS site and deter‑
mine the equipment capacity of the EHCIS.

(3) Finally, simulation planning using the city of Sioux Falls and the IEEE33 network en‑
sures stable operation of the gridwhilemeeting the energydemandof EVs andHFCVs.
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2. Framework for the Operation of EHCIS
This paper proposes an EHCIS,which refers to a place to provide hydrogen energy for

EVs and HFCVs, as illustrated in Figure 1. Due to the rapid development of the hydrogen
energy system [11], the electric hydrogen manufacturing and charging station can realize
the energy management of the distribution grid, distributed energy, hydrogen manufac‑
turing, and storage on the source side and realize the coordination and optimization of
EVs and HFCVs on the load side to achieve the purpose of energy saving and emission
reduction in transportation.
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The evolution of power electronics technology plays a crucial role in the realm of
Electric Vehicle (EV) charging stations, addressing key challenges related to charging effi‑
ciency, sustainability, and environmental considerations. Reference [12] underscores the
pivotal role of Solid State Transformer (SST) technology. By integrating advanced power
electronics and enabling the connection of two independent power grids through isolation,
SST is deemed the leading solution for adapting to changes in power network architec‑
tures. Its widespread application in smart grids, data centers, railways, and offshore wind
farms highlights its promising prospects. This paper emphasizes the critical role of SST
technology in supporting energy transition and the development of advanced smart grids.
In [13], the research involves a real‑world application of a 50‑kW Vehicle‑to‑Grid (V2G)
charging station. Employing SiC semiconductors for enhanced efficiency and power den‑
sity, the station integrates AC/DC and DC/DC converters to provide V2G charging points
with grid stabilization capabilities. The success of this design application on Madeira Is‑
land demonstrates its feasibility, establishing a reliable charging infrastructure for electric
vehicles within island microgrids.

In [14], an emphasis is placed on the design and powermanagement of a charging sta‑
tion integrating solar power and a Battery Energy Storage System (BESS). Through strate‑
gies such as Maximum Power Point Tracking (MPPT), Proportional‑Integral‑Derivative
(PID) control, and current control, the station achieves optimal power distribution between
solar, BESS, and the grid, catering to dynamic EV charging needs. The proposed solution
offers a promising approach to satisfying the charging requirements of electric vehicles
connected throughout the day, making use of PID, current control, and voltage control
to maintain constant DC bus voltage for the station. A conclusion can be drawn that the
development of power electronics technology in electric vehicle charging stations not only
enhances the charging efficiency but also supports the stability of the grid and the inte‑
gration of renewable energy sources. This provides critical technological support for the
promotion of electric vehicles and the application of sustainable energy.

An electric vehicle fast charging device realizes the fast charging of EVs [15]. A hydro‑
gen energy system includes a hydrogen production unit, a hydrogen storage unit, and a
hydrogen refueling unit. A hydrogen production device consists of an electrolyzer, which
electrolyzeswater through electrodes to obtain hydrogen and oxygen. At the present stage,
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the hydrogen production project mainly adopts a proton exchange membrane and an al‑
kaline electrolyzer, which is highly flexible and adaptable. It can operate stably and safely
at high current density and low voltage. In this paper, an alkaline electrolyzer is used to
produce hydrogen with a high‑pressure gaseous storage hydrogen tank [16].

3. Automotive Electric Hydrogen Demand Model
EVs consume electric energy while traveling, and the corresponding HFCVs consume

hydrogen energy. The calculation and simulation of the energy demand of EVs andHFCVs
is the basis for the siting and capacity determination of the EHCIS.

3.1. Transportation Network Model
The transportation network is an important carrier of new energy vehicle driving [17],

and its topology has an important impact on the driving path of new energy vehicles.
Through the graph theory [18], the transportation road network model can be established
to portray the characteristics of the road network. Figure 2 shows the topology of the trans‑
portation road network.
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Figure 2. Traffic network topology.

The mathematical description of the transportation road network is shown in Equa‑
tion (1) [19]:

G = (V, E, K, W)
V = {vi|i = 1, 2, 3, · · · , n}
E =

{
vij

∣∣vi ∈ V, vj ∈ V, i ̸= j
}

K = {k|k = 1, 2, 3, · · · , m}
W =

{
wk

ij

∣∣∣vij ∈ E, k ∈ K
} (1)

where G is the traffic network; V denotes the traffic intersection; E denotes the traffic sec‑
tion; W is the roadway resistance; and K denotes the m time periods throughout the day.

The structure of the traffic road network in Figure 2 is represented using the adjacency
matrix A, as demonstrated in Equation (2) [20]:

A =


A11 A12 · · · A1N
A21 A22 · · · A2N
...

...
. . .

...
AM1 AM2 · · · AMN

 (2)

The assignment rule for the element Aij in matrix A is as Equation (3) [20]:

Aij =


wij, vij ∈ E
0, vi = vj

inf, vij /∈ E

(3)

where inf denotes that there is no directly connected road section between node vi and vj,
and wij denotes the road resistance from node vi to vj.



Energies 2024, 17, 418 5 of 26

Considering the fact that users are actually more concerned about the car traveling
time while driving [21], this study chooses the car travel time as a characterization of road‑
way resistance for modeling and analysis.

3.2. New Energy Vehicle Charging and Hydrogen Injection
3.2.1. Road Resistance Function

When making a path selection, the route with the shortest traveling time is preferred.
In order to reflect the relationship between the traffic time and the density of each road
segment and other factors, this paper adopts the road resistance function method. The
road resistance function is often calculated according to the following formula, calculated
by Equation (4) [22]:

Tat(xat) = T0
at[1 + α(xat/Ca)

β] (4)

where T0
at denotes the free passage time of section α; Ca is the capacity of line α; xat denotes

the flow rate of section a at time t; and α = 0.15, β = 4.

3.2.2. Vehicle Path Planning
In order to simulate the travel demand of EVs and HFCVs, the OD matrix represen‑

tation of traffic origins and destinations is used [23], and (m, n) is defined as an OD pair,
where m denotes the user’s starting point, n denotes the ending point, andM denotes the
set of OD pairs, as shown in Equation (5).

M =


M11 M12 · · · M1n
M21 M22 · · · M2n
...

...
. . .

...
Mm1 M11 · · · Mmn

 (5)

where Mmn is the traffic flow from intersection m to intersection n.

3.2.3. EV Electricity Demand and HFCV Hydrogen Demand Calculation
(1) First, we obtain urban traffic information, including the traffic network structure

and road resistance, and read the travel demand of EVs and HFCVs, including the travel
moments, starting points and ending points of EVs and HFCVs, the initial power quan‑
tity of EVs, and the initial hydrogen quantity of HFCVs. State parameters for EVs EV =
{EOi, EDi, Ets, ELt, ECapr  ECap0, ECapt, E∆cap}; state parameters for HFCVs HFCV =
{FOi, FDi, Fts, FLt, FCapr, FCap0, FCapt, F∆cap}. Themeaning of eachparameter is shown
in Table 1.

Table 1. Car state parameters.

Parameter Explanation Parameter Explanation

EOi EV Starting Point Ets EV travel time
EDi EV Endpoints ELt Position of the EV at time t

ECapr EV Capacity ECap0 Initial power of EV
ECapt Amount of power remaining in the EV at time t E∆cap Consumption per kilometer Electricity consumption

FOi HFCV starting point FDi HFCV endpoint
Fts HFCV position at time t FLt HFCV position at time t

FCapr HFCV hydrogen content FCap0 Initial hydrogen for hydrogen
FCapt Amount of hydrogen remaining in the HFCV at time t F∆cap Hydrogen consumption per kilometer

In this paper, we use the probability distribution curves of the initial travel moments
and return moments of cars on a typical weekday provided in the literature [24] to gener‑
ate the initial travel moments of EVs and HFCVs. We assume [25] that the initial power
of each EV and the initial hydrogen energy distribution of the HFCVs satisfy the normal
distribution N(0.5, 0.12).

(2) Complementary energy demand judgment and user decision‑making
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After the vehicle has traveled to a certain intersection [26], the user determineswhether
it needs to replenish energy to travel to the destination based on the remaining power and
hydrogen of the vehicle. In this paper, it is assumed that if the EV’s power or HFCV’s hy‑
drogen amount is less than 20% or the remaining energy of the car is not enough to reach
the destination, the car needs to go to the charging station at the current intersection to
replenish the energy. When the car continues to its destination after refueling, the cost of
the loss between the car and the EHCIS will be calculated as part of the planning cost of
the EHCIS, according to Equation (6).

ζs
i =

{
1 S(is) ≤ 20% or LR(is) ≤ Ls,D
0 other (6)

where the ζs
i function determines whether the ith car needs to be charged and injected

with hydrogen when it travels to s, 1 indicates that the car needs to be replenished, and
0 indicates that it does not need to be replenished; S(is) is the remaining energy of the
car when it arrives at the intersection s; LR(is) is the mileage that can be traveled with the
remaining power and hydrogen in kilometers; and Ls,D is the distance between the current
intersection node s and the destination in kilometers.

(3) Based on Dijkstra’s shortest‑path planning
Dijkstra’s algorithm is suitable for graphs without negative edge weights. In road

networks, where edge weights typically represent distances or travel times, these values
are non‑negative [27]. This makes Dijkstra’s algorithm well‑suited to finding the shortest
paths in road networks. Dijkstra’s algorithm is generally faster in sparse graphs compared
to the Bellman–Ford algorithm and the road networks tend to be sparse. The time complex‑
ity of Dijkstra’s algorithm is O ((V + E) log V) [28], while the Bellman–Ford algorithm has
a time complexity of O (VE). In road networks, where V may represent intersections and E
may represent road segments, E is often much smaller than V. Dijkstra’s algorithm is usu‑
ally faster for graphs with positive weights, especially in the case of dense graphs or small
weight values, whereas the Bellman–Ford algorithm is more general and is able to handle
graphs containing negative weights, and the Bellman–Ford algorithm is relatively slow. In
this paper, the weight of urban road traffic is road resistance, and the value is positive, so
comparedwith the Bellman–Ford algorithm, this paper adopts Dijkstra’s algorithm, which
is more appropriate.

After the EV and HFCV obtain the traveling OD pair, in order to obtain the shortest
driving path planned by the EV and HFCV users, this paper adopts Dijkstra’s algorithm
to guide the users on the path [29], which takes the shortest driving path as the searching
goal by filtering and comparing the road paths. The shortest path search is performed
according to Equations (7) and (8) [30].

Sij = ∑
vij∈E

[
vijwk

ij(t)
]

(7)

vij =

{
1, vij ∈ dm(i)
0, vij /∈ dm(i)

(8)

where vij = 1 indicates that the road from node i to node j is in the actual traveling path
dm(i), otherwise it is 0; therefore, the starting point O(i) and the ending point D(i), as
well as the initial traveling moment t0(i) and the returning moment td(i), are obtained
through the OD travel matrix, and the traveling path is planned by Dijkstra’s algorithm;
dm simulates the vehicle EV/HFCV traveling route.

(4) Calculation of electric hydrogen demand
The driving paths and replenishment needs of all EVs andHFCVs in the planning area

are modeled according to the aforementioned method, and the charging and hydrogen
injection quantities of all EVs and HFCVs in a day are superimposed and calculated to
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obtain the electric hydrogen demand of all EVs in the planning area. The flow chart for
total demand calculation is shown as Figure 3:
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The demand for electric and hydrogen energy for EVs and HFCVs in the urban plan‑
ning area sets the stage for the site selection and capacity of the EHCIS.

4. Site Selection for Capacity Determination Based on Voronoi Diagram with Particle
Swarm Algorithm
4.1. The Steps for Selecting the Initial Site for EHCIS
(1) Calculate the electric and hydrogen energy demand of automobiles at each trans‑

portation node;
(2) Randomly generateN EHCIS site coordinates in the planning area and compile them

as the initial particle X;
(3) Generate a Voronoi diagram [31] with each initial station site as a growth kernel, and

the area formed by the growth is the service area of each charging station;
(4) Using the investment and construction cost of the EHCIS and the user’s refueling loss

cost as the site selection and capacitymodel, the particle swarm algorithmdetermines
the optimal site distribution.

4.2. Voronoi Diagram Based on the Division of the Scope of Service of the Electric Hydrogen
Refueling Integrated Station

The division of the service area of EHCIS is a prerequisite for realizing the capacity
allocation of EHCIS. The Voronoi diagram, also known as the Tyson polygon or Dirichlet
diagram, consists of a set of consecutive polygons consisting of perpendicular bisectors
connecting the straight lines of the two neighboring points. The EHCIS is a generating
element and creates vertical bisectors connecting the line segments; the intersection line
between these vertical bisectorswill form some polygons so that thewhole plane is divided



Energies 2024, 17, 418 8 of 26

into some sub‑areas through the Voronoi diagram divided into each area to establish an
EHCIS when the car energy is insufficient to drive to the charging station to replenish the
energy in a timely manner.

Let the set of vertices in the P = {p1, p2, . . . , pn}, 3 ≤ n ≤ ∞, d(pi, pj) be the Euclidean
distance between vertices pi and pj. The Voronoi diagram is defined as Equation (9) [32]:

V(pi, λi) =
{

x ∈ V(pi, λi)
∣∣d(x, pi) ≤ d

(
x, pj

)}
,

j = 1, 2, · · · , n, j ̸= i
(9)

The Voronoi diagram divides the plane into n regions, and each vertex in P corre‑
sponds to a V(pi, λi) region. When the car needs to replenish energy, it drives to the near‑
est EHCIS, and its service range is determined by the Voronoi diagram.

5. Siting and Capacity Modeling of an EHCIS
The Hydrogen Charging Station supplies energy to both EVs and HFCVs. The station

includes transformers, charging piles, electrolysis tanks, hydrogen storage tanks, hydro‑
gen dispensers, and other equipment and uses alkaline electrolyzed water to produce hy‑
drogen in the station. Among them, the charging piles are used to replenish the energy of
EVs, while the electrolysis tank, hydrogen storage tank, and hydrogen dispenser are used
to produce hydrogen and dispense hydrogen to HFCVs [33].

5.1. Objective Function
The objective function for the construction of an EHCIS, which is a transportation

infrastructure that provides services to users for travel, is the cost of constructing an EHCIS
over the entire planning period discounted to the annual cost, and the total cost includes
non‑energy costs C1i, C2i and energy costs C3i, C4i:

minC =
N

∑
i=1

(C1i + C2i + C3i + C4i) (10)

where C is the cost of constructing EHCIS over the entire planning period discounted to
each year; N is the number of EHCIS. The individual costings are shown below:

(1) C1i is the annual cost of the investment in the construction of the EHCIS:

C1i =
r0(1 + r0)

z

(1 + r0)
z − 1

(
eia1 + uib1 + vib2+
hic2 + wid2 + ci

)
(11)

where ei is the number of transformers in the EHCIS; a1 is the unit price of the transformers;
ui is the number of charging piles in the EHCIS; b1 is the unit price of the charging piles in
the EHCIS; vi is the number of hydrogen dispensers in the EHCIS; b2 is the unit price of the
hydrogen dispensers in the EHCIS; hi is the capacity of the hydrogen tanks in the EHCIS;
c2 is the price per unit of the hydrogen tanks in the EHCIS; wi is number of electrolyzers in
the EHCIS i; d2 is unit price of electrolyzers in the EHCIS; ci is the capital cost of the EHCIS
i; r0 is the discount rate; and z is the operating life of the EHCIS i.

(2) The maintenance cost C2i of the EHCIS consists mainly of the cost of repairing the
equipment of the EHCIS and the cost of labor for the personnel. The maintenance cost is
calculated as a percentage of the construction cost, with a scaling factor of η. The annual
maintenance cost of the EHCIS iwill be:

C2i = η

(
eia1 + uib1 + vib2+
hic2 + wid2 + ci

)
(12)

(3) C3i is the cost of purchasing electricity for the EHCIS i and the cost of electricity
consumption for hydrogen production in the electrolyzer:
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C3i =
T

∑
t=1

(
Psum

i,t,cd + Psum
i,t,elec

)
× pt,0 (13)

where pt,0 is the purchased electricity price of the EHCIS in time period t; Psum
i,cd is the sum

of the electricity required by the charging piles in the service area of the EHCIS; and Psum
i,elec

is the sum of the electricity consumed by the electrolyzer for hydrogen production.
(4) C4i is the cost of the idling energy loss incurred by the user during the journey to

the electric hydrogen refueling integrated station, which is expressed as a function of

C4i =
∑ Li,ev

gev
× p0 +

∑ Li,hev

ghev
× h0 (14)

where∑ Li,ev and∑ Li,hev are the combineddistances fromall the traffic intersectionswithin
the service area of EHCIS i to the EVs and HFCVs at EHCIS i, respectively and gev and
ghev are the electricity and hydrogen consumed per kilometer by the EVs and HFCVs,
respectively.

5.2. Determination of the Number of Hydrogen Dispensers for Charging Piles at EHCIS
If in time period t, there are ni demand points within the service area of the EHCIS

i, the number of charging piles and hydrogen dispensers in the EHCIS is configured as
follows:

Number of charging piles:

ui =


ni
∑

j=1
qev,t

j(ρ1 + 1)

P1k1,x

 (15)

Number of hydrogenators:

vi =


ni
∑

j=1
Mh f cv,t

j(ρ2 + 1)

P2k2,x

 (16)

where ρ1 is the charging margin of the EHCIS; P1 is the rated power of each charging pile;
k1,x is the charging efficiency of the charging pile; ρ2 is the hydrogen injectionmargin of the
hydrogen dispenser in the EHCIS; P2 is the rated hydrogen injection capacity of a single
hydrogen dispenser; k2,x is the hydrogen injection efficiency of the hydrogen dispenser;
qev,t

j denotes the demand for electric loads of EVs in the service area of the EHCIS i at time
t; Mh f cv,t

j denotes the demand for hydrogen of HFCVs in the service area of the EHCIS i
at time t; and [] is the sign of upward rounding.

5.3. Constraints
EHCIS operational constraints include electrolyzer equipment constraints; hydrogen

energy flow balance constraints; number of EHCIS constraints; distance between EHCIS
constraints; and maximum distance from intersection constraints.:

(1) Electrolyzer Hydrogen Production Constraints:
The electrolyzer consumes electricity to produce hydrogen, which is commonly ob‑

tained using Equations (17)~(20) [7]:

Pt,d
i,elec = HH

Ft,d
i,elec

ηelec
(17)
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wi = ceil


ni
∑

j=1

24
∑

t=1
Pj
elec,t

Pelec

 (18)

0 ≤ Ft,d
i,elec ≤ Γi,elec (19)

Γi,elec ≤ Γi,elec ≤ Γi,elec (20)

where Pt,d
i,elec is the input power of the electrolyzer at time t on day d of the year in EHCIS

i; HH is the high calorific value of hydrogen; Ft,d
i,elec is the hydrogen productivity of the

electrolyzer at time t on day d of the year in EHCIS i; ηelec is the energy conversion efficiency
of the electrolyzer; Γi,elec is the hydrogen production capacity of the electrolyzer in EHCIS
i; and Γi,elec and Γi,elec denote the lower and upper limits of the hydrogen production rate
of the electrolyzer in EHCIS i, respectively;

(2) Hydrogen Storage Tank Capacity Constraints:
The hydrogen produced in the electrolyzer is not immediately consumed by the fuel

cell vehicle but is stored in a hydrogen storage tank. The hydrogen energy flow balance is
calculated according to Equation (21) [7].

Ct+1,d
i,tank = Ct,d

i,tank − Mt,d
i,out + Ft,d

i,elec (21)

where Ct,d
i,tank and Ct+1,d

i,tank are the hydrogen storage capacity in the hydrogen storage tank at
time t and t + 1 on day d, respectively; Mt,d

i,out is the hydrogen storage capacity in the hydro‑
gen storage tank at time t on day d; and Ft,d

i,elec is the hydrogen inflow from the hydrogen
dispenser to the hydrogen storage tank at time t on day d in the hydrogen storage tank in
the EHCIS. The hydrogen storage tank constraints can be expressed as Equations (22) and
(23) [34];

0 ≤ Ct,d
i,tank ≤ hi (22)

hi ≤ hi ≤ hi (23)

where hi is the capacity of the hydrogen storage tank; hi is the lower limit of the rated
hydrogen storage capacity of hydrogen storage tank i of the electric hydrogen refueling
station; hi is the upper limit of the rated hydrogen storage capacity of hydrogen storage
tank i of the EHCIS;

(3) Number of EHCIS constraints

Nmin ≤ N ≤ Nmax (24)

where Nmin and Nmax are the minimum and maximum values of the number of EHCIS
allowed to be built in the planning area.

(4) Distance Constraints Between EHCIS

Dmin ≤ Dij ≤ Dmax i ̸= j (25)

where Dij is the straight‑line distance between EHCIS i and EHCIS j; Dmin and Dmax are
the minimum and maximum distances between EHCIS i and EHCIS j, respectively.

(5) Distance Constraints from Traffic Intersections to EHCIS

dij ≤ dmax (26)

where dij is the distance from the EHCIS to the traffic demand point; dmax is the maxi‑
mum distance from the traffic demand point to the EHCIS; Ncross is the number of traffic
intersections.
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5.4. Improved Particle Swarm Optimization Algorithm
Because the EHCIS siting and capacity model contains variables such as charging

piles, hydrogen refueling stations, the distance between the EHCIS, the demand point of
automobile refueling, the charging equipment, and hydrogen refueling equipment in the
EHCIS, which is difficult to be solved using the conventional mathematical methods, this
paper adopts the improved particle swarm algorithm based on the division of the Voronoi
diagram [35] for the model of the EHCIS.

5.4.1. Weighting Update Strategy
In this paper, the inertia weights in the traditional particle swarm algorithm are im‑

proved to solve the problems of easily falling into the local optimum at the beginning of
the iteration and easily oscillating at the end of the iteration [36], and the inertia weights
w are updated in each iteration. When the inertia weight is large, the particle has a strong
ability in the global search, but at the same time, the adaptation update rate is slow; when
the inertia weight w is small, the algorithm is strong in the local region search, but it is
easy to fall into local optimal solutions. Therefore, this paper adopts the linear decreasing
strategy [37,38] to update w, and the specific update formula is Equation (27) [39]:

w = wmax −
T · (wmax − wmin)

Tmax
(27)

where wmax and wmin are the maximum and minimum values of the inertia weights, re‑
spectively; and T and Tmax are the current and maximum iterations, respectively.

5.4.2. Solution Process
The solution flow chart of the EHCIS is shown in Figure 4, which is mainly divided

into the following seven steps:
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Step 1: Calculate the electricity and hydrogen demand of urban transportation nodes
based on the start and end of EV and HFCV trips in the planning area.



Energies 2024, 17, 418 12 of 26

Step 2: Generate the coordinates of the site of the EHCIS and compile them into the
initial location of the EHCIS.

Step 3: Make a Voronoi diagramwith the initial site of the EHCIS as the growth point
to determine the service area of each EHCIS and determine the number of charging piles
and hydrogen dispensers according to the electricity and hydrogen load demand within
the service area.

Step 4: Calculate the annual social cost of the EHCIS according to the objective func‑
tion of planning, use it as the adaptation degree, and, finally, find the individual extreme
value of the particle and the global extreme value.

Step 5: Judge whether the maximum number of iterations is reached. Yes, go to step
7; No, execute step 6.

Step 6: Update the velocity and position of the particle, jump to step 3, iteration num‑
ber 1.

Step 7: Output the planning scheme that minimizes the objective function.

5.5. Grid Planning for Combined Electric Hydrogen Charging Station
In the case of EHCIS access, in order to ensure the safe and stable operation of the

power grid, the active distribution network expansion planning is established, and the ac‑
tive distribution networkmanagement factors include [40] (1) an on‑loadvoltage‑regulating
power transformer (on‑load tap changer (OLTC)); (2) reactive power device regulation, in‑
cluding discrete reactive power compensation and continuous reactive power regulation;
and (3) an energy storage system (ESS). In synthesizing the electric hydrogen production
and EHCIS and management factors, this paper adopts the optimal current model of the
distribution network from the literature using the following equation [41]:

min f (p, q, P, Q, Ṽ, Ĩ)

s.t.

{
pj = ∑k∈δ(j) Pjk − ∑i∈π(j)(Pij − Ĩijrij) + gjṼj, ∀j ∈ B

qj = ∑k∈δ(j) Qjk − ∑i∈π(j)(Qij − Ĩijxij) + bjṼj, ∀j ∈ B
(28)

Ṽj = Ṽi − 2(Pijrij + Qijxij) + Ĩij(r2
ij + x2

ij), ∀ij ∈ E (29)∥∥∥∥∥∥∥
2Pij

2Qij

Ĩij − Ṽj

∥∥∥∥∥∥∥
2

≤ Ĩij + Ṽj, ∀ij ∈ E (30)

I2
ij ≤ Ĩij ≤ I2

ij, ∀ij ∈ E (31)

V2
j ≤ Ṽj ≤ V2

j , ∀j ∈ B+ (32)

6. Active Management Element Modeling
6.1. OLTC Modeling

OLTCmainly regulates theHV/MV low‑voltage side voltage value. With the addition
of OLTC, the substation bus node is converted into an adjustable variable, which can be
replaced as follows [42]:{

V2
j ≤ (VBase

j,t )
2rj,t ≤ V2

j

rmin
j ≤ rj,t ≤ rmax

j

, ∀t, ∀j ∈ BOLTC (33)

where BOLTC is the set of substation nodes containing the OLTC; VBase
j,t is the voltage value

of the high voltage side of the HV/MV transformer, which is constant; rmax
j and rmin

j are the
squares of the upper and lower limits of the OLTC adjustable ratios; and rj,t is the square
of the OLTC ratios, which is defined as the ratio of the secondary to the primary side and
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is actually a discrete‑valued variable, which can be further processed into the following
relationship containing 0–1 variables [42]:

rj,t = rmin
j + ∑

s
rj,sσOLTCj,s,t , ∀t, ∀j ∈ BOLTC (34)

where rj,s denotes the difference between the OLTC gear s and the square of the variable
ratio of gear s − 1, i.e., the neighboring regulation increment. σOLTCj,s,t is a 0–1 identifying
variable, which can be expressed as Equation (35) if the constraints such as the limit on the
number of regulation times are considered [43]:

σoLTCj,1,t ≥ σoLTCj,2,t ≥ σoLTCj,SRj ,t
, ∀t, ∀j ∈ BOLTC

δOLTC,IN
j,t + δOLTC,DE

j,t ≤ 1, ∀t, ∀j ∈ BOLTC

∑
s

σOLTCj,s,t − ∑
s

σOLTCj,s,t−1 ≥ δOLTC,N
j,t − δOLTC,DE

j,t SRj,

∀t, ∀j ∈ BOLTC

∑
s

σOLTCj,s,t − ∑
s

σOLTCj,s,t−1 ≤ δOLTC,IN
j,t SRj − δOLTC,DE

j,t ,

∀t, ∀j ∈ BOLTC

∑
t∈T

(δOLTC,IN
j,t + δOLTC,DE

j,t ) ≤ NOLTC,max
j , ∀j ∈ BOLTC

(35)

where δOLTC,IN
j,t and δOLTC,DE

j,t indicate the OLTC gear adjustment change identification. For

0–1 variables, if δOLTC,IN
j,t = 1, then theOLTCgear value in the t timeperiod than the t‑1 time

period gear value is larger, the variable δOLTC,DE
j,t is similar. SROLTCj is themaximum change

range of the gear and NOLTC,max
j is the maximum permissible number of adjustments of

the OLTC gear in the T time period.

6.2. Modeling of Reactive Power Regulation Devices
(1)Discrete reactive power compensationmodeling. Take the example of group switch‑

ing capacitor banks (CB) [43]. QCB
j,t = yCBj,t QCB,step

j

yCB,max
j,t ≤ YCB,max

j

, ∀t, ∀j ∈ BCB (36)

where BCB is the set of CB nodes; yCBj,t is the number of operating groups, which is the value
of the discrete variable; YCB,max

j is the upper limit of the number of CB groups connected

to node j; QCB,step
j is the compensated power of each group of CBs. Considering factors

such as equipment life or economy, discrete reactive power compensation is mostly lim‑
ited by the number of adjustments, so it generally includes a limit on the total number
of operations in multiple time periods; and NCB,max

j is the upper limit of the number of
operations [44]:

∑
t∈T

∣∣∣yCBj,t − yCBj,t−1

∣∣∣ ≤ NCB,max
j , ∀t, ∀j ∈ BCB (37)

Then it is available:
δCBj,t =

∣∣∣yCBj,t − yCBj,t−1

∣∣∣ (38) ∑t∈T δCBj,t ≤ NCB,max
j

−δCB,max
j,t ≤ yCBj,t ≤ δCB,max

j,t YCB,max
j

, ∀t, ∀j ∈ BCB (39)
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(2) Modeling of continuous reactive power regulation devices. Take a static VAR com‑
pensation (SVC) device as an example. Continuous reactive power regulation is relatively
simple compared to discrete reactive power compensation devices [45].

QSVC,min
j ≤ QSVC

j,t ≤ QSVC,max
j , ∀t, ∀j ∈ BSVC (40)

where BSVC is the set of nodes containing SVC and QSVC,min
j and QSVC,max

j are the lower
and upper limits of the SVC compensation power, respectively. The increasing penetration
of DGs such as PV power generation, may cause system current reversal and over‑voltage
problems, so the lower limit of SVC compensation in this paper QSVC,min

j < 0.

6.3. Modeling of Energy Storage Systems
Typically, the energy storage system (ESS) needs to consider the constraint limitations

of multiple time periods, which mainly contain the charging and discharging state limita‑
tions, the charging and discharging power limitations, and the energy storage capacity
constraints.

(1) The charge and discharge state constraint is expressed in Equation (41) [46]:

udischargej,t + uchargej,t ≤ 1, ∀j ∈ BESS, ∀t (41)

(2) The power constraint is expressed in Equation (42) [47]: udischargej,t Pdischarge,min
j ≤ Pdischarge

j,t ≤ udischargej,t Pdischarge,max
j

uchargej,t Pcharge,min
j ≤ Pcharge

j,t ≤ uchargej,t Pcharge,max
j , ∀t, ∀j ∈ BESS

(42)

(3) The capacity constraint is expressed in Equation (43) [48]:EESS
j,t+1 = EESS

j,t + α
charge
j Pcharge

j,t − α
discharge
j Pdischarge

j,t

EESS,min
j ≤ EESS

j,t ≤ EESS,max
j , ∀j ∈ BESS, ∀t

(43)

where BESS is the set of nodes containing ESS. Equation (43) indicates that ESS cannot be
charged and discharged at the same time; uchargej,t and udischargej,t are the ESS charging and

discharging states; Pdischarge,max
j , Pcharge,max

j , Pcharge,min
j , and Pdischarge,min

j are the upper
and lower limits of the ESS charging and discharging power, respectively; EESS

j,t is the ESS

power in the t time period, EESS,max
j and EESS,min

j are the upper and lower limits of the ESS

taking into account the ESS lifetime, etc.; and α
charge
j and α

discharge
j are the charging and

discharging efficiency coefficients, in general, α
charge
j < 1 and α

discharge
j > 1.

Based on the comprehensive consideration of the active management element model‑
ing, the coordination planning of the EHCIS with the distribution grid is carried out based
on the geographic characteristics of the planning area of the EHCIS.

7. Algorithm Analysis
7.1. Electricity‑Hydrogen Demand Calculations

In this paper, 24 nodes in Sioux Falls are selected to describe the urban road network
structure. The specific network topology is shown in Figure 5. The road network structure
for automobile travel includes 24 nodes and 38 roads. The starting point of the car is set
to have 2000 EVs and 1000 HFCVs in the transportation network, the rated capacity of the
EV is set to 60 kWh, the capacity of the HFCV is 4 kg, and the time‑sharing tariff is shown
in the Appendix A Table A1 [49]. Where a1 = 80, 000￥, a2 = 400, 000￥, b1 = 150, 000￥,
b2 = 300, 000￥, c2 = 9261￥/kg, d2 = 22, 000￥, ci = 180, 000￥, z = 20, r0 = 0.8%,
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η = 0.05, ηelec = 0.73, h0 = 54 ￥/kg, gev = 0.16kWh/km, ghev = 0.118kg/km, ρ1 =
ρ2 = 0.1, P1 = 48kW/h, P2 = 700kg/day, Pelec = 39kWh/kg, and HH = 3.509kW ·
h/m3. Monte Carlo sampling was used to calculate the spatial and temporal distribution
of electric energy demand and hydrogen energy demand in the transportation network by
searching for the path with the minimum travel time through Dijkstra’s algorithm based
on the OD matrices of EVS and HFCVs, as shown in Figures 6 and 7.
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As can be seen from Figure 6, the main time distribution of hydrogen demand for
HFCVs peaks at 12:00–13:00 and 21:00–23:00, mainly due to the fact that HFCV users focus
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on hydrogen injection at the time of returning fromnoon and returning fromwork. HFCVs
have a short hydrogen injection time, which is negligible compared to the charging time
of EVs, and the number of HFCVs is small compared to the number of EVs in practice.
The construction cost of the charging equipment for EVs is less, and the construction cost
of hydrogen injection equipment for HFCVs is high, and there are many hydrogen pro‑
duction links. Figure 7 shows that the charging behavior of EVs is more random, and the
electric load distribution of EVs is more intensive compared to the hydrogen load demand
of HFCVs.

7.2. Simulation Results
Based on the loads of EVs and HFCVs, the EHCIS in Sioux Falls are selected for ca‑

pacity planning. Set the number of particle population species as 20, Tmax is set to be 300
and the number of EHCIS in the planning area is set as 3~20, and this number of EHCIS
is solved by traversing. The simulation results are shown in Figure 8 and Table 2, and the
two algorithms are iterated as the iteration process in Figure 9.
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Table 2. Comprehensive annual economic construction cost of EHCIS.

Quantities C1 (×106 ¥) C2 (×106 ¥) C3 (×106 ¥) C4 (×106 ¥) C (×106 ¥)
7 5063.76 253.19 39.7 42.83 5379.48
8 5083.92 254.19 38.38 22.08 5398.57
9 5115.72 255.78 38.18 22.34 5432.02
10 5153.09 257.65 37.43 21.8 5469.97
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When the number of EHCIS sites is 7~10, the corresponding annual total social cost
of EHCIS construction is shown in Table 3. The optimal solution C appears when the num‑
ber of EHCIS is 8. Each EHCIS contains charging piles, electrolyzers, hydrogen storage
tanks, and hydrogen dispensers, and the number of charging piles and electrolyzers in
the EHCIS is solved by Equations (15) and (16); Equations (15) and (16) both adopt the
method of rounding upwards by [], which means that the utilization rate of the charging
piles and electrolyzers in the EHCIS cannot reach 100% and the construction cost increases
with the increase of the number of EHCIS sites. The fixed construction cost of EHCIS also
increases with the number of EHCIS sites. The maintenance cost C2 of EHCIS is solved by
Equation (12), and the fixed construction C1 and maintenance cost C2 increase by 1.76%
as the cost C1 increases from 5063.76 × 106 ¥ to 5153.09 × 106 ¥ and the maintenance cost
C2 increases from 253.19 × 106 ¥ to 257.65 × 106 ¥. When the number of EHCIS increases,
the utilization rate of the charging piles and electrolyzers in the EHCIS increases, and the
cost of the charging piles for charging and the electricity consumption for hydrogen pro‑
duction gradually decrease. Since the number of electric vehicles and hydrogen fuel cell
vehicles in the planning area remains constant, the demand for electricity and hydrogen
remains essentially the same, so the costs C3 remain essentially the same, and C3 decreases
by −6.07% as the EHCIS changes from site 7 to 10. Due to the increase in the number of
EHCIS sites, although the cost of the EHCIS equipment increases, the distance from the
electric vehicles and hydrogen fuel cell vehicles to each EHCIS becomes smaller, so the
cost of C4 decreases from 42.83 × 106 ¥ to 21.8 × 106 ¥, making the total cost C show a
decreasing and then increasing trend.

Table 3. Configuration parameters of each EHCIS.

EHCIS Number Number of
Charging Piles

Number of
Electrolytic Tanks

Hydrogen Storage
Tank Capacity/(kg)

Number of
Hydrogen Injectors

X1 17 97 7.9 1
X2 10 96 7.6 1
X3 13 136 11.2 1
X4 23 298 20.1 1
X5 2 19 1.46 1
X6 14 132 10.1 1
X7 27 199 19.4 1
X8 1 7 0.54 1

The eight EHCIS are numbered from X1 to X8, the optimal locations of the EHCIS are
shown in Figure 7, and the configurations of the charging piles, electrolysis tanks, hydro‑
gen storage tanks, and hydrogen dispensers of each EHCIS are shown in Table 3. HFCVs
account for a low proportion in the transportation field, the number is small, and the hy‑
drogen filling capacity of the hydrogen dispenser is large. One hydrogen dispenser can
reach 700 kg of hydrogen per day [50]; therefore, only one EHCIS can meet the demand
for hydrogen filling in the planning area of the city.

Discuss the time complexity and space complexity of the particle swarm algorithm
given that the number of particles is 20, the number of EHCIS sites is 8, and the number of
iterations is 300:
(1) Time complexity:

The time complexity of the particle swarm algorithm is mainly related to the num‑
ber of iterations, the computational operations in each iteration, and the dimension of the
problem. Let the computation in each iteration be O (V), where V denotes the dimension
of the problem. The overall time complexity is O (T × V × N), where T is the number of
iterations and N is the number of particles. In this case, the overall time complexity is O
(300 * 16 * 20) = O (9600).
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(2) Space complexity:

Each particle needs to store information, such as the position (16 variables), velocity
(16 variables), and fitness value. Therefore, the storage space complexity of each parti‑
cle is O (V), where V is the dimension of the problem. The overall space complexity is
O (N × V), whereN is the number of particles. In this case, the total space complexity is O
(20 * 16) = O (320).

7.3. Integrated Distribution Network Planning
The modified IEEE33 node system is used for the analysis, and the network parame‑

ters are detailed in the literature [51]. In this paper, OLTC, ESS, CB, SVC, wind turbines,
and electric EHCIS are added to the basic network to realize the collaborative planning of
the EHCIS and the distribution network. The modification is shown in Figure 10. In this
case, an OLTC is connected between nodes 33 and 1; node 5, node 15, and node 31 are con‑
nected to SVC; node 5 and node 15 are connected to CB; nodes 15 and 32 are connected to
ESS; and nodes 17 and 32 are connected to the wind farm, respectively. The EHCIS are con‑
nected to nodes 19, 3, 7, 23, 13, 27, 10, and 14, respectively. The wind power and load data
in the example are from the actual system. The OLTC ratio range is assumed to be, and
the active management equipment parameters are detailed in Appendix A Tables A2–A4.
The literature [19] has demonstrated that the relaxation model with grid losses as the ob‑
jective function is rigorously accurate, and, in addition to this, the objective function of this
planning includes the sum of the power purchases from the higher grid. The program is
computed in a Matlab R2018a environment based on CPLEX 12.8.0 with an i5‑12400 CPU
2.5 GHz, 16 GB RAM (Intel, Santa Clara, CA, USA), and a Win10 64‑bit operating system.
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According to the original data of the arithmetic example, the active coordination opti‑
mization yields the results of each equipment for each time period, as shown in
Figures 11–15. Figure 11 shows the 24‑h distribution of the voltage at the IEEE33 node,
Figure 12 shows the active output of the wind power, and Figures 13 and 14 show the
output of the reactive power compensator capacitor bank CB and the reactive power com‑
pensator SVC, respectively.
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From Figures 12–16, it can be seen that (1) in the load trough section (00:00–04:00), due
to the need to ensure the lower value of 0.5 MWoutput of the main grid, the high wind tur‑
bine output at night, and the storage of new energy sources in the night, the ESS is limited
by the capacity, and it cannot further absorb the excess clean energy, which leads to power
abandonment, and ESS discharges at the peak load stage, effectively reduces the equiva‑
lent load peak–valley difference; at 6:00, the wind power output gradually decreases, the
ESS charging power becomes smaller, and in the daytime, as electric vehicles andhydrogen
fuel cell vehicles begin to run, the power consumed by the EHCIS, as an active load, begins
to increase. it can be concluded from Figure 11 that the voltage begins to rise in the time
period from 4:00 to 6:00, accompanied by an increase in active loads, and, in order to main‑
tain voltage stability in the distribution network, the reactive power compensation power
supply is required to maintain the voltage stability in the distribution network, and the
ESS is not able to further absorb the excess clean energy. In order to maintain the voltage
stability in the distribution network, the output of both THE reactive power compensation
capacitor bank CB and the reactive power compensator SVC start to increase gradually to
avoid the appearance of nodal overvoltage in the distribution network.
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During the time when the wind power output is higher (nighttime), with an increase
in electricity consumption, the OLTC increases the voltage, and the reactive device absorbs
the excess reactive power of the system in this time period. The peak period of electricity
consumption of automobile users commuting to and from work and residential users is
18:00~24:00, and the wind turbine output is gradually increased in this time period. In
addition, due to the gradual increase in the electricity load, the ESS storage device begins to
discharge, and in the node of the distribution grid, there is a boosting trend in the nighttime
time period, but along with the increase in the output of the reactive power compensation
capacitor bankCBand the reactive power compensator SVC, the distribution network node
voltage is still kept within the ±5% deviation.

8. Conclusions
The large‑scale promotion of newenergy vehicles requires the infrastructure of EHCIS

as a prerequisite, and the large‑scale integration of new energy vehicles into the grid will
have an impact on the power grid. Therefore, in order to meet the demand for hydrogen
energy for automobiles, it is necessary to consider the coordinated planning of the EHCIS
and the power distribution network. In this paper, the model of EHCIS is designed to
minimize the total social cost in the planning area, and the particle swarm method is used
to solve the model for the highly nonlinear characteristics of the model, which contains
many variables. The Voronoi diagram of the EHCIS site is the growth point, and the area
formed by the growth is the service area of the EHCIS. The equipment capacity of the
EHCIS is determined according to the electric hydrogen demand of EVs and HFCVs in
the service area, and the particle swarm algorithm is used to search for the optimal solu‑
tion of the objective function of the planning of the EHCIS. The calculation results show
the following:

(1) In this paper, the ODmatrix and BPR road resistance function are used to simulate
the travel trajectories of EVs and HFCVs, and the electric hydrogen demand of EVs and
HFCVs is obtained by dynamically updating the state parameters of EVs and HFCVs in
real time. The calculation results show that there is an obvious difference in the spatial
and temporal distribution of the electric loads and hydrogen loads of EVs and HFCVs.

(2) This paper establishes an active management model on the basis of planning the
EHCIS and verifies through example simulation that it meets the energy demand of EVs
and HFCVs while ensuring the safe and reliable operation of the power grid and realizes
the coordinated planning of the EHCIS and the power distribution grid. In this paper, the
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spatial and temporal distribution of automobile energy demand is obtained by superim‑
posing the demand of a single quantity of automobiles, and the planning of the EHCIS
is carried out on the basis of obtaining the electric hydrogen energy demand of automo‑
biles. Finally, by introducing reactive power compensation components and energy stor‑
age devices, the grid node voltage is maintainedwithin a±5%deviation during peaks and
valleys, which ensures the safe and reliable operation of the system.

(3) The EHCIS holds distinct advantages over standalone charging stations [52]: the
EHCIS combines electric and hydrogen refueling facilities, offering a dual‑fuel solution
for diverse vehicle types. This integrated approach optimizes spatial utilization, stream‑
lines infrastructure development, and provides a comprehensive solution for both electric
and hydrogen‑powered vehicles. Additionally, the EHCIS minimizes the need for dupli‑
cate infrastructure, thereby reducing the overall land requirements and promoting a more
efficient and sustainable energy transition for multi‑modal transportation systems.

(4) In contrast to the insights from [53], our study stands out by emphasizing the
integration of EHCIS into active distribution network planning. This strategic inclusion
ensures the secure and reliable operation of the power grid, addressing the crucial aspect
of grid connectivity. This paper not only introduces an innovative approach for the siting
and capacity determination of EHCIS, utilizing Voronoi diagrams and particle swarm algo‑
rithms to calculate vehicle charging and hydrogen refueling demands but also underscores
the significance of seamlessly incorporating EHCIS into existing energy infrastructures.
This holistic perspective guarantees the safety and reliability of the power grid during the
operation of these integrated stations, marking a substantial advancement in the field.

(5) PSO is a heuristic algorithm based on group collaboration, but it is not guaranteed
to find a globally optimal solution. In the EHCIS siting and capacity determination prob‑
lem, there are complex nonlinear relationships and constraints, which may cause PSO to
fall into local optimality during the search process. In this paper, the initialization loca‑
tion of EHCIS is used as the optimization strategy after determining the location of EHCIS;
therefore, Cplex is needed to deal with the hydrogen flow balance constraints, grid bal‑
ance constraints, and so on. The siting and capacitation problem may involve multiple
decision variables; when the dimension of the problem is high, the particle swarm algo‑
rithm may face a dimensional disaster, i.e., the performance of the algorithm decreases
with an increase in the dimension of the problem. The search space of the PSO algorithm
for the high‑dimension problemmay become too large, resulting in a decrease in the search
efficiency.
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Table A1. Tariffs for different time periods.

Peak Period Level Period Valley Period

Time (12:00–15:00)
(20:00–23:00)

(9:00–12:00)
(15:00–20:00)
(23:00–0:00)

(0:00–9:00)

price of electricity
(¥/kWh) 0.56 0.39 0.30

Table A2. Parameters of CB.

Nodes Unit Capacity/Mvar Quantities

5, 31 0.01 5
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Table A3. Parameters of ESS.

Nodes Limit of Power/MW Limit of Capacity/(MW·h) Charging Efficiency Discharging Efficiency

15, 32 0.3 1.5 0.9 1.11

Table A4. Parameters of SVC.

Nodes Compensation Coverage

5, 15, 31 [−0.1, 0.3]
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