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Abstract: Load forecasting is a research hotspot in academia; in the context of new power systems,
the prediction and determination of load reserve capacity is also important. In order to adapt to new
forms of power systems, a day-ahead automatic generation control (AGC) reserve capacity demand
prediction method based on the Fourier transform and the attention mechanism combined with
a bidirectional long and short-term memory neural network model (Attention-BiLSTM) optimized by
an improved whale optimization algorithm (IWOA) is proposed. Firstly, based on the response time,
Fourier transform is used to refine the distinction between various types of load reserve demand,
and the power of the AGC reserve band is calculated using Parseval’s theorem to obtain the reserve
capacity demand sequence. The maximum mutual information coefficient method is used to explore
the relevant influencing factors of the AGC reserve sequence concerning the data characteristics
of the AGC reserve sequence. Then, the historical daily AGC reserve demand sequences with
relevant features are input into the Attention-BiLSTM prediction model, and the improved whale
algorithm is used to automatically find the optimal hyperparameters to obtain better prediction
results. Finally, the arithmetic simulation results show that the model proposed in this paper has
the best prediction performance with the upper (0.8810) and lower (0.6651) bounds of the coefficient
of determination (R2) higher than the other models, and it has the smallest mean absolute percentage
error (MAPE) and root mean square error (RMSE).

Keywords: load AGC reserve capacity prediction; improved whale algorithm; long and short-term
memory; Fourier transform

1. Introduction

Automatic generation control (AGC) is the automatic adjustment of power imbalance
from seconds to minutes [1,2]. The factors leading to power imbalance are load fluctuations
and fluctuations in the output of new energy sources such as wind power and photovoltaic.
Unplanned fluctuations in renewable energy sources and loads pose challenges to the
security and stability of the power system and the balance between energy supply and de-
mand [3,4]. Inertia is an integral and important part of future power systems [5], yet the new
energy itself has a small moment of inertia [6–9], which is also unfavorable for the power
system. New energy output is characterized by high volatility and randomness; while
the penetration of new energy sources in the power system is increasing, the power system
needs to prepare more reserve capacity to cope with the volatility of their output [10,11].
But due to the crowding out of the feed-in space of conventional thermal power units [12],
the hot reserve resources available for systems are further reduced, thus posing a great
challenge to the security and stability of the power system [13–15]. In the electricity market,
ancillary services provide additional support for source–load power mismatch [16,17].
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AGC is not only an important technical means to ensure the active balance of the power
system and maintain frequency stability at all times [18] but also an important part of auxil-
iary services [19]. The dispatch and operation departments as well as the power market
operators need to carry out a scientific and effective quantitative assessment of the AGC
reserve demand [20]. This enables a better allocation of limited system reserve resources
and ensures an efficient response to load fluctuations, thereby guaranteeing the safe and
stable operation of the power system.

The current methods for determining AGC reserve capacity can be categorized into
three types, which are the dispatcher’s empirical method, the probabilistic statistical method
and the data-driven method, they are briefly described as follows:

(1) The dispatcher’s experiential method refers to the approach where the system operator,
based on their extensive operational experience, directly determines the AGC reserve
requirements of the system by considering the electric load levels and the periodic
patterns of load consumption. Alternatively, based on their operational experience,
the dispatcher may calculate the AGC reserve requirements using pre-defined compu-
tational formulas and actual operational data [21]. Although this method is simple
and fast, it still has the disadvantage of being insufficiently objective to be generalized
on a large scale, and it is not well adapted to new power systems.

(2) Research paper [22,23] models the load forecast error with a probability density func-
tion and calculates the AGC reserve capacity demand under a certain confidence space.
Paper [24] proposes a method to control the AGC reserve capacity in the region based
on the evaluation criteria correction background. Paper [25] first separates the load
components and then uses statistical and other methods to determine the demand
for AGC reserve capacity. However, this mathematical description is inadequate
whether a normal distribution function or a t-distribution function is used.

(3) The data-driven approach utilizes the characteristics of big data in the power system
and employs a neural network model to predict the regulation capability of the AGC.
Paper [26] calculates the initial capacity of the AGC from line, load, new energy and
unit perspectives and predicts the capacity of the AGC using long short-term memory
neural networks (LSTM). However, it still has the disadvantages that the calculation
time scales are too coarse. So, it is unable to conduct a fine analysis of reserve demand,
and the adaptability with the new type of power system is not good.

The characteristics of the above methods are shown in Table 1. It should be noted that
it takes time for the capacity reserve service to be put in place. If the reserve capacity cannot
be put in place in time, it may lead to a directional loss of system control or grid collapse.
Therefore, the size of the reserve capacity and the response time must be carefully considered
and designed to ensure the reliability and stability of the power system. The calculation and
management of the AGC reserve capacity of the above methods do not take into account
the physical characteristics of the system reserve resources nor do they provide a more fine-
grained division of the system reserve in terms of response time. Thus, they have limited
significance in guiding the trading of reserve services under the spot market.

Table 1. Characteristics of the AGC reserve capacity determination method.

Methodology Source Vantage Drawback

Dispatcher’s empirical method [21] Simple and fast Not well adapted to new power systems

Probabilistic statistical method [22–25] Comprehensive and accurate calculations Insufficient mathematical description

Data-driven method [26] Based on big data and higher credibility Time scales are too loose

In recent years, the field of prediction has witnessed significant advancements due
to the rapid development and widespread use of deep learning techniques. With the advent
of big data, the combination of data-driven and model-driven research methods has proven
to be highly effective in prediction tasks [27–30]. One notable data-driven method is
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the bidirectional long short-term memory (BiLSTM), which represents an improvement
over the traditional LSTM by incorporating sequence information from both past and future
directions. This enhanced capability of extracting time-series information has led to the
widespread adoption of BiLSTM in various domains: a method for joint load forecasting
in multi-energy systems based on bidirectional long short-term memory (BiLSTM) and
multi-task learning is proposed in paper [31]. The emphasis of the method is on fully
utilizing the coupling relationships among multiple loads; its effectiveness and superiority
in terms of learning speed and prediction accuracy have been validated through case studies.
Paper [32] introduced a novel stock price prediction model utilizing a bidirectional LSTM
network for training and predicting stock datasets. The results of this study showcased
the high application value of the proposed model. Paper [33] uses a BiLSTM network
to classify peer reviews in terms of cognitive content and affective states; the results show
that the BiLSTM network model achieves good results in terms of classification performance
and consistency with manual coding. Paper [34] employed a prediction model based
on gray relational analysis and bidirectional long short-term memory neural networks
(BiLSTMs) to forecast the air quality index of several cities. The results demonstrated
the model’s high prediction accuracy and its applicability across different locations.

When using neural networks for prediction, it is not simply a matter of inputting
feature and label data into the model and training it directly, but it is also necessary to adjust
the hyperparameters that come with the model in order to change the structure of the model
so that the model achieves the best performance under different tasks. The improved whale
algorithm (IWOA) is widely used as a heuristic algorithm in hyperparameter optimization.
Paper [35] introduces the improved whale optimization algorithm (IWOA), which continu-
ously optimizes the nonlinear weights of the Elman neural network during the iterative
process. Paper [36,37] uses an improved whale algorithm to optimize the hidden layer
of the LSTM network, the number of neurons in the first LSTM layer, etc. Paper [38]
obtained a proposed IWOA optimization algorithm by improving the whale optimization
algorithm (WOA). Using this algorithm to optimize the hyperparameters of the TCN-
Attention model, the optimal prediction is finally obtained. In paper [39], IWOA optimizes
the initial weights and thresholds of the back-propagation (BP) neural network, which
speeds up the iteration speed of the BP neural network and enhances the optimization
ability and robustness of the model. In paper [40], IWOA is used to find the optimal param-
eter values of pulse coupled neural network (PCNN) to optimize PCNN. By combining
the aforementioned components, the IWOA-PCNN model had the best image denoising
performance, and the produced images were crisper and preserve more information. Pa-
per [41], in order to improve the classification effect of PNN, designed an IWOA based
on the opposite-based learning (OBL) strategy and the crisscross optimization algorithm
to select the optimal smoothing factor, namely IWOA-PNN. In paper [42], a transformer oil
kinematic viscosity detection model based on the IWOA optimized radial basis function
(RBF) neural network and multi-frequency ultrasonic detection technology is proposed;
then, the IWOA-RBF training experiment samples are used to obtain the transformer oil
kinematic viscosity detection model. Experimental results prove that the detection model
has certain practicability.

The rapid development and increasing maturity of deep learning have opened up di-
verse possibilities for applications in the field of prediction. In this study, based on paper [26],
a data-driven approach is employed. We leverage the excellent performance of deep learning
in forecasting and combine it with the big data background of the power system to address
the issue that current AGC reserve capacity determination methods do not consider the input
time of reserve services. We propose considering the response time of the AGC reserve as the
starting point for decomposing the net load fluctuation within a day. Furthermore, we deter-
mine the AGC reserve capacity demand for specific time periods based on the time–frequency
relationship obtained through Fourier transform [43]. This approach allows for a fine-grained
analysis and management of reserve capacity throughout the day. To forecast the load AGC
reserve capacity demand, we employ the IWOA-Attention-BiLSTM model to fully exploit
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the mapping relationship between the time series characteristics of the historical day and
the AGC reserve capacity demand on the day to be forecasted. By leveraging this model,
we can accurately predict the load AGC reserve capacity demand. These prediction results,
with a certain level of accuracy assurance, hold significant value in guiding the assessment
of AGC reserve capacity demand within the reserve auxiliary service market. Overall, this
study demonstrates the potential of deep learning in the field of prediction, particularly
in addressing the challenges related to AGC reserve capacity determination in the power sys-
tem. By integrating the IWOA-Attention-BiLSTM model and considering the time–frequency
relationship, we can achieve more accurate and informed decision-making in managing AGC
reserve capacity demand within the reserve auxiliary service market. The study contributes
to the field in the following ways:

• This paper combines the discrete Fourier transform and Parseval’s theorem, and
a method to analyze the load AGC reserve capacity requirement in fine time division
is proposed.

• The method of maximizing the information coefficient is used to explore the influ-
encing factors of AGC reserve capacity demand sequences such as meteorology and
load’s change factors, and the factors with large correlation coefficients are used as the
input features of the neural network prediction model.

• A prediction model for day-ahead AGC reserve capacity demand is constructed using
the IWOA-Attention-BiLSTM neural network. BiLSTM is used to extract the time-
series information, the attention mechanism is used to focus on the key feature factors
and the improved whale optimization algorithm (IWOA) is used to optimize the hy-
perparameters to obtain better prediction results.

The rest of the paper is organized as follows: Section 2 introduces a refined method
for analyzing load AGC reserve capacity demand. In Section 3, factors influencing the se-
quence of load AGC reserve capacity requirements are explored. In Section 4, the IWOA-
Attention-BiLSTM prediction model is constructed. Section 5 presents a case study based
on actual load sampling data from a province in southern China. Based on the analyses
in Section 5, conclusions are drawn in Section 6.

2. Load AGC Reserve Capacity Determination Method
2.1. Frequency Domain Analysis Method

The discrete Fourier transform can transform a function or discrete signal in the time–
frequency domain, using methods such as separation, filtering or truncation to achieve
the goal of signal decomposition [44–46]. If x(n) is a finite-length time-domain load
sequence of length N, performing a DFT on it yields the corresponding finite-length
frequency-domain sequence X(k), which is expressed as:

X(k) =
N−1

∑
n=0

x(n)· e−j 2π
N kn, 0 ≤ n ≤ N − 1 (1)

In the above Equation (1), both n and k are integers and they are the ordinal numbers
of the sampled values in the sequences x(n) and X(k). The relationship between n and
frequency f is given by:

f =
n fs

N
=

n
NTs

(2)

In the above Equation (2), fs is the sampling frequency and Ts is the sampling pe-
riod. The discrete Fourier transform can be viewed as the multiplication and summation
of the original signal with sine and cosine signals of different frequencies.
Therefore, the sinusoidal components contained in the original signal can be separated by
the Fourier transform. According to the paper [47], the response time of the reserve should
be the first quarter of its period, then the load frequency corresponding to the reserve
should also be the reciprocal of four times the response time. The AGC response time is
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the time difference between the moment when the AGC command begins to change and
the moment when the unit’s actual output begins to change and the change exceeds the reg-
ulation dead zone and is no longer reversed. Considering the effects of primary frequency
control and thermal unit pressure pullback and allowing a certain AGC reserve capacity
margin, the range of the actual AGC reserve response time of the system is determined
to be (30 s, 3 min] and the load frequency corresponding to this time range is (1/720 Hz,
1/120 Hz].

The inverse discrete Fourier transform (IDFT) is the inverse of the DFT. The inverse
discrete Fourier transform of a finite length sequence in the frequency domain is defined as:

x(n) =
1
N

N−1

∑
k=0

X(k)· ej 2π
N , 0 ≤ k ≤ N − 1 (3)

Utilizing the inverse discrete Fourier transform (IDFT), the frequency domain signal
can be converted into the time domain signal after classification filtering. The net load
signal for a day is divided based on the frequency band to which the AGC reserve belongs.
Each frequency band’s frequency domain signals are then transformed into their respective
time domain signals. The decomposition results are shown in Figure 1 below.
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Figure 1. All-day load decomposition result.

In Figure 1, the frequency range to which the category 1 component of the load
belongs is (1/120 Hz, ∞), the category 1 component of the load is characterized by a small
change amplitude and short change period, so it is responded by the primary frequency
regulation. The category 2 component of the load is the one corresponding to the AGC
reserve. The third type of load component belongs to the frequency band of (0, 1/720 Hz],
with the characteristics of large change amplitude and long change period, and it can be
used as the scheduled load curve.

2.2. AGC Reserve Capacity Calculation Method

Parseval’s theorem is widely used in the derivation of time–frequency analysis of sig-
nals [48]. It states that the energy (or power) of a signal remains equal in both the time and
frequency domains. The theorem’s mathematical essence lies in the invariance of orthogo-
nal transformations applied to signals in vector space. For a signal within the frequency
range [ f1, f2], its energy can be calculated using the following Equation (4):
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E( f1, f2) =
f2

∑
f1

|X( f )|2 (4)

In the above Equation (4), X( f ) denotes each spectral component, and the modulus
represents the amplitude of the spectral component at the actual frequency of f . From this,
the power values P( f1, f2) in different frequency ranges can be obtained as shown in the fol-
lowing Equation (5):

P( f1, f2) =

√√√√ f2

∑
f1

|X( f )|2 (5)

To determine the AGC reserve capacity, the frequency range (1/720 Hz, 1/120 Hz)
should be considered. The load curve, sampled at a 30 s interval and consisting of a total
of 2880 data points for the entire day, undergoes a Fourier transform every 15 min. By apply-
ing Parseval’s theorem, the data points within the frequency range (1/720 Hz, 1/120 Hz) are
converted to power in the time domain. The AGC reserve capacity requirement for the entire
day is obtained by concatenating the results of 96 segments, each representing a 15-min
interval, and the full-day demand curve is shown below.

AGC reserve capacity is essentially set up to cope with second-to-minute fluctuations
in load. As shown in Figure 2 below, the degree of fluctuation in the load profile for each
analyzed time period can be quantified using Parseval’s theorem.
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Figure 2. All-day AGC reserve demand curve.

3. Analysis of Factors Associated with Load AGC Reserve Capacity Demand Sequence
3.1. Maximum Mutual Information Coefficient Method

Common correlation methods, such as Pearson, Spearman, Kendall and maximal
information coefficient (MIC), are widely used in data analysis [49–55]. Among these
methods, MIC (Maximal Information Coefficient) offers several advantages, including
universality, fairness and symmetry. It is particularly beneficial when working with a large
number of samples, as it can capture various data correlations without being limited
to specific function types (e.g., linear, exponential, or periodic functions). MIC exhibits
low computational complexity and high robustness, making it a popular choice for feature
selection in neural network models.

The basic idea of the MIC method is that the variables α and β are plotted as a scatter
plot in two dimensions, and then the dataset D is partitioned into a grid, assuming that Gi
is a subgrid of the partition, so that a multitude of subgrids of size xs × ys can be obtained;
Assuming that the probability distribution of the samples of dataset D falling into grid Gi
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is D | Gi, the maximum mutual information MI∗(D, xs, ys) of the multiseeded grid based
on dataset D can be defined as:

MI∗(D, xs, ys) = maxMI(D | Gi) (6)

In the above Equation (6), MI(D | Gi) denotes the mutual information of lattice Gi in D.
The maximum mutual information of all subgrids Gi is regularized to obtain the nor-

malized feature matrix M(D), as shown in the following Equation (7)

M(D) =
MI∗(D, xs, ys)

logmin (xs, ys)
(7)

Maximum mutual information, i.e., the maximum value of mutual information com-
puted in the feature matrix, can be defined as:

MIC(D) = max
xs ·ys<Na

{M(D)} (8)

In the above Equation (8), MIC(D) denotes the maximum mutual information com-
putation value for the dataset D; usually, the grid size is limited by xs · ys < Na (N is
the total amount of data), which in turn reduces the computational effort. According to the
recommended values in the paper [56], in this paper, a is taken as 0.6. The closer the value
of MIC is to 1, the greater the correlation between the two variables.

3.2. Data Correlation Analysis

To achieve the objective of reserve refinement analysis, the load curve for the entire
day is divided into 96 segments with a 15-min interval. The following steps are performed
for each segment of the load curve to obtain the AGC reserve capacity demand curve
consisting of 96 points for the entire day.

(1) Using actual loads that comply with Shannon’s sampling theorem as raw data inputs.
(2) The time-domain signal is converted to the frequency domain according to Equation (1).
(3) Determine the spectral classification corresponding to the AGC reserve according

to the frequency domain segmentation criteria and zero out any other spectral infor-
mation that does not belong to this frequency segmentation.

(4) Calculate the AGC reserve capacity at that time scale using Equation (5).

The AGC reserve capacity series is separated from the load series, but it exhibits
significantly different data characteristics compared to the load sequence. The AGC reserve
capacity series displays overall higher volatility and larger peak-to-valley differences.
In contrast, the load series demonstrates a cyclical pattern over time with no significant
abrupt changes in load values between adjacent time periods. However, the AGC reserve
series lacks this cyclical pattern and exhibits noticeable jumps between the data in adjacent
time periods.

According to existing experience [57], the AGC reserve capacity demand is closely
related to the fluctuation component of the load. The periods of high AGC reserve capacity
roughly coincide with the periods of significant load variations. Here, the load’s phase
fluctuation standard deviation sT and phase change rate mT are introduced, as shown
in the following Equation (9):

sT =

√√√√ 1
K

K

∑
i=1
|Li − uT |2 (9)

mT =
L1 − LK

Ttime
(10)
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In the above Equation (9), K is the total number of load sampling points in time
period T, Li(i = 1, 2, . . . , K) is the number of load sampling points in time period T, Ttime
is the duration of time period T in minutes. Here, taking the length of time period T as
15 min and calculating it every 15 min will result in a sequence of load fluctuation standard
deviation and a sequence of load rate of change for 96 points in a day.

Since meteorological factors such as temperature, humidity, sunshine, wind speed, etc.,
have an impact on people’s daily lives and consequently affect the magnitude of the load, we
collected meteorological data and computed their average values every 15 min. The recorded
data include the average temperature sequence, average humidity sequence, average light in-
tensity sequence and average wind speed sequence for a day. In this study, we take the example
of the AGC reserve capacity demand sequence of a province in southern China on 20 July 2018.
We employ the maximum mutual information coefficient method to perform correlation analysis
between the aforementioned influencing factor sequences. The calculation results are depicted
in Figure 3 below.
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Figure 3. Correlation analysis of AGC sequence.

From Figure 3, the MIC values for meteorological factors such as temperature, humid-
ity, wind speed and light intensity were small, indicating weak correlations (less than 0.5)
with the AGC reserve capacity demand sequence. On the other hand, the load curve’s in-
herent characteristics, such as fluctuation variance and rate of change, exhibited large MIC
values, all greater than 0.5, indicating strong correlations with the AGC reserve capacity
demand sequence of the day.

In actual forecasting scenarios, the input characteristic data can only consist of histori-
cal daily data. Therefore, the maximum mutual information coefficient (MIC) is utilized
to calculate the relationship between the AGC reserve capacity demand sequence on
20 July 2018 and the sequences of fluctuation variance and rate of change, which exhibit
significant correlation coefficients, as depicted in Figure 3. Since the trend of daily load
fluctuation curves is generally consistent, the AGC reserve capacity sequences from his-
torical days also provide informative insights. The specific correlation coefficients are
presented in Table 2 below. In Table 2, A represents the sequence of AGC reserve capacity
demand on a historical day, S represents the sequence of load fluctuation standard deviation
on a historical day, M represents the sequence of load rate of change on a historical day,
and the numbers indicate the number of days between historical days.
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Table 2. Correlation coefficient between daily AGC reserve demand series and historical daily
characteristic data.

Sample Inputs Correlation
Coefficient Sample Inputs Correlation

Coefficient Sample Inputs Correlation
Coefficient

A−10 0.4232 S−10 0.3012 M−10 0.2878
A−9 0.4715 S−9 0.3530 M−9 0.3029
A−8 0.5068 S−8 0.3919 M−8 0.3554
A−7 0.6771 S−7 0.5403 M−7 0.5021
A−6 0.5524 S−6 0.4238 M−6 0.3969
A−5 0.6311 S−5 0.4997 M−5 0.3630
A−4 0.5844 S−4 0.4552 M−4 0.4076
A−3 0.6584 S−3 0.4336 M−3 0.4271
A−2 0.6831 S−2 0.5359 M−2 0.5331
A−1 0.6919 S−1 0.5709 M−1 0.5429

As shown in Table 2 below, the current day’s AGC reserve capacity demand sequence
exhibits a high correlation with the AGC reserve capacity demand sequence from historical
days as well as the load standard deviation sequence and load change rate sequence
from historical days. Therefore, the load fluctuation standard deviation, load change rate
and AGC reserve capacity demand sequence from historical days are selected as inputs
for the neural network.

4. IWOA-Attention-BiLSTM Modeling
4.1. Bilstm Network

Long short-term memory neural networks (LSTM), as an improved type of recurrent
neural network (RNN), effectively addresses the challenge of long-term dependencies.
BiLSTM (bidirectional LSTM) further enhances LSTM by incorporating two LSTM layers
with the same structure but in opposite directions. This architecture enables the model
to better capture time-series information, and the network structure expression for BiLSTM
is provided below:

h⃗t = LSTM
(

xt, h⃗t−1

)
(11)

←
h t = LSTM

(
xt,

←
h t−1

)
(12)

ht = W⃗ht
h⃗t + W←

h t

←
h t + bt (13)

In the above Equations (11) and (12), LSTM is the above traditional LSTM neural
network operation process. In the above Equation (13), W←−

h
and W−→

h
are the forward

hidden layer and backward hidden layer weight matrices at time t, respectively; h⃗t and
←
h t

are the forward hidden layer and backward hidden layer state vectors at time t, respectively;
bt is the bias of the hidden layer state at moment t.

From the network structure of BiLSTM, it can be seen that the output ht of the hidden
layer at the moment t is a splicing of the processing results in both directions, which
contains the complete past and future information in the spare capacity feature data xt.
Moreover, the weights are shared during the training process, which ensures its generaliza-
tion ability while continuously increasing the data volume.

4.2. Attention Mechanism

The attention mechanism is a resource allocation mechanism that characterizes the im-
portance that the temporal target attaches to the input information x at moment t by
calculating the attention weight at of that information [58–60]. If xm(m = 1, 2, . . . , M) is
the feature input of the attention mechanism; ht−1 and st−1 are the hidden layer state
and the gating unit state at the previous moment of the LSTM; and em

t (m = 1, 2, . . . , M)
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is the attention weight of each relevant feature at the current moment t, which can be
expressed as follows:

em
t = VT

e tanh(We[ht−1; st−1] + Uexm + be) (14)

In the above Equation (14), Ve, We, Ue and be are the multilayer perceptron weights
and bias parameters for calculating the attention weights. am

t (m = 1, 2, . . . , M) is for is
the feature weights after normalization using the softmax function, which can be expressed
as follows:

am
t = so f tmax(em

t ) =
exp(em

t )

∑M
i=1 exp(ei

t)
(15)

The associated characterization matrix of the AGC reserve capacity demand sequence
is represented as follows:

X =

 x1
1 x1

2 · · · x1
M

x2
1 x2

2 · · · x2
M

x3
1 x3

2 · · · x3
M

 (16)

In the above Equation (16), xi = (x1
1, x1

2, . . . , x1
M) is the value of the relevant character-

izing factor at M historical moments. More specifically, x1, x2 and x3 are the historical daily
AGC reserve capacity demand sequence, the historical daily load fluctuation standard
deviation sequence and the historical daily load change rate sequence. The eigenvalue
am

t obtained from normalization is multiplied with xm
i to obtain the new eigenvalue x̃t

to enhance or weaken the features of type m. The expression of x̃t is shown below:

x̃t =
(

α1
t x1

t , α2
t x2

t , · · · , αM
t xM

t

)T
(17)

4.3. Improved Whale Algorithm

To overcome the limitations of the traditional classical whale algorithm, which is prone
to local optimization and premature convergence, this paper proposes a multi-strategy
improvement approach for the traditional whale optimization algorithm (WOA). The pro-
posed approach encompasses three key enhancements. Firstly, the population initialization
is performed using the Sobol sequence. Secondly, the original linear convergence factor is
improved. Lastly, adaptive weighting coefficients are incorporated into the WOA.

Utilizing Sobol sequences for the initialization of whale populations can lead to the
production of highly uniformly distributed particles, resulting in improved population
diversity. The process of generating initial populations using Sobol sequences is as follows:

ui = umin + λ(umax − umin) (18)

In the above Equation (18), umax and umin are the upper and lower bounds of the initial
population position, respectively, λ is a random number in the range [0, 1] generated by
the Sobol sequence and ui is the initial position of the ith whale in the population.

The convergence factor a in the classical WOA algorithm linearly decreases from
2 to 0, which makes it prone to becoming trapped in local optima. To overcome this
limitation, a nonlinear inverse tangent convergence factor is introduced. Its mathematical
model is expressed as follows:

a = 2− 4
π

arctan
(

10t
tmax

)
(19)

In the above Equation (19), t represents the number of iterations and tmax represents
the maximum number of iterations.

Meanwhile, drawing on the concept of weights, adaptive weights ω are introduced
to refine the position updating process in the three stages of whale contraction encircling,
upward spiraling and prey searching. During the early stage, larger adaptive weights are
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utilized to favor global search, while smaller weights are employed toward the end of the it-
erative process to enhance the whale group’s ability for local exploitation. The mathematical
expression for adaptive weighting is as follows:

ω = sin
(

πt
2tmax

+ π

)
+ 1 (20)

After the introduction of adaptive weights, the positional formulas of WOA in each
of the three phases of contraction encirclement, upward spiral and prey search are updated
as follows:

X⃗(τ + 1) = ωX⃗∗(τ)− A · D⃗ (21)

X⃗(τ + 1) = ωD⃗
′ · ebl · cos(2πl) + X⃗∗(τ) (22)

X⃗(τ + 1) = ωX⃗rand(τ)− A· D⃗rand (23)

In the above Equations (21)–(23), τ represents the number of iterations, X⃗∗(τ) repre-
sents the optimal position of the τth iteration in the pod, A represents the coefficient phase
quantity, D⃗ and D⃗

′
represent the distance to the whales at the optimal position in the pod,

D⃗rand represents the distance to a randomly selected whale in the pod, b represents the con-
stant of the logarithmic helix equation, l represents a random number between [−1, 1] and
X⃗rand represents the position of any randomly selected individual in the pod.

4.4. IWOA-Attention-BiLSTM Model Design and Forecasting Process

The BiLSTM model incorporates several hyperparameters, including the number
of input and output layers, which align with the dimensions of the input and output data.
Additionally, hyperparameters such as the initial learning rate η, the number of neurons
in the hidden layer m, the number of iterations H, the batch size k (i.e., number of samples
selected for each training session) and the number of neurons in the fully connected
layer l all have a significant impact on the model’s accuracy and efficiency. In this study,
the Attention-BiLSTM model is optimized using the improved whale algorithm IWOA
to fine-tune these hyperparameters. The optimization process aims to enhance the model’s
prediction performance by utilizing prediction accuracy as the fitness function.

The fitting function used in this optimization is the minimization of the root-mean-square
(RMS) value between the predicted output values and the true values of the test set. The po-
sition coordinates of each whale are located within a high-dimensional space, encompassing
hyperparameters such as the initial learning rate η, the number of neurons in the hidden layer
m, the number of iterations H, the batch size k (i.e., the number of samples selected for each
training session) and the number of neurons in the fully connected layer l. During each iteration
of the whale algorithm, the fitness of each whale is calculated, and the individual optimal
position and group optimal position are updated, subsequently. The iterative process continues
until the optimal hyperparameter values are achieved.

The overall forecasting processes is shown in Figure 4. The characteristic data about
the AGC reserve capacity demand sequence include a 96-point sequence of load fluctuation
standard deviation, 96-point sequence of load change rate and 96-point sequence of AGC
reserve capacity demand sequence from historical days. As shown in Section 3.2, their
correlation coefficients are even larger. So the input data include the sequence associated
with the AGC reserve capacity in three dimensions, and the dimensions of the input
data are N × 96× 3. The output data are the sequence of AGC reserve capacity demand
at 96 points on the day to be forecasted. The IWOA-Attention-BiLSTM hyperparameter
optimization model is shown in Figure 5 below.



Energies 2024, 17, 415 12 of 25

training set validation set 

IWOA-Attention-BiLSTM 

Model Optimize 

Hyperparameters

Input characteristic data 

about the AGC Reserve 

capacity demand sequence  

and the length of the time 

sliding window N

Obtain the prediction 

model with an optimal 

combination of 

hyperparameters

The characteristic data from the 

training set is again input for 

training the model

end

Forecasting is performed to 

obtain the final output: the 

AGC reserve capacity demand 

curve at 96 points on the day 

to be forecasted.

start

Figure 4. Overall forecasting process about load day-ahead AGC reserve capacity demand.

Standard deviation of 

load fluctuation

Load change rate

Historical Daily AGC 

Standby Capacity 

Sequence

Data Inputs
test set

Validation 

set inputs

AGC 

Standby 

Capacity 

Demand 

Forecast 

Value

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

a

attention 

weighting

ATT layers

Softmax
+

weighted 

sum

output

BiLSTM layers

Trained model

substitute into



Label values 

for validation 

sets

Root Mean 

Square of 

Difference

fitness function

full 

connectivity 

layer

Setting the IWOA 

Parameter Optimization 

Range

Initializing the 

whale population

learning rate

umber of iterations

...
Batch size 

 parameter 

entry

Updating the global

 optimal solution

Satisfying the

 convergence 

condition

Updating the 

whale population

NO

YES

Assigning optimal 

hyperparameters to 

ATT-BiLSTM

1
x

2
x

3
x

n
x

1
h

2
h

3
h

n
h

1

t
e

2

t
e

4

t
e

3

t
e

1
a

2
a

3
a

4
a

Figure 5. IWOA-Attention-BiLSTM hyperparameters optimization model.

In Figure 5, the hyperparameter optimization search step is shown below:

(1) Setting the whale population size, search space dimension, maximum number of itera-
tions and the Attention-BiLSTM hyperparameters for the optimization range to achieve
the initialization of the whale population;
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(2) Calculating and recording the optimal fitness of each whale group under the current
hyperparameters;

(3) Constant updating of individual whale positions and optimization of hyperparameters;
(4) Comparing the fitness of the new position of the whale; if the new value is better than the cur-

rent optimal value, update the individual optimal fitness of the whale group, if the current
value is still better than the new value, keep it unchanged and continue training;

(5) Determining whether the termination condition is met; if it is met, the optimal hyper-
parameters are given to Attention-BiLSTM; if not, return to (3);

(6) Using the optimized hyperparameters to build a load day-ahead AGC reserve capacity
demand forecasting model and perform load day-ahead AGC reserve capacity demand
forecasting.

4.5. Selection of Evaluation Indicators

In this paper, the mean absolute percentage error (MAPE), the root mean square
error (RMSE) and the coefficient of certainty (R2) are selected as the evaluation indexes
of the prediction model. The formula is as follows:

MAPE =
1
N

N

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (24)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (25)

R2 = 1−

N
∑

i=1
(yi − ŷi)

2

N
∑

i=1
(yi − yave)

2
(26)

In the above Equations (24)–(26), N represents the total number of predicted outcomes;
ŷi is the predicted value at point i in the AGC reserve capacity demand sequence; yi is
the actual value at point i in the AGC spare capacity demand sequence; yave is the forecast
mean of the AGC reserve capacity demand sequence; MAPE is expressed in percentage,
RMSE is expressed in megawatts, and R2 has no unit.

5. Case Study
5.1. Preprocessing of Reserve Capacity Data

In this paper, we use the real load data of a specific province in China’s southern power
grid. The dataset spans a period of 1461 days, from 1 January 2018 to 31 December 2021.
The load data were sampled at a frequency of 30 s, resulting in 2880 data points per
day. Overall, the dataset contains a total of 4,207,680 data points, representing the load
measurements over the entire four-year period.

Using a smaller sampling interval increases the likelihood of encountering abnormal
load data, which may lead to fluctuations in AGC reserve capacity calculation values.
In this study, a weekly optimization cycle is employed to mitigate the impact of abnormal
data. Specifically, the AGC reserve calculation values at the same moment within the same
week are filtered using the following formula:

|Ri,t − Rave,t|
Rave,t

× 100% ≤ 90% (27)

In the above Equation (27), Ri,t is the calculated value of AGC reserve capacity under
moment t on day i of the week and Rave,t is the calculated value of average AGC reserve
capacity under moment t of the week. If Equation (27) is not satisfied, then the AGC
reserve is large or small. In this paper, we use the average value Rave,t of the same moment
to replace these values.
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The preprocessed reserve capacity demand calculation data for 16 February 2018
(Spring Festival), 24 June 2018 (regular weekend) and 12 December 2018 (regular weekday)
are shown below.

As can be seen from Figure 6 above, most of the spikes in the AGC reserve capacity
sequence occur during load rise or load fall periods such as 5:00 a.m. to 7:00 a.m., 8:00 a.m.
to 9:00 a.m., 11:00 p.m. to 13:00 p.m., 16:00 p.m. to 17:00 p.m. and 22:00 p.m. to 23:00 p.m.
As mentioned before, the AGC reserve is mainly used to cope with load components with
change periods between tens of seconds and minutes such as electric furnaces, calendering
machines, electric locomotives and other industrial load fluctuations with shocks. The above
time periods also correspond to the time periods of the day when factories are in operation,
on lunch breaks and out of operation. The values of reserve capacity demand on the Chinese
New Year and ordinary weekends are smaller than those on weekdays and the fluctuations
of the demand curves are also smaller. This is due to the fact that on weekends and holidays,
there is a certain degree of factory shutdowns compared to weekdays. The proportion
of shock loads such as electric furnaces, calendering machinery and electric locomotives
decreases, resulting in smaller load fluctuations on a second-to-minute scale. It can be seen
that the method of using spectrum analysis is not only feasible in principle, but the calculation
results are also in line with the actual situation.
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Figure 6. Reserve capacity demand curves for different types of days.

5.2. Model Structure and Hyperparameter Optimization

All the simulation experiments in this paper are based on the Windows 10 operating
system, the CPU is an Intel Core i7-10700, 2.90 GHz, the software is Python 3.7.0 and
the framework is Tensorflow 2.2.0. To fully utilize the daily cycle characteristic of the loads
and the weekly cycle characteristic, this section adopts the length of the time-sliding
window of 7, i.e., the input data are the 96-point AGC spare capacity sequence, the 96-point
load fluctuation standard deviation sequence and the 96-point load change rate sequence
for the 7 days before the day to be forecast. The output data are the 96-point AGC spare
capacity demand on the day to be forecasted. The structural parameters of the model using
the Attention-BiLSTM neural network are shown in Table 3.

The parameter optimization process is shown in Figure 7 below, and the final hyper-
parameter optimization results obtained are shown in Table 4 below.
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Table 3. Attention-BiLSTM predicts model parameters.

Parameter Name Parameter Value Parameter Name Parameter Value

Dimension of input features 7 × 96 × 3 Learning rate awaiting optimization

Number of neurons
in the input layer 288 Number of training iterations awaiting optimization

Number of BiLSTM neurons
in the first layer awaiting optimization Batchsize awaiting optimization

Number of BiLSTM neurons
in the second layer awaiting optimization Number of neurons

in the output layer 96

Number of neurons in the
fully connected layer awaiting optimization / /

 

  

(a) Variation in the number of BiLSTM neurons in the first 

layer  

(b) Variation in the number of BiLSTM neurons in the first 

layer 

  

(c) Variation in the number of BiLSTM neurons in the fully 

connected layer 
(d) Variation in the learning rate  

  

(e) Variation in the number of iterations  (f) Batchsize variation  
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Figure 7. IWOA hyperparameter optimization process.
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Table 4. Model hyperparameter optimization results.

Hyperparameterization Setting Range Post-Optimization

Number of BiLSTM neurons in the first layer [10, 100] 9

Number of BiLSTM neurons in the second layer [10, 100] 12

Number of neurons in the fully connected layer [10, 100] 46

learning rate [0.0001, 0.01] 0.000476

Number of training iterations [10, 100] 38

Batchsize [16, 128] 52

5.3. Load AGC Reserve Capacity Demand Forecast

In this paper, a BiLSTM network with two hidden layers is utilized and the hyperbolic
tangent (tanh) function is employed as the activation function. The abstract information
extracted from the Attention-BiLSTM network is nonlinearly mapped through a fully
connected layer and outputted using the Rectified Linear Unit (ReLU) function. The AGC
reserve capacity demand for load forecasting is predicted using the Attention-BiLSTM
network with optimized hyperparameters obtained from the improved whale optimization
algorithm (IWOA). The training set consists of load AGC reserve capacity and related
feature data from a province in southern China, spanning 30 months from January 2018
to June 2021. The test set comprises load AGC reserve capacity data for 6 months from July
to December 2021. Table 5 presents a comparison of the prediction model proposed
in this paper with four other models, namely back-propagation neural network (BP), long
short-term memory neural network (LSTM), bidirectional long short-term memory neural
network (BiLSTM) and Attention-BiLSTM. In addition, since particle swarm algorithms
(PSOs) and genetic algorithms (GAs) can also be used for hyperparameter optimization [61],
the prediction model in this paper is also compared with PSO-Attention-BiLSTM model
and GA-Attention-BiLSTM, and the range of hyperparameter settings is the same for all
three optimization models. Table 5 showcases the prediction averages for the six-month
period and the overall prediction results for the second half of the year.

Table 5. Prediction accuracy of different models in the second half of 2021.

Categories Criteria
Prediction Model

LSTM BiLSTM BP Att-BiLSTM GA-Att-BiLSTM PSO-Att-BiLSTM IWOA-Att-BiLSTM

each month
MAPE/% 33.9 33.4 38.1 33.2 33.6 32.9 32.6

RMSE/MW 34.5 33.9 40.6 34.0 33.2 33.5 32.2
R2 0.772 0.775 0.689 0.780 0.792 0.784 0.804

half year
MAPE/% 33.5 33.0 38.1 33.2 32.9 32.8 32.6

RMSE/MW 33.9 34.5 40.6 34.2 33.2 33.1 32.2
R2 0.775 0.776 0.690 0.781 0.788 0.797 0.805

As shown in Table 5, the IWOA-Attention-BiLSTM model has the best average pre-
diction results in each month and the overall prediction results of the test set. Analyzing
from the perspective of the average prediction results in each month, the prediction accu-
racy of the proposed model in this paper is the highest compared to the other six models.
The MAPE is reduced by 3.83%, 2.46%, 14.57%, 1.89%, 2.97% and 0.92% compared to the
other six models, and the RMSE is reduced by 6.55%, 4.95%, 20.58%, 5.23%, 3.01% and
3.89% compared to the other six models. The R2 is improved by 3.98%, 3.61%, 20.59%,
3.03%, 1.52% and 2.55%, respectively, compared with the other six models. Analyzing
from the perspective of the overall prediction effect of the test set, the prediction model
proposed in this paper also has obvious superiority compared with the other six models.
The MAPE is reduced by 2.86%, 1.22%, 14.56%, 1.90%, 0.92% and 0.61%, respectively,
and the RMSE is reduced by 4.79%, 6.09%, 20.59%, 5.69%, 3.01% and 2.72%, respectively,
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compared with the other six models; R2 was improved by 3.89%, 3.54%, 16.53%, 3.01%,
2.16% and 1.00%, respectively, compared to the other six models.

The test set spans 184 days from 1 July to 31 December. Table 6 presents the maximum
value of the certainty coefficient (R2) achieved by each model along with its corresponding
date. Furthermore, Figures A1–A4 in Appendix A show the forecast effect on the forecast
days with the maximum and minimum certainty coefficients for the different models
mentioned above. Additionally, Figure 8 displays the calculation results of the certainty
coefficient evaluation index (R2) for each day of every prediction model, the daily mean
absolute percentage error (MAPE) evaluation index of each prediction model in the test
set is calculated in Figure 9, and the root mean square error (RMSE) evaluation index
calculation results of each prediction model in the test set are shown in Figure 10.
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Figure 8. R2 values for each day of the test set.
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Figure 9. MAPE values for each day of the test set.
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Figure 10. RMSE values for each day of the test set.

Table 6. The maximum value of certainty coefficient and corresponding days of different AGC reserve
capacity demand forecasting models.

Categories LSTM BiLSTM BP Att-BiLSTM GA-Att-BiLSTM PSO-Att-BiLSTM IWOA-Att-BiLSTM

maximum
value of R2 0.8732 0.8546 0.8434 0.8542 0.8762 0.8748 0.8810

corresponding
date 17 October 17 October 8 December 5 August 26 December 15 September 29 December

minimum
value of R2 0.5994 0.5936 0.4512 0.6664 0.6533 0.6542 0.6651

corresponding
date 1 August 11 October 21 September 11 August 8 July 7 December 18 July

Upon examining Table 6 and Figures 8–10, it is evident that the IWOA-Attention-
BiLSTM model demonstrates superior predictive stability compared to the other six models,
as indicated by wider upper and lower bounds on the coefficient of determination and
had the lowest levels of MAPE and RMSE. In terms of overall prediction effectiveness,
the IWOA-Attention-BiLSTM model consistently achieves a higher coefficient of certainty
for the majority of reserve prediction days in the test set, outperforming the other six
prediction models. Furthermore, Figure A1 in Appendix A reveals that the IWOA-Attention-
BiLSTM model accurately captures the sharp peak of reserve demand for both the best and
worst predicted days. This observation suggests that the attention mechanism effectively
focuses on important feature points, assigning larger weight coefficients.

6. Conclusions

In this paper, the method of spectrum analysis is employed to refine the distinction
between various types of load reserve capacity by utilizing response time as a criterion.
The Attention-BiLSTM network model, optimized using the improved whale optimization
algorithm (IWOA), is employed to forecast the AGC reserve capacity demand before
the load day, resulting in improved accuracy and predictive capabilities. The characteristics
of the IWOA-Attention-BiLSTM method are as follows:

(1) With the goal of fine-grained analysis of reserve demand, the load curves are decom-
posed using Fourier transform at a finer time scale. This, combined with Parseval’s
theorem, enables the extraction of load AGC reserve demand curves for sub-times
of the day, effectively supporting curve-level reserve forecasting.
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(2) By comparing the load AGC reserve capacity demand curve with the load curve, the maxi-
mum mutual information coefficient method quantifies the relationship between the fluc-
tuating characteristics of the load curve and the load AGC reserve capacity demand. This
information is then used to integrate the historical daily AGC reserve capacity sequence
and the historical daily load fluctuating characteristics sequence as inputs to the forecasting
model, enhancing its accuracy and predictive capabilities.

(3) The improved whale optimization algorithm automatically optimizes the hyperparameters
of the Attention-BiLSTM model, eliminating the limitations of manual parameter tuning.
This optimization leads to improved accuracy in model predictions. Comparisons with other
models, such as LSTM, BiLSTM, BP, Attention-BiLSTM, PSO-Attention-BiLSTM and GA-
Attention-BiLSTM reveal that the proposed method improves prediction accuracy by 3.89%,
3.54%, 16.53%, 3.01%, 2.16% and 1.00%, respectively. These results highlight the superior
predictive capabilities of the models proposed in this paper.

(4) The main contribution of this paper is that it adopts a more refined method to analyze
load reserve on a more refined time scale and combines IWOA-Attention-BiLSTM into
a neural network to build a load day-ahead AGC reserve capacity demand prediction
model, which can realize the reserve capacity demand prediction of 96 points a day just
like load prediction. The predicted results are of guiding significance for AGC demand
assessment in the backup auxiliary service market and can also be used for day-ahead
scheduling and generation plan designation. According to the predicted results,
various types of units can reasonably allocate the AGC reserve demand of the system
at various periods, which ensures the safety and stability of the system and at the
same time can make more efficient use of various types of power supplies.

In the context of that high percentage of renewable energy access and a further reduc-
tion in the system’s hot reserve resources, the forecasting method proposed in this paper
is instructive for how to efficiently utilize the existing system resources. The forecasting
results can be used for day-ahead scheduling and intra-day monitoring of the generation
plan as well as for bidding evaluation in the power reserve market. It should be noted that
the load curve we studied is the real sampled load curve, not the net load curve minus
the wind and PV output, so the fluctuation of the renewable energy output has no effect
on the forecasting method, and subsequent studies can be considered on the basis of the net
load curve. In addition, there is still room for improvement in the prediction accuracy
of the method proposed in this paper, and subsequent research can decompose the orig-
inal time series and extract more detailed time-series features to improve the prediction
accuracy so as to further improve the significance of the research results for the actual
production scheduling.
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Figure A1. The prediction effect of IWOA-Attention-BiLSTM model and PSO-Attention-BiLSTM model.



Energies 2024, 17, 415 21 of 25

 

  

(a) Maximum coefficient of determination of GA-

Att-BiLSTM 

(b) Minimun coefficient of determination of  GA-

Att-BiLSTM 

 

 

 

(c) Maximum coefficient of determination of 

Attention-BiLSTM 

(d) Minimun coefficient of determination of  

Attention-BiLSTM 

0 4 8 12 16 20 24

100

200

300

400

500

P
o

w
er

/M
W

Time/h

 actual value

 predicted value

0 4 8 12 16 20 24

100

200

300

400

P
o

w
er

/M
W

Time/h

 actual value

 predicted value

0 4 8 12 16 20 24

100

200

300

400

P
o

w
er

/M
W

Time/h

 actual value

 predicted value

0 4 8 12 16 20 24

50

100

150

200

250

300

350

400

P
o

w
er

/M
W

Time/h

 actual value

 predicted value

Figure A2. The prediction effect of GA-Attention-BiLSTM model and Attention-BiLSTM model.
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Figure A3. The prediction effect of LSTM model and BiLSTM model.
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Figure A4. The prediction effect of BP model.
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