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Abstract: Underground Hydrogen Storage (UHS) provides a large-scale and safe solution to balance
the fluctuations in energy production from renewable sources and energy consumption but requires
a proper and detailed characterization of the candidate reservoirs. The scope of this study was to
estimate the hydrogen diffusion coefficient for real caprock samples from two natural gas storage
reservoirs that are candidates for underground hydrogen storage. A significant number of adsorp-
tion/desorption tests were carried out using a Dynamic Gravimetric Vapor/Gas Sorption System.
A total of 15 samples were tested at the reservoir temperature of 45 ◦C and using both hydrogen
and methane. For each sample, two tests were performed with the same gas. Each test included
four partial pressure steps of sorption alternated with desorption. After applying overshooting and
buoyancy corrections, the data were then interpreted using the early time approximation of the
solution to the diffusion equation. Each interpretable partial pressure step provided a value of the
diffusion coefficient. In total, more than 90 estimations of the diffusion coefficient out of 120 partial
pressure steps were available, allowing a thorough comparison between the diffusion of hydrogen
and methane: hydrogen in the range of 1 × 10−10 m2/s to 6 × 10−8 m2/s and methane in the range
of 9 × 10−10 m2/s to 2 × 10−8 m2/s. The diffusion coefficients measured on wet samples are 2 times
lower compared to those measured on dry samples. Hysteresis in hydrogen adsorption/desorption
was also observed.

Keywords: diffusion; caprock; underground hydrogen storage; dynamic vapor sorption vacuum

1. Introduction

The transition to green and renewable energy is at the forefront of various energy
policies. Electric energy production from renewable sources is governed by the availability
of the individual energy source, i.e., wind or solar radiation. Natural fluctuations in their
availability can lead to energy shortages if the share of renewable sources in the total
energy production is significant. One possibility to mitigate these shortages is Power-to-
Gas technology (P2G), which consists of converting electrical power into gaseous fuel [1].
Most P2G systems use electrolysis to produce hydrogen, which can be stored for a certain
period and retrieved when necessary.

Currently, hydrogen is generally stored as a gas in very high-pressure vessels or in
liquid form at very low temperatures in heavily insulated vessels [2]. Geological storage in
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underground structures, such as depleted natural gas/oil reservoirs, can provide a large-
scale storage capacity. Moreover, underground storage is safer than above-ground storage
tanks due to the absence of contact with atmospheric oxygen (a mixture of hydrogen and
air is explosive in a very broad range, from 4% to 74% [3]). These are the reasons why
underground hydrogen storage (UHS) has recently been given serious consideration [4,5].

UHS is similar to the underground storage of natural gas and most of the past and
ongoing underground hydrogen projects use the experiences gained from underground
natural gas storage over more than a century of successful operations (it was 1915 when the
first depleted gas reservoir was converted into storage for natural gas [6]). Assessment of
reservoir storativity, well injectivity and deliverability, and induced geomechanical stresses
and strains are required to store fluids underground. The caprock integrity, potential
subsidence and uplift of the ground level, and possible microseismicity do not depend on
the type of fluid, so the established methodologies can be used. Conversely, significant
differences exist between hydrogen and natural gas both in physical properties (i.e., lower
viscosity, lower molecular dimension) and chemical properties (higher chemical reactivity).
Thus, some additional investigations are needed to assess the technical feasibility and safety
concerning caprock tightness and diffusivity, interactions with the reservoir rocks, potential
subsequent changes in the storage properties, reactions with microbial communities, and
compatibility with materials [5].

In this paper, we do not aim to demonstrate the overall feasibility of hydrogen storage,
which requires not only the mandatory assessments for any fluid storage (recalled above)
but also substantial laboratory work and multidisciplinary studies as it is emerging from the
recent scientific literature [4,7–13]. Here, we focus on the evaluation of possible hydrogen
diffusion through the caprock. To this end, the diffusion coefficient of hydrogen through
the caprock has to be evaluated. Caprocks are typically characterized by the presence of
abundant clay minerals. According to the technical literature, hydrogen diffusivity mainly
takes place in the brine saturating the caprock [14,15]. The gas concentration in water is
limited by the maximum solubility, which is very low for hydrogen compared to methane.
In contrast, the diffusion ability of hydrogen is larger (Table 1).

Table 1. Solubility and diffusivity in pure water [16,17].

Gas
Solubility in Water (g/kg) Diffusivity in Water

(×10−9 m2/s)
Diffusivity in Air

(×10−6 m2/s)

@ 20 ◦C,
1 atm

@ 60 ◦C,
1 atm

@ 20 ◦C,
1 atm

@ 60 ◦C,
1 atm

@ 20 ◦C,
1 atm

@ 100 ◦C,
1 atm

CH4 0.023 0.007 1.62 6.7 0.21 0.321

H2 0.0016 0.0012 4.58 13.1 0.756 1.1536

Gas diffusion in rocks is dominated by the diffusion of gas through the fluid saturating
the pores (D f ) and also by the pore structure. The effective diffusivity coefficient (De)
expresses the dependence of diffusion on the pore structure in terms of the tortuosity (τ),
porosity (ϕ), and constriction factor (c) [18]:

De =
D f ϕc

τ2 . (1)

The effective diffusion coefficient of the gas in clay mineral formations has been
widely studied over the past few decades. Many literature measurements are related
to formations for nuclear waste repository projects, such as Boom clay, Opalinus clay,
and Callovo-Oxfordian clay, which are characterized by depths of a few hundred meters
(Table 2). Though some experiments have been conducted to explore the potential impacts
of CO2 diffusion through the impermeable caprocks for CO2 geological sequestration [19],
the work on hydrogen diffusion in caprocks is relatively limited [20].
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A summary of the laboratory assessment of the diffusion coefficient for hydrogen
on clay rocks available in the technical literature is given in Table 2. Measurements at
ambient conditions have been performed both on water-saturated samples [15,21–23] and
dry samples [24]. Diffusion at underground storage conditions remains poorly studied [25],
along with measurements on actual caprock samples of potential storage sites [26]. Most of
the available hydrogen diffusion analyses are thus not fully representative of a caprock for
deep hydrogen storage, either for the nature of the analyzed samples (synthetic or dry or
shallow depth) or for the test conditions that do not match the geological ones of a deep
hydrogen storage site. This aspect is more critical for the temperature. Underground tem-
perature conditions could have a significant impact on the diffusivity coefficient; increasing
the temperature reinforces the diffusion of confined hydrogen moderately [20]. Theoretical
values of the free molecular diffusion coefficient (D) for gases show a direct proportionality
with temperature (T) and an inverse proportionality with pressure (p) [27]:

D = D0(T/T0)
α p0/p, (2)

where D0 is the free diffusion coefficient at T0 and p0. Inverse correlations between the
diffusion coefficients and pressures were also experimentally observed for the diffusion of
He in rocks [28], CH4 in rocks [29], CH4 in coal [30], and H2 in clay [24]. Thus, values of
the diffusivity coefficient at an ambient pressure should represent an overestimation of the
diffusivity at the reservoir pressure.

The scope of this study is to estimate the effective diffusion coefficient (De) of hy-
drogen through real caprock samples from natural gas storage reservoirs and compare it
with methane. Furthermore, experiments were conducted at the reservoir temperature.
Adsorbed gas measurements under dynamic isothermal conditions at low pressure are
performed with a Dynamic Gravimetric Vapor/Gas Sorption System (DVS Vacuum) based
on a microbalance. During multiple adsorption/desorption cycles, the changes in the
sample mass are recorded by a high-resolution microbalance. The diffusivity coefficient is
then estimated from dynamic mass data, according to the solution of the diffusion equation
first employed by [31].

The current paper provides a thorough analysis and characterization of the diffusion
coefficient for real caprocks, based on a significant number of tests and corresponding data.
Several samples extracted from cores of two different caprocks were tested. Employing
a rock sample rather than using a powdered sample [32,33] provides measured sorption
properties that are more representative of the shale matrix [34,35]. Both dry and non-dry
samples were analyzed to verify the impact of the presence of water, which may significantly
decrease the gas diffusivity in the sealing rock [36]. Each experiment was carried out twice
to minimize the uncertainty associated with measurements. Each experiment consisted
of four sorption steps, characterized by different partial pressures (Pp = 20%, 40%, 60%
and 80% of 740 Torr), alternated to desorption steps (at Pp = 1% of 740 Torr; a vacuum
was avoided to decrease overshooting between different steps). Measurements were
performed both with H2 100% and with CH4 100%. A “blank test” was associated with
each experiment to provide suitable data for the correction of overshooting effects. The
blank test consisted of repeating each test without the rock sample in the pan (i.e., the
sample holder) to isolate the variation in the measured mass due to the chamber filling
or emptying operations. Experiments were conducted at a pressure approximating the
ambient pressure (i.e., aforementioned pressure steps up to 740 Torr) and a temperature
(45 ◦C) representative of the reservoir under analysis, which is about 1500 m deep. The
adopted experimental setup did not allow for the reproduction of the reservoir pressure
conditions. However, as previously discussed, the diffusion coefficient for gasses shows
an inverse proportionality with pressure; thus, the obtained estimates are to be treated
as conservative.
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Table 2. Summary of laboratory assessment of gasses diffusion on clay rocks in the technical literature.

Formation Depth Porosity Hydr. Con-
duct./Permeability Dry/Wet Pressure and

Temperature Method Gas Used Values

[37] Boom clay 200 ÷ 300 m 36 ÷ 43% - Saturated T: 25 ◦C
p: up to 5 bar

In- and
through-diffusion

tests
H2

4.2 × 10−12 m2/s
to 1.6 × 10−10 m2/s

[38] Callovo-
Oxfordian clay 430 ÷ 550 m 23% K = 10 × 10−22 m2 Saturated T: 30 to 80 ◦C

p: 10 ÷ 50 bar

Through-diffusion
method

Helium leak
detection using

mass spectrometry

He 2 × 10−12 m2/s

[24] Callovo-
Oxfordian clay ~500 m 13 ÷ 15% K ~ 10 × 10−22 m2 Dry T: Ambient

p: 1.5 ÷ 4 bar

Water vapor
sorption

isotherm [39]
Water vapor 1 × 10−8 m2/s

[22] (data
reported

on [23,40])
Boom clay 200 ÷ 300 m 31 ÷ 45% Saturated T: 25 ◦C

p: ambient

In-diffusion and
through-diffusion
experiments [38]

H2 3.0 × 10−11 m2/s

[21] Boom clay 200 ÷ 300 m 31 ÷ 45% Saturated T: 25 ◦C
In diffusion and

through-diffusion
experiments [38]

H2
5 × 10−12 m2/s

to 4 × 10−10 m2/s

[36] Callovo-
Oxfordian clay 430 ÷ 550 m - - Dry T: 90 and 120 ◦C

p: 0.45 bar Through diffusion H2 1.4 × 10−7 m2/s

[40] Callovo-
Oxfordian clay 430 ÷ 550 m - - Wet - - H2 1.1 × 10−11 m2/s

[41]
Boom clay 200 ÷ 300 m 37% 3.3 × 10−12 m/s Saturated T: 21 ± 2 ◦C

p ~10 bar Through diffusion Ne, Ar Ne: 5.1 × 10−10 m2/s
Ar: 2 ± 0.1 10−10 m2/s

Opalinus clay ~300 m 12% 1.8 × 10−13 m/s Saturated T: 21 ± 2 ◦C
p ~10 bar Through diffusion He He: 5.4 × 10−10 m2/s

[23] Opalinus clay ~300 m 17 ÷ 19% 3 × 10−12 m/s
Water

content: 7%
T: 15 ÷ 16 ◦C

p: 1.5 bar

Gas circulation
module and a water

sampling
module [15]

Mixture of H2
(5%) He (5%),

Ne (5%), and Ar
(85%)

H2: 8.12 × 10−11 m2/s
Ne: 6.39 × 10−11 m2/s
He: 11.53 × 10−11 m2/s
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Table 2. Cont.

Formation Depth Porosity Hydr. Con-
duct./Permeability Dry/Wet Pressure and

Temperature Method Gas Used Values

[42] Synthetic Na-
montmorillonites - 7 ÷ 12% Dry T: 26.85 ◦C;

p: up to 60 bar
Thermogravimetric

(TGA) H2 9.9 × 10−8 m2/s

[23] Boom clay 200 ÷ 300 m - 1.5 ÷ 8 × 10−12 m/s Saturated
T: ambient

(21 ◦C)
p: 10 bar

Double
through-diffusion

test [43]

Mixture of H2
(5%) and Ar

(95%)
2.64 × 10−10 m2/s

[35] Marcellus
shale 2395.7 m - - Dry T: 60 ◦C

p: up to 100 bar
Thermogravimetric

(TGA) CH4, C2H6

0.63 mg/g (CH4 at
5 bar)

2.99 mg/g (CH4 at
103.2 bar)

[26]
Caprock

samples (late
Neogene)

- 28 ÷ 35% Saturated T: 20◦ ÷ 22 ◦C
p: 40 bar

Binary diffusion
setup [44] H2

8 × 10−11 m2/s (fresh)
1.1 × 10−8 m2/s

(long-stored)
1.8 × 10−10 m2/s

(re-saturated)
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2. Materials and Methods

The experimental procedure mainly consists of sample preparation, the definition of
the partial pressure steps sequence to be carried out, the execution of the test measure-
ments in the DVS Vacuum, and the interpretation of the data. To evaluate the diffusion
coefficient, several sorption/desorption tests on several samples of the same caprock core
were performed.

2.1. Experiment Description

Measurements of gas diffusion through samples of the caprock were carried out
through an experimental apparatus, the Dynamic Gravimetric Vapor/Gas Sorption Ana-
lyzer (DVS Vacuum) by Surface Measurement Systems Limited. This device can perform
measurements related to multiple adsorption/desorption cycles under dynamic conditions,
thus providing dynamic data suitable for diffusion coefficient calculation. The device
controls and measures the sorbate entry (water vapor and/or gas), exit flows, pressure,
and temperatures while recording changes in the sample mass with a high-resolution
microbalance (sample mass from 1 mg to 0.500 g, resolution 0.1 µg). In situ sample dry-
ing/degassing at elevated temperatures (up to 400 ◦C) and a high vacuum (2 × 10−6 Torr)
is also possible [29].

The external and internal components of the DVS Vacuum apparatus are shown in
Figure 1. The dynamic adsorption measurement is shown in Figure 2; further details are
given in Appendix A.
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The gases used in the tests are hydrogen (declared impurity of 0.0001%) and methane
(declared impurity of 0.005%).

The experiment design consists of four sorption steps characterized by different Pp
(ex. 20%, 40%, 60%, and 80% of 740 Torr, corresponding to approximately 0.2, 0.4, 0.6, and
0.8 atm) alternated with desorption steps (Figure 3). During some preliminary experiments,
each partial pressure step started from a vacuum with alternating sorption to desorption
Pp = 0%. However, it was observed that overshooting effects due to pressure transient in
the microbalance filling period were quite significant and could not be reliably corrected
for Pp ≥ 40%. In order to reduce the impact of the overshooting effects, tests were carried
out setting Pp = 1% (instead of Pp = 0%) before the first partial pressure step (Pp = 20%)
and for all the desorption steps.
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2.2. Theoretical Background

One of the main concerns about the caprock sealing capacity is related to possible
hydrogen diffusion through the caprock itself in the vertical direction, leading to leakage
from the storage. Therefore, a plane geometry, parallel to caprock layering, was adopted in
the sample preparation phase, and a corresponding analytical interpretation model was
implemented for data interpretation.

At each partial pressure step, the non-steady-state mass transfer across the sample
occurs as one-dimensional diffusion, described by Fick’s second law, under the following
assumptions:

• a thin plane geometry, with a constant thickness (d);
• double-side exposure;
• diffusion only across the sample, i.e., in a single direction (x) (Figure 4);
• a constant and uniform source concentration (C0), equal on both sides;
• constant diffusion;
• isothermal conditions.
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Fick’s second law of diffusion for one-dimensional diffusion reads as follows [31]:

∂C
∂t

= D
∂2C
∂x2 , (3)

where D is the diffusion coefficient; C is the concentration of the solute; and x is the distance
from the center of the sample.

The concentration is linked to the mass of the diffusant (M):

M =
∫

V
CdV. (4)

At the beginning of the test, typically in a timeframe of a few minutes, the sample
mass increases as an effect of the surface adsorption of the gas. After the initial surface
adsorption, absorption into the bulk can occur. Usually, the bulk absorption phenomenon
is much slower than surface adsorption. Therefore, it is possible to identify the time (t = 0)
and mass (m0) at which surface adsorption stops and to monitor further increases in mass
(Mt = m(t)− m0) due to the diffusion of the gas into the bulk. After long exposures to gas,
bulk diffusion will cease, and the sample will reach an equilibrium mass (M∞).

Under the assumed hypotheses, Equation (3) has the following solution [47]:

Mt

M∞
= 1 − 8

π2

∞

∑
n=0

1

(2n + 1)2 exp

(
− (2n + 1)2π2Dt

d2

)
, (5)

where Mt is the gas mass uptake adsorbed/desorbed at a given time t and M∞ is the gas
mass uptake at an equilibrium. The uptake mass is calculated by subtracting the initial
mass (m0) to the mass recorded at each time.

For short times, Equation (5) can be reduced to a simplified form [48]:

Mt

M∞
=

4
d

(
Dt
π

)0.5
(6)

From Equation (6), it follows that the slope of the plot Mt
M∞

vs.
√

t (Figure 5) gives the
diffusion coefficient:

slope =
4
d

√
D
π
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Eventually, the diffusion coefficient is evaluated as follows:

D =
slope2d2π
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(8)
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The procedure is exploited for increasing the partial pressure (Pp) (Figure 3), i.e.,
for increasing the available adsorbate mass, thus obtaining several diffusion coefficients
corresponding to different Pp.

According to Henry’s law of solubility, the gas concentration in the sample is directly
proportional to the applied gas pressure [49]. Thus, the solubility (S) is estimated using
M∞ for each partial pressure step, as follows:

S =
M∞

Vmw p
, (9)

where V is the sample volume, mw is the molecular weight of the adsorbed species, and
p is the applied pressure (calculated from the partial pressure value). Under steady-state
conditions and assuming the diffusion and solubility coefficients to be independent of
concentration, the gas permeation flux (J) can be expressed as follows [49]:

J = DS
∂p
∂x

, (10)

where the product DS gives the permeability coefficient.

2.3. Data Processing

In ideal conditions, during the experiment, the measured mass (mmeasured) is the
superposition of the mass of the sample, measured at vacuum conditions ( m0), called the
reference mass, and the adsorbed gas (mgas):

mmeasured (t) = m0 + mgas(t) (11)

However, measurements may be affected by overshooting/undershooting effects due
to pressure transient and buoyancy effects [35]:

mmeasured(t) = m0 + mgas(t)− mbuoyancy(t) + movershooting(t). (12)

Any partial pressure variation from one step to the next (e.g., from vacuum to
Pp = 20%) cannot occur instantaneously inside the DVS and requires a transient period in
which the partial pressure variation is a function of the gas inflow rate (0.13 L/min in our
experiments). Therefore, for a constant gas inflow rate, the pressure transient duration in-
creases with the magnitude of the partial pressure step. For instance, the pressure transient
from Pp = 0 to Pp = 20% lasts about 2.5 min, while the pressure transient from Pp = 0 to
Pp = 80% takes about 7.5 min if the injected gas is H2 and up to 10 min if the injected gas
is CH4 (Figure 6). This behavior generates the overshooting/undershooting effects. The
phenomenon and the corresponding correction strategy are described below.

During the pressure transient, short-lived flow perturbations in the chamber take
place while gas is entering the chamber. Immediately after a step change in the chamber
pressure, a temporary fluctuation in the weight measurement occurs in the form of an
overshoot/undershoot. This fluctuation has no impact on the equilibrium adsorption
estimate, but it does affect the short-term sorption investigation, which is involved in
diffusion calculation. Therefore, a correction should be introduced for each partial pressure
step. To this end, a test with an empty pan, called a “blank run”, has to be performed to
isolate the overshooting/undershooting behavior (movershooting(t)) corresponding to each
imposed partial pressure step [35]. The blank run consists of running a test applying the
same gas mixture and the same partial pressure steps of the test to be corrected but testing
the empty pan. In such a way, the mass increase measured during the blank test represents
the flow perturbations due to the pressure transient only. The duration of partial pressure
steps could be shorter for blank runs than for the corresponding test with the sample
because the mass can stabilize faster since there is no adsorption process. The signal due to
the pure overshooting (movershooting(t)) can therefore be isolated for each partial pressure
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step to provide the correction to be applied to the actual measurements. Figure 6 shows the
blank run performed for H2 and CH4, showing a significant overshooting effect for both.
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Buoyancy is the upward force exerted by the gas filling the balance chamber that
opposes the weight of the fully immersed sample. As a result, the weight measurement
decreases in the quantity mbuoyancy, proportional to the partial pressure Pp(t), following
Archimedes’s principle:

mbuoyancy(t) = ρgPp(t)Vs, (13)

where ρg is the gas density at P
P0

= 100% and Vs is the sample bulk volume. If the volume
is not easily computable, as in the case of flakes characterized by irregular geometry, it can
be estimated from the ratio between mass at vacuum conditions ( m0) and the density of
the clay ( ρs) constituting the sample under analysis:

Vs =
m0

ρs
(14)

Buoyancy effects on the sample holder are already accounted for by the balance, in
which a second empty pan allows for a continuous tare measurement. The buoyancy
effect was negligible on H2 tests, due to the very low density of H2, but relevant on
CH4 tests. Therefore, buoyancy correction was applied to CH4 tests only. Figure 7 com-
pares mass variations registered during a CH4 test and the effect of overshooting and
buoyancy correction.
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To sum up, before interpretation, data have to be corrected as follows:

mgas(t) = mmeasured(t)− m0 + ρgVsPp(t)− movershooting(t). (15)

Afterward, the mass uptake (Mt) and equilibrium mass uptake (M∞) are calculated,
respectively, as follows:

Mt = mgas(t), (16)

M∞ = mgas(t∞), (17)

where mgas(t) is the mass measured at each time and mgas(t∞) is the mass measured at
an equilibrium. In most cases, an equilibrium is not completely reached. Mass variations
toward equilibrium are usually very low, near the DVS accuracy. Thus, the partial pressure
step is stopped when dm

dt < 0.001 mg/s and the last registered mass for each partial pressure
step is assumed to be a good approximation of the equilibrium mass.

Successively, the Mt
M∞

vs.
√

t plot is obtained for each partial pressure step and the
corresponding diffusivity coefficient is calculated as described in the “Theoretical back-
ground” section. Slopes are obtained via the linear regression of selected portions of the
data, namely those exhibiting a linear trend at early times.

Finally, the diffusivity coefficient is calculated with Equation (8), the solubility is
calculated with Equation (9), and the permeability is calculated as the product of the two.

2.4. Caprock Samples and Mineralogic Analysis

Two caprock core samples collected from different reservoirs are considered and
named Caprock1 and Caprock2. The reservoirs are located in the western Po plain about
40 km apart. The two reservoirs share the same caprock rock formation represented by the
Argille del Santerno Formation (Pliocene) associated with depositional events of foredeep
infill. Both core samples are represented by dark gray silty calcareous mudstone exhibiting
a grain-supporting matrix composed of detrital clay, microcrystalline calcite particles, and
local fossil content (foraminifera). The samples exhibit laminations of planar compacted
detrital illitic clay. Fine silt-sized mica flakes are scattered throughout the matrix. Grains
are characterized by very angular to sub-angular shapes with sizes ranging from 0.02 to
0.1 mm. Caprock1 has a porosity of 33.2% (dry helium) resulting mainly from clay-rich
matrix micropores and intergranular pores; for the Caprock2 porosity, measurements are
not available.

The caprock mineralogic composition was determined through X-ray powder Diffrac-
tion (XRD) experimental analyses. The spectra have been analyzed with Rietveld refine-
ment [50] to provide the main weight percentages of the mineral classes. The analyses
provided the mineralogic average composition of the caprock when performed on rock
samples taken from cores that sampled several meters of the caprock and provided the
information on the local compositional of the caprock when performed on the same portion
of caprock that has been used for the diffusivity measurements. A set of three measure-
ments (triplicate measurements) were collected on three different portions of the samples
to increase the statistics.

The results of the XRD analyses are reported in Table 3. The average and the lo-
cal mineralogic compositions of Caprock1 and Caprock2 are compared in the electronic
Supplementary Materials (Figure S1). The slight difference observed between the compo-
sition of the samples used for the diffusivity tests (the local values) and the average com-
position of the caprock is compatible with the natural variation in the rock mineralogy of
geological formations.
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Table 3. Main minerals classes’ weight percentages obtained with the Rietveld refinement.

Mineral
Composition (wt %) Formula

Caprock1 Caprock2

Tectosilicates
quartz 24 ÷ 25.4 16.7 ÷ 20.3 SiO2

plagioclase (albite,
anorthite) 7.2 ÷ 9.1 4.0 ÷ 7.1 (Na,Ca)(Si,Al)4O8

K-feldspar 9.3 ÷ 9.7 5.5 ÷ 8.6 KAlSi3O8

Carbonates
calcite 32.5 ÷ 33.8 24.9 ÷ 35.9 CaCO3

dolomite 7.4 ÷ 8.1 16.2 ÷ 20.5 CaMg(CO3)2
siderite 0 0.4 ÷ 0.6 FeCO3

Phyllosilicates
illite 6.2 ÷ 10.9 6.1 ÷ 24.9 (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)]

chlorite 3.5 ÷ 3.8 1.9 ÷ 2.5 (Mg, Fe)3(Si, Al)4O10(OH)2•(Mg, Fe)3(OH)6
kaolinite 2.6 ÷ 3.1 2.1 ÷ 3.7 Al2Si2O5(OH)4

Additional minerals
pyrite 0 0.2 ÷ 0.4 FeS2
halite 1.1 ÷ 2.4 0.0 ÷ 0.2 NaCl

Flake samples were taken from the sealing rock cores of Caprock1 and Caprock2.
Flakes from Caprock1 were collected from several parts of the sample within a 20 cm long
sample. Flake samples of Caprock2 were collected from both the top and bottom of the
core sample box at a vertical distance of approximately 1 m. All flakes were treated with
ultrafine sandpaper to obtain a flat geometry. An example of a flake is shown in Figure 8.
The list of flake samples is reported in Table 4. Flakes indicated as “dry” were dried in the
microbalance before each test: the preheater temperature was increased to 400 ◦C, and the
pressure was decreased to obtain a vacuum condition; after preheating, the sample was
cooled down to the desired temperature (see Appendix A for details). Flakes indicated
as “wet” were tested as is, avoiding the preheating phase in the microbalance. A total of
6 flakes were taken from Caprock1, and 9 flakes were taken from Caprock2.
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Table 4. Flake samples.

Sample ID Core Sample ID Wet/Dry Width (mm) Mass
(mg) Density (kg/m3) Tested to Gas

Flake1_3 Caprock1 wet 2 141.8 1773 H2
Flake1_4 Caprock1 dry 2.66 200.7 1676 H2
Flake1_5 Caprock1 wet 1.6 157.3 2091 H2
Flake1_6 Caprock1 dry 2.1 172.6 1612 H2
Flake1_7 Caprock1 dry 1.9 187.7 1764 H2
Flake1_10 Caprock1 wet 2.36 179.7 1523 CH4
Flake2_1 Caprock2 (bottom) wet 1.55 198 2276 H2
Flake2_2 Caprock2 (bottom) wet 1.5 215 1869 H2
Flake2_3 Caprock2 (top) dry 1.5 144.6 1928 H2
Flake2_4 Caprock2 (top) wet 1.84 160.6 2108 H2
Flake2_5 Caprock2 (top) wet 1.83 211.6 2290 H2
Flake2_6 Caprock2 (top) wet 2.06 203.2 1970 CH4
Flake2_7 Caprock2 (top) wet 1.86 193.5 2081 CH4
Flake2_8 Caprock2 (bottom) wet 1.4 195.9 1727 CH4
Flake2_9 Caprock2 (bottom) wet 1.75 235.97 1751 CH4
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3. Results and Discussion

To characterize and compare the diffusion coefficients of hydrogen and methane
through caprocks, a significant number of adsorption/desorption tests were carried out on
the caprock samples both in dry and wet conditions. A total of 15 samples (Table 4) were
tested: 10 samples with hydrogen and 5 samples with methane. For each sample, two tests
were performed with the same gas. Each test included four partial pressure steps (Pp = 20%,
40%, 60%, and 80% of 740 Torr), alternating sorption and desorption. Each interpretable
partial pressure step provided a value of diffusion coefficient, solubility, and permeability;
permeability values are reported in the Supplementary Materials (Table S1) in SI, Barrer, and
Gas Permeance Unit (GPU). Most of the experimental data were interpretable after applying
overshooting correction in the case of hydrogen, and after applying both overshooting
and buoyancy corrections in the case of methane. In total, more than 90 estimations of the
diffusion coefficient out of 120 partial pressure steps are available. The nomenclature of each
test and the interpretation results for gas exposure are summarized in the Supplementary
Materials (Table S1), where diffusion coefficients obtained for each sample are reported,
together with solubility and permeability values. The interpretation plot of hydrogen
tests on a flake of Caprock1 (F6_H2_100_a) and a flake of Caprock2 (FR2_H2_100), after
overshooting correction, are also reported in the electronic Supplementary Materials as an
example (Figures S2 and S3).

The overall range of the obtained diffusion coefficients is from 1 × 10−10 m2/s to
6 × 10−8 m2/s for hydrogen and from 9 × 10−10 m2/s to 2 × 10−8 m2/s for methane.
Comparisons between dry and wet samples are summarized as boxplots as a function of
the partial pressure steps in Figure 9, while comparisons between diffusion coefficients
calculated for H2 and CH4 are summarized in Figure 10. The diffusion coefficients esti-
mated for Caprock2 are generally higher than those obtained for Caprock1, but the same
trends are observed (Figures 9 and 10). For a fixed pressure value, the calculated effective
diffusivity coefficients for all samples of the same caprock are within 1 order of magnitude
(Figure 10). This measurement is thus more accurate than in-diffusion and through-
diffusion experiments, which gave uncertainty up to 2 orders of magnitude [21,37].

The comparison between the obtained hydrogen diffusion coefficients and the values
provided by the technical literature (Table 2) must take into account the differences in terms
of pressure and temperature conditions, porous configuration (porosity, constriction, and
tortuosity; see Equation (1)), and water saturation. However, at Pp = 80% (about 0.8 atm)
the obtained values are in the order of magnitude of 1 × 10−10 m2/s, which is within the
8.12 × 10−11 m2/s measured by [15] on wet samples at 25 ◦C and 1.3 bar and the 1 × 10−8 m2/s
individuated by [24] for dry samples at 1.5 bar and an ambient temperature.
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Permeability values (Figure 11) are in the range of 3 × 103 ÷ 6 × 105 Barrer for
hydrogen and in the range of 2 × 103 ÷ 2 × 104 Barrer for methane; similar trends are
observed on both caprocks. The permeability values (3 × 103 ÷ 2 × 104 Barrer) obtained
at Pp = 80% (about 0.8 bar) (Figure 11) are consistent with values measured by Gajda and
Lutyński [51] for a clay mineral-based mudstone (2330 Barrer) at a 1 MPa feed gas pressure.
Despite the different adsorption enthalpies [52], measured gas uptakes for hydrogen and
methane are comparable (Figure 12). These results are in line with Truche et al. [53], who
measured hydrogen uptake values comparable to and even exceeding methane adsorption
on clay minerals and shales. This result is probably due to the pore structure of shale.
According to the technical literature, there is significant variation in the hydrogen [54] and
methane [55] adsorption capacity in different clays, attributed to the differences in their
pore structures. The shale matrix has predominantly micro (pores with a diameter of less
than 2 nm) to mesopores (pores with a 2 ÷ 50 nm diameter) [56]. As the kinetic diameter of
CH4 is significantly bigger than H2 (3.8 Å vs. 2.89 Å [57]), the CH4 molecule cannot enter
into narrow micropores as H2 can [58]. A more complex pore structure and a larger specific
surface area could provide more sorption sites for hydrogen molecules [54].
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Figure 10 shows that diffusion coefficients estimated for hydrogen and methane are
comparable for both the considered caprocks, especially for the first partial pressure step.
This is in line with the measurements on water-saturated Boom clay samples, which gave
2.42 × 10−10 m2/s for methane [59] vs. 2.64 × 10−10 m2/s for hydrogen [23]. Conversely,
the permeability to hydrogen is about 1 order of magnitude higher than the permeability
to methane. This is due to a higher uptake of hydrogen compared to methane and to the
molecular weight of the two species.

The water content is responsible for a difference equal to a factor of 2 on hydrogen
diffusion (Figure 9), mainly for Caprock1. This result is way less pronounced than could
be expected, considering that hydrogen diffusion in water is about 3 orders of magnitude
less than hydrogen diffusion in air (Table 1). The limited difference observed is probably
due to a reduction in the original humidity of the wet samples. Samples were extracted
and/or tested days and sometimes months after the cores were opened. Compared with
other experimental measurements, Didier et al. [36] measured a reduction of 4 orders of
magnitude on Callovo-Oxfordian clay samples (500 m deep); Bardelli et al. [40] on the same
formation found that the moisture content influenced hydrogen diffusivity by 1 to 2 orders
of magnitude; Michelsen et al. [26] observed a reduction in hydrogen diffusion of 2 orders
of magnitude between long-stored caprock cores and re-saturated cores. However, our
results are in good agreement with the molecular dynamics simulation of Liu et al. [20]
on nanopore montmorillonites at geological storage conditions: they showed that the
self-diffusion coefficient of hydrogen is partly inhibited by the water content and decreases
by a factor of 2.

A significant reduction in the hydrogen diffusion coefficient from Pp = 20% to
Pp = 80% was observed, spanning more than 1 order of magnitude for both caprocks
(Figure 10). The trend for the methane diffusion coefficient is similar, but the reduction is
limited within 1 order of magnitude. Even if a pressure dependence of the diffusion coeffi-
cient was expected (Equation (2)), we believe that the observed reduction could be strongly
influenced by incomplete or limited desorption between subsequent partial pressure steps.
The fraction of hydrogen that remains adsorbed after each desorption is more significant
than methane (Figure 13).
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Similarly, incomplete or limited desorption is observed between two subsequent tests
on the same sample, where the sample has not yet come in contact with the testing gas
in the first test (denoted as “a”), while in the second test (denoted as “b”) the testing gas
was already present due to the incomplete final desorption process of the first test, even
under vacuum conditions. The behavior is more visible on hydrogen (Figure 13a) and less
significant on methane (Figure 13b). This is probably the cause of the significant difference
(factor ~2) shown in Figure 14, between the first and second measurements of the diffusion
coefficient on the same sample for each corresponding Pp (see, for example, tests on Flakes 4,
5, and 6 in Table S1 in the Supplementary Materials). Incomplete desorption is in line with
the results of the study with nuclear magnetic resonance of Ho et al. [60], who observed
a hysteresis in the adsorption/desorption of hydrogen in shale, which is not observable
in sandstone.
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4. Conclusions

The presented study is part of a comprehensive project that aims to evaluate the
feasibility of underground hydrogen storage in two candidate reservoirs currently operated
as underground storage for natural gas.

To calculate the diffusion coefficient of hydrogen through caprocks, a significant
number of adsorption/desorption tests were carried out on samples retrieved from these
two underground gas storage reservoirs, using a DVS Vacuum apparatus. Diffusion
coefficients estimated for H2 and CH4 were compared. The data were then interpreted using
the early-time approximation of the solution to the diffusion equation. The experiments
were carried out at a temperature of 45 ◦C and at ambient pressure. Therefore, the obtained
values of the diffusion coefficients can be considered representative of reservoir conditions
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in terms of temperature, whereas, from the point of view of pressure, they can be considered
an overestimation. A total of 15 samples were tested. For each sample, two tests were
performed with the same gas. Each test included four partial pressure steps of sorption
alternated with desorption. Each interpretable partial pressure step provided a value of
the diffusion coefficient. Most of the experimental data were interpretable after applying
overshooting correction in the case of hydrogen and after applying both overshooting and
buoyancy corrections in the case of methane. In total, more than 90 estimations of the
diffusion coefficient out of 120 partial pressure steps are available. The main conclusions
are summarized in the following:

Overall, the obtained diffusion coefficients range from 1 × 10−10 m2/s to 6 × 10−8 m2/s
for hydrogen and from 9 × 10−10 m2/s to 2 × 10−8 m2/s for methane.

The diffusion coefficient measured on wet samples is 2 times lower compared to the
dry samples. The limited difference observed is probably due to a reduction in the original
humidity of the wet samples, which were extracted and/or tested days and sometimes
months after the cores had been opened.

For all the considered tests, a significant reduction in the calculated diffusion coefficient
from the first to the following partial pressure steps was observed. Even if the trend can
be recognized for both the considered gasses, the phenomenon is more evident in the
case of hydrogen, where the reduction can exceed 1 order of magnitude. The fraction of
hydrogen that remains adsorbed after each desorption is more significant with respect to
methane tests.

The incomplete desorption of hydrogen between two subsequent tests on the same
sample causes a reduction of a factor of 2 of the estimated diffusion coefficients. This
confirms that should any losses through the caprock ever occur due to diffusion, they
would be larger at the beginning of storage operations and decrease over time, as already
discussed in the technical literature [61].

According to the analysis of available results, the diffusion of hydrogen through the
caprock should not be a criticality for underground hydrogen storage for the reservoirs
under analysis. This work provides a step forward in the understanding and assessment
of the sealing efficiency of caprocks, which will aid in the successful implementation of
hydrogen storage in underground geological formations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/en17020394/s1, Figure S1: Semi-quantitative evaluation of the main
classes of minerals for Caprock1 (a) and Caprock2 (b) from X-Ray Diffraction (XRD);
Figure S2: Interpretation of test F6_H2_100_a; Figure S3: Interpretation of test FR2_H2_100_a;
Table S1: Results.
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Appendix A

The test using the DVS Vacuum device mainly consists of the following workflow:

1. Calibration of the microbalance:

a. Introduce an empty sample pan into the DVS;
b. Set the incubator temperature (45 ◦C) and impose the vacuum;
c. Wait until the mass measurement stabilizes (this is reached when the mass

variation in time is below the threshold of dm
dt < 0.001 mg/s); the stabilization

of the mass measurement could take up to 2 h;
d. Record the mass of the empty pan reached after stabilization.

2. Measurement of the initial mass:

a. Introduce the sample;
b. Dry the sample (optional): the preheater temperature is increased up to 400 ◦C

and then decreased again to 45 ◦C;
c. Impose the vacuum (Figure 2a);
d. Wait until the mass stabilizes.

3. Sorption step:

a. A gas mixture is introduced in the chamber (Figure 2b) until a fixed partial
pressure Pp = p

p0
(p0 = 740 Torr) is reached;

b. p
p0

is maintained (Figure 2c);

c. The mass is measured every 1 s until the equilibrium mass is reached.
( dm

dt < 0.001 mg/s)

4. Desorption step:

a. The chamber is evacuated;
b. The mass is measured every 1 s until the equilibrium mass is reached

( dm
dt < 0.001 mg/s).
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