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Abstract: High-precision spatial-temporal wind power prediction technology is of great significance
for ensuring the safe and stable operation of power grids. The development of artificial intelligence
technology provides a new scheme for modeling with strong spatial-temporal correlation. In addition,
the existing prediction models are mostly ‘black box’ models, lacking interpretability, which may
lead to a lack of trust in the model by power grid dispatchers. Therefore, improving the model to
obtain interpretability has become an important challenge. In this paper, an interpretable short-term
wind power prediction model based on ensemble deep graph neural network is designed. Firstly,
the graph network model (GNN) with an attention mechanism is applied to the aggregate and the
spatial-temporal features of wind power data are extracted, and the interpretable ability is obtained.
Then, the long short-term memory (LSTM) method is used to process the extracted features and
establish a wind power prediction model. Finally, the random sampling algorithm is used to optimize
the hyperparameters to improve the learning rate and performance of the model. Through multiple
comparative experiments and a case analysis, the results show that the proposed model has a higher
prediction accuracy than other traditional models and obtains reasonable interpretability in time and
space dimensions.

Keywords: wind power prediction; graph neural network; attention mechanism; interpretability;
spatial-temporal characteristics

1. Introduction
1.1. Background

With the continuous development of society’s electrification, energy demand has
increased rapidly [1]. At the same time, in the context of global warming, countries around
the world continue to increase investment in renewable energy to reduce greenhouse gas
emissions caused by the use of fossil energy. The use of renewable energy has brought
environmental and economic benefits, but the intermittency and variability of renewable
energy output power caused by natural conditions have brought challenges to the safe,
stable, and reliable operation of the power grid [2]. Wind energy is one of the most widely
used renewable energy sources in the world. With the continuous expansion of the scale
of wind farms and the continuous optimization of their layout, wind power generation
has gradually become the top priority of world energy development [3,4]. Accurate wind
power prediction results can make contributions to improving the absorption capacity of
the power grid regarding wind power, increasing economic benefits and mitigating climate
change [5].
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1.2. Related Works

Wind power prediction, as an important part of wind energy consumption, has at-
tracted the attention of a large number of experts and scholars. There are three different
types of modelling methods: physical methods, traditional statistical models, and artifi-
cial intelligence-based models. Physical methods rely on physical equations [6] and use
numerical weather prediction (NWP) data and parameters such as ground roughness, to-
pography [7], and elevation [8] to build prediction models. Statistical methods can directly
extrapolate the historical wind power series characteristics to obtain the future wind power.
Commonly used statistical methods include the autoregressive model (AR), the autoregres-
sive integrated moving average (ARIMA) model [9], etc. With the rapid development of
artificial intelligence and its excellent prediction performance, k-nearest neighbor (KNN),
support vector regression (SVR) [10–12], deep learning algorithms, etc., have been used
in wind power prediction. In recent years, as the computing performance of computers
has been greatly improved, deep learning models have attracted the attention of many
researchers because of their good generalization performance and ability to deal with high-
dimensional data. Commonly used deep models include the convolutional neural network
(CNN), recurrent neural network (RNN) [13]. In order to alleviate the limitations of these
models, temporal convolutional network (TCN), long short-term memory (LSTM) [14] and
gated recurrent unit (GRU) have been derived.

With the advent of the data age, the types of data and the amount of data collected
by people through sensors are increasing, which is helpful for researchers to study the
laws of related fields more deeply. At present, wind farm data mainly rely on the SCADA
system [15] to collect real-time data, and a large number of feature data are obtained with
the help of sensors, which is helpful to analyze the running state of the wind turbine. How
to use the collected multi-feature data to study the correlation in the deep aspect is a hot
topic in wind power prediction research [16–18].

Compared with univariate time series modeling, the study found that in order to
mine the hidden information of the data at a deeper level, researchers often use the com-
plementary advantages of different models to design an integrated learning method to
analyze the correlation information between the original meteorological data and wind
power and model prediction. Shan et al. [19] proposed a method to optimize the active
power output of DG through artificial neural networks to achieve the elimination of fre-
quency deviation, avoiding the need for direct measurement of the frequency process and
adapting to different load changes at the same time. Yildiz et al. [20] used variational mode
decomposition (VMD) to extract features and convert them into graphs and then used
improved residual-based CNNs for wind power prediction. Wang et al. [21] introduced a
real-time prediction method, which used the PSO algorithm to optimize the Markov-based
back propagation BP neural network, which improved the model operation speed and
produced better prediction results. Zhu et al. [22] used the spatial features extracted by the
CNN at the bottom of the model and then captured the time dependence between spatial
features through LSTM to form a spatial-temporal prediction model to predict wind speed.
Chen et al. [23] proposed a new data reconstruction method based on a three-dimensional
matrix and the spatial-temporal prediction method combined with a CNN and LSTM.
The proposed model is superior to other baseline models in terms of prediction accuracy
and generalization ability. Liu et al. [24] proposed a new spatial-temporal neural network
(STNN) to solve the problem of spatial-temporal wind speed prediction by using the image
recognition method. The CNN is combined with the gate recurrent unit (GRU) to construct
a coding structure to achieve prediction. Although the above prediction models have
achieved good prediction results, due to the limitations of the traditional convolution
model itself, it cannot adapt to complex data structures, which may lead to information
loss [25] and limit the learning ability of the model.

At present, multi-factor features are effective in improving the prediction accuracy of
wind power prediction modeling compared with single-factor features. Huang et al. [26]
used the Bayesian optimization model to adaptively select the base model by using the
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coefficient of determination index to tune the hyperparameters, which improved the gener-
alization and prediction accuracy of the prediction model and achieved good prediction
results. The spatial-temporal correlation between features in wind power prediction is
widespread [27,28]. Using existing methods, although some results have been achieved,
the correlation between features is still ignored. Therefore, in order to study the relevant
content, some researchers have introduced a method based on a graph neural network to
solve this problem. Chen et al. [29] proposed a new spatial-temporal prediction method
based on a graph convolutional network (GCN), mining the correlation between features,
and the prediction accuracy is better than the baseline model. Zhao et al. [30] combined a
GCN with a GRU to capture the spatial-temporal correlation of urban road network traffic.
Tao et al. [31] proposed a graph convolutional network based on multi-information spatial-
temporal attention (MISTAGCN), which uses the graph convolutional network to mine the
potential information of multi-input features and effectively analyzes the spatial-temporal
correlation information between different nodes. Based on the analysis of the above liter-
ature, it is found that the GCN can learn the correlation information between nodes. At
the same time, multi-source information may not be equally important for the success
of prediction, and the GAT, composed of the attention mechanism, is used to give nodes
different attention. Therefore, using the GAT to extract the temporal and spatial correlation
of wind farm historical data will be very helpful for wind power prediction modeling.

Wind turbine power generation is mainly related to the meteorological state at that
time [32]. Specifically, wind farm historical data belong to time series, which show temporal
features in the horizontal direction and spatial properties between features in the vertical
direction. Comprehensive consideration of time and spatial correlation in wind power
prediction is very important to improve prediction accuracy. The importance of the time
dimension is mainly reflected in long-term, medium-term, and short-term changes. For
example, meteorological changes in different seasons and different times of a day are
different, resulting in different fluctuation characteristics of wind power generation. This
law can be learned through the mining of historical data. The spatial attribute consists
of meteorological features through the coupling between them, which is the inherent
atmospheric change law of a certain region, and its generation is jointly influenced by the
movement of the atmosphere and the terrain environment [33]. At the same time, it can be
statistically mined for spatial correlation through a large amount of the historical data [34].
In the process of wind power prediction, the applicability and robustness of the prediction
method can be improved by data mining in the time and space dimensions. Recent studies
have found that the spatial-temporal correlation between multi-dimensional features is key
to accurately predict the output of wind turbines [35,36].

In order to deeply analyze the operation mechanism of the model, this paper will
propose an interpretable short-term wind power prediction model based on an integrated
deep GNN, which can effectively model the complex meteorological conditions of wind
farms. On this basis, the attention mechanism is introduced into the graph network model
to express the most relevant variables to wind power, and the time and space dependence
between features is deeply explored. At the same time, the interpretability of the model
in the time and space dimensions is realized. Finally, multiple cases are used to verify the
model proposed in this paper. The prediction process of the spatial-temporal prediction
model is shown in Figure 1.

1.3. Research Contributions

Based on the related work and literature research, this paper proposes an interpretable
short-term wind power output prediction model based on a graph network model. The
main contributions are summarized as follows:

1. Compared with the traditional wind power time series prediction modeling, this paper
uses GAT-LSTM as the main method to construct a spatial-temporal prediction model.
Firstly, the GAT can extract the information of nodes and edges on the graph and
increase the attention of important information between nodes through the attention
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mechanism and pass the extracted features to the LSTM. Then, the LSTM model
performs temporal learning on the extracted features and establishes a prediction
model that satisfies the learning target ability.

2. The stochastic search algorithm is applied to the GAT-LSTM prediction model for
model hyperparameter optimization, and a multifactor-driven wind power spatial-
temporal prediction model is established.

3. Adding attention mechanism to the prediction model, on the one hand, can increase
the attention ability of the wind power prediction model to important features and
then improve the prediction accuracy of the model. On the other hand, through the
dynamic change of the attention weight and the visualization of weight, it can provide
a basis for the interpretability of the model more intuitively.
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2. Materials and Methods
2.1. Graph Convolution Network

The processing of complex graph data can be achieved through the utilization of a
GCN, which draws inspiration from convolutional networks commonly used in computer
image recognition [37]. In this field, it is typically necessary to pre-process images into a
standardized structure using feature engineering techniques. By leveraging translation
invariance within images, convolutional neural networks exhibit excellent feature extraction
capabilities [38]. However, real-life graph-structured data often exhibit complexity and
irregularity. To enhance the extraction of relevant features, a GCN extends two-dimensional
convolutions to the GNN, enabling effective handling of unstructured graph data.

The graph structure is composed of nodes and edges. The graph convolution mod-
ule uses the connection relationship of edges between nodes to capture the neighbor
information of nodes and aggregates this information into each node to perform feature
representation on these nodes to deal with the spatial dependence in the graph.

The different node vectors in the GCN are represented by h. The model constructor
sets the appropriate number of graph convolution layers N, constructs different node
vectors from the input initial features, and constructs the connection between feature nodes
through the connection of edges, and the updating of node information is constructed by
embedding its own vectors and the information of neighboring nodes, and the new value
of the feature at that point obtained by aggregation will be directly passed into the next
layer of the features as a propagation object. The new feature value of the point obtained
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from aggregation will be directly passed into the next layer of features as a propagation
object. Here, the GCN calculates the information of each node in the next step at the same
time, and the specific settlement process is as follows:

H(I) =

[
h(l)

T

1 , . . . , h(l)
T

N

]T
(1)

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
(2)

By Equation (1), a forward transform is performed for each node feature of the previous
layer simultaneously embedded in a matrix. Similarly, the relationship between each node
will also form an N × N dimensional adjacency matrix A, Ã = A + I is the adjacency
matrix of the undirected graph G plus self-connection, so as to aggregate the information
of other nodes with their own information. D̃ is the degree matrix of Ã, the element on the
diagonal is the degree of each vertex, and the value on the diagonal represents the number
of edges associated with the vertex. In Equation (2), the adjacency matrix Ã is normalized
by D̃−

1
2 ÃD̃−

1
2 in order to maintain the original distribution of the characteristic matrix H

in the process of information transmission and to ensure the stability of model training.
W(l) is the weight vector that needs to be learned in this layer.

2.2. Long Short-Term Memory Neural Network

RNNs are often used for deep learning, but the original architecture is prone to
gradient disappearance and gradient explosion problems during the learning process
of long sequences, resulting in the loss of more important information. As a variant of
RNNs, the LSTM can relieve the long-range dependency problem effectively by adding
gating mechanism and state units [39]. Figure 2 shows the working flow chart inside the
LSTM unit. The LSTM memorizes and transmits important information through the gating
mechanism of forgetting, input, and output and forgets some non-important information.
The specific calculation procedure is as follows:

ft = sigmoid
(

w f hht−1 + w f xxt + b f

)
(3)

where w f h and w f x are the weights of the previous output and the current output, re-
spectively, b f is the bias of the forgetting gate, and the nonlinear mapping of sigmoid is
performed to determine which unimportant information in the previous output and the
new input information is forgotten.

it = sigmoid(wihht−1 + wixxt + bi) (4)

c̃t = tanh(wchht−1 + wcxxt + bc) (5)

ct = ft � ct−1 + it � c̃t (6)

Similar to the forgetting gate formula, the main difference is that the sigmoid layer
in the input gate determines what is updated, and the tanh layer is used to update the
candidate-value state vector c̃t, and then to multiply the old state with ft plus the input
gate it and c̃t product to obtain the updated cellular ct.

ot = sigmoid(wohht−1 + woxxt + bo) (7)

ht = ot � tanh(ct) (8)

where woh and wox are the weights of the previous output and the current output, re-
spectively, bo is the output gate bias, the sigmoid layer determines the information that
contributes to the output, and the cell state is mapped to a value between −1 and 1 after
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the nonlinear tanh function is processed to control which part of the information needs to
be output.
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2.3. Graph Attention Mechanism
2.3.1. Attention Mechanism

With the development of sensor technology, engineers have widely used sensors in
engineering to record the dynamic changes in the equipment and external environment.
For wind turbines, the recorded meteorological feature dimensions are gradually increas-
ing, which is very helpful for the study of wind power generation. However, too many
meteorological features unrelated to output can not only improve the prediction accuracy
of the model but also cause bad information interference to the model prediction. The
attention mechanism is a method that can deeply mine the influence of many features
on the output of the wind turbine. In the process of model prediction, different weights
are adaptively and dynamically allocated for feature extraction so that the model pays
more attention to the feature information with high contribution to the output of the wind
turbine, thereby reducing the impact of low or even irrelevant feature information on the
prediction model. The introduction of the attention mechanism in this paper can improve
the prediction performance of the model. At the same time, the dynamic change trend of
the attention coefficient and the final visualization results also provides some basis for the
interpretability of the model.

2.3.2. Graph Attention Mechanism

The GCN constructs different nodes in a network structure through the links of edges.
When using the Laplacian matrix to obtain node information, there are also problems of
high noise, difficult expansion, and high computational cost. Through previous studies, it
was found that not all node information is equally important.

In order to improve the learning performance of the graph neural network, the at-
tention mechanism is introduced to form the GAT. The attention mechanism is used to
assign greater weights to important nodes, prompting the network to pay attention to more
important information so that only the information between nodes and neighbor nodes
needs to be calculated, avoiding full graph calculation. Specifically, the GAT is constructed
by stacking a multi-head attention mechanism network in a GNN and using the node
weight coefficients learned in the model training process to construct an adjacency matrix
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to obtain the spatial-temporal correlation between nodes. The importance of neighbor
nodes to nodes can be expressed by the following formula:

eij = a
(

W
→
h i, W

→
h j

)
(9)

Among them, W is a random weight matrix, eij is the importance of node j to node i,
and a represents the function of the attention mechanism. At the same time, in order to
facilitate the comparison between different nodes, the following formula can be obtained
by using SoftMax function to normalize Equation (9):

αij = so f tmax
(
eij
)
=

exp
(
eij
)

∑k∈Ni
exp(eik)

(10)

→
h′i = σ

(
∑

j∈Ni

aijW
→
h j

)
(11)

In Equations (10) and (11), Ni represents the domain composed of all first-order nodes

adjacent to node i, σ represents the nonlinear activation function, and
→
h′i represents the

characteristics of node i in the next layer considering the contribution of all nodes adjacent
to node i to the node.

→
h′i =‖K

k=1 σ

(
∑

j∈Ni

ak
ij
Wk
→
h j

)
(12)

→
h′i = σ

(
1
K

K

∑
k=1

∑
j∈Ni

ak
ij
Wk
→
h j

)
(13)

In addition, the idea of a multi-head attention mechanism is introduced into the
GNN to construct the GAT. Specifically, it represents the number of attention heads, and
each attention head has different parameters. An independent attention mechanism is
transformed by Equation (11) to obtain Equation (12), where ‖ represents the splicing
operation and Wk is the corresponding input linear transformation matrix. Finally, all the
coefficient matrices are aggregated by the averaging operation in Equation (13).

2.4. Random Search Optimization Hyperparameters

The weight of the neural network model needs to be obtained through training, and
the hyperparameter model needs to be set before training. The hyperparameter model
directly affects the performance and complexity of the model. The most difficult part of
deep learning is to find the optimal hyperparameters for the model. The performance of
the model is also directly related to the setting of hyperparameters. Therefore, this paper
uses a random search algorithm to find the optimal parameter combination of the model
and randomly selects the hyper-parameter combination in the set hyper-parameter interval.
The speed is higher than the traditional grid search and manual setting to obtain a better
hyper-parameter combination.

3. Wind Power Output Prediction Process
3.1. Wind Power Prediction Model Framework

As shown in Figure 3, the model proposed in this paper uses the sliding window
method to process the multi-factor feature input data. The model applies the attention
mechanism to the graph convolution network to capture the spatial and temporal depen-
dencies in the historical data set at the same time. The processed feature information is
input into the LSTM to complete the prediction task. The weight output of the attention
mechanism can be used to learn which moments the model focuses more on in the time
dimension, in addition to analyzing the graphical architecture of the GCN’s learning to
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understand the spatial dependencies between the different feature variables and the target
variables of the neural network during the prediction procedure. The interpretability of
the model is realized by the mining and visualization of temporal and spatial information.
Finally, the model outputs the predicted value of wind power through the fully connected
layer. Finally, the model outputs the predicted value of wind power through the full
connection layer.
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To initialize the model parameters, this paper uses the stochastic optimization algo-
rithm to select some hyperparameters of the model. The selected optimized hyperparame-
ters mainly include learning rate, discarding parameters, and the size of hidden layers of
the encoding layer and decoding layer, and the optimal hyperparameters are input into
the training model. In this paper, the sliding window method is used to train the model
by using the historical data of the previous 12 steps as input to predict the wind farm’s
output power of the next step. Among them, the optimizer of the model chooses the Adam
optimizer, Leaky ReLU as the activation function, and the mean square Error (MSE) as the
loss function, and the batch size is set to 128 and the epoch is set to 200. In order to avoid
overfitting and a long training time, dropout and early stopping are introduced to further
improve the performance of the model.

3.2. Evaluation Indicators

In this paper, two evaluation indexes commonly used in prediction research are used
to evaluate the prediction method proposed in this paper, namely, mean absolute error
(MAE) and mean square error (MSE). At the same time, the validity of the model is
evaluated by using the coefficient R2. The larger the value, the better the fitting effect of the
prediction model on the data, which is specifically defined as follows:

MAE =
∑n

i=1|yi − ŷi|
N

(14)

MSE =
∑n

i=1(yi − ŷi)
2

N
(15)

R2= 1−∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (16)

In the formula: yi is the true value of sample i; y is the mean of the real value time
series; and ŷi is the model prediction value of sample i.

4. Case Analysis
4.1. Data Sets and Experimental Environment

In order to predict the feasibility and superiority of the wind power output prediction
model proposed in this paper, the wind farm data provided by the renewable energy com-
petition held by the State Grid of China in 2021 are used here. The wind farm information
is shown in Table 1. The wind farm uses a SCADA system with a large number of sensors
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and data sampling equipment to collect historical operating data. The SCADA system can
provide researchers with a large amount of data regarding wind speed, wind direction,
power and meteorological environment, and other related variables. These variables can
record and reflect the operating status of wind turbines and changes in the surrounding
environment in real time.

Table 1. Main parameters of wind farm.

Wind Farm Generating
Capacity (MW)

Wind
Turbine Model

Capacity
(KW)

Hub Height
(m)

Rotor
Diameter

(m)

Number
of Turbines

Farm site 1
75 GW1500/85 1 1500 85.0 87.0 50
24 H93 L-2.0 2 2000 85.5 93.0 12

Farm site 2
49.5 UP86-1500 3 1500 80.0 86.0 33
49.5 UP82-1500 3 1500 80.0 82.0 33

Farm site 3 96 XE72 4 2000 65.0 70.7 48
1 Xinjiang Goldwind Science & Technology Co., Ltd., a manufacturer from Beijing, China. 2 Haizhuang Windpower
Co., Ltd., a manufacturer from Chongqing, China. 3 CSSC Guodian United Power Technology Co., Ltd., a
manufacturer from Beijing, China. 4 XEMC Xiangtan Electric Manufacturing Co., Ltd., a manufacturer from
Xiangtan, China.

The data set provides two years of data and the time resolution is 15 min. The partial
statistics of each wind farm are shown in Table 2, from which it can be found that the
meteorological conditions of the three wind farms are very different, and the comparison
of the prediction results of the three different wind farms can be used to better explore
the prediction performance of the model. In this study, wind speed and wind direction
at 10 m, 30 m, and 50 m hub height and record ambient temperature, humidity, and air
pressure are used as input characteristics. In this study, the data set is divided into an 80%
training set and 20% test set according to the time period. Here, the model is trained by
the training set, and the optimal prediction model hyperparameters are determined by
algorithm optimization. The test set is used to test the model’s prediction performance.
The data set has a certain data cleaning process, and the overall data quality is high. In
order to reduce the data processing time and facilitate the analysis of information in the
time dimension, the sliding time window is set to 12, and the step size is 1 step. In short,
the data change of a point in the future is predicted by the data of 12 points in the history.

Table 2. Wind farm statistics: variables, mean, variance, minimum and maximum.

Statistics
Wind Speed—
Height 50 m

(m/s)

Wind
Direction—
Height 50 m

(◦)

Wind Speed—
Height of

Wheel Hub
(m/s)

Wind
Direction—
Height of

Wheel Hub
(◦)

Air
Temp.
(◦C)

Relative
Humidity

(%)

Farm site 1

Mean 6.169 221.868 6.376 216.986 8.543 37.581
Std. 3.874 83.092 3.908 85.40 13.368 18.896
Min. 0.000 0.000 0.000 0.000 −24.131 1.502
Max. 29.678 358.933 30.247 358.500 36.130 93.120

Farm site 2

Mean 4.933 143.019 5.231 179.949 17.511 58.809
Std. 3.241 93.321 3.299 110.123 9.838 23.501
Min. 0.000 0.000 0.000 0.000 −14.27 3.437
Max. 21.836 360.0 36.920 360.0 36.32 100.0

Farm site 3

Mean 7.436 87.778 8.145 94.145 21.158 78.649
Std. 3.592 89.135 3.797 91.294 6.416 10.883
Min. 0.000 0.000 0.000 0.000 0.000 0.000
Max. 21.81 360.0 23.82 360.0 37.13 99.38
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This prediction task is performed in Python 3.8 environment and the configuration of
the experimental hardware is Intel i5 13,400f CPU/32 GB RAM/GeForce RTX 4060Ti GPU.

4.2. Comparative Analysis of Model Prediction Results

In order to analyze the accuracy and superiority of the proposed model’s perfor-
mance, the model’s prediction accuracy is evaluated using the evaluation metrics in
Equations (14)–(16). The CNN-LSTM-Attention, CNN-LSTM, and ARIMA models belong-
ing to the traditional statistical methods are validated against the prediction models in this
paper. Table 3 shows the prediction effect evaluation indexes of different prediction models
in three wind farms. Figure 4 is the wind power prediction effect diagram of different
models in three wind farms. In order to ensure fairness, the model runs 10 times to take the
average value as the final result.

Table 3 shows the prediction performance evaluation summary of three different wind
farms under different prediction models by using the MSE, MAE, and R2 three evaluation
indexes. The average MSE values of the three wind farms in the proposed model and CNN-
LSTM-Attention, CNN-LSTM, and ARIMA models are 23.086, 34.124, 67.183, and 42.411,
respectively; the mean values of the MAE were 3.237, 4.232, 6.406, and 4.442, respectively. The
mean values of R2 were 0.96, 0.941, 0.89,7 and 0.930, respectively. From the comparison in the
table, it can be observed that the proposed model has smaller MSE and MAE values than other
conventional models, indicating that the proposed model achieves smaller prediction errors
compared to the control model. Meanwhile, the R2 value of the proposed model is closer to 1,
which indicates that the prediction effect is better than the control model. Here, it is found that
the prediction accuracy of the ARIMA model exceeds that of some of the prediction models,
and the main reason for this is that the model can track the wind power better in shorter time
scales, but with the increase in time scales, its prediction accuracy decreases sharply compared
with other deep learning models, which is no longer shown due to the limited space in this
paper [40]. Overall, the proposed model has better prediction accuracy.
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Table 3. The evaluation index values of different prediction models in three wind farms.

Farm Site Model MSE (MW) MAE (MW) R2

Site 1

Proposed model 21.823 2.808 0.962
CNN-LSTM-Attention 29.527 3.389 0.949

CNN-LSTM 51.329 5.899 0.901
ARIMA 43.976 4.517 0.931

Site 2

Proposed model 26.792 3.691 0.951
CNN-LSTM-Attention 33.459 4.926 0.934

CNN-LSTM 102.906 8.301 0.864
ARIMA 40.338 4.486 0.925

Site 3

Proposed model 20.642 3.212 0.968
CNN-LSTM-Attention 39.386 4.531 0.939

CNN-LSTM 47.315 5.019 0.927
ARIMA 42.919 4.324 0.935

Figure 4 is the 72 h prediction results of three wind farms in China under different
prediction models. The environment built by the three wind farms is quite different, which
can better compare the prediction performance of different models. Comparison between
deep learning models reveals that the model proposed in this paper has better wind power
tracking ability. Comparison with the ARIMA model reveals that the prediction results of
the ARIMA model fluctuate the most during the time period when wind power fluctuates,
mainly because the model finds it difficult to deal with non-stationary and complex non-
linear time series data. It can be seen that the wind power prediction curves of the proposed
model in different wind farm environments are closer to the actual power curve, which
shows the effectiveness and stronger generalization of the model’s prediction.

The main reason for the error is that the wind farm environment is a complex coupling
environment and the environmental monitoring equipment can not completely monitor all
the changes in the whole wind farm, and systematic, random, and human errors existing
in the sensor monitoring process are inevitable, which are objective reasons that may lead
to the existence of errors. In the daily operation of a wind power plant, the reliability
of operation equipment and monitoring equipment should be regularly checked so as to
reduce the occurrence of errors, limit the occurrence of wrong operation instructions for
the power’s plant dispatching personnel due to wrong operation data, and improve the
stable operation of the wind power plant.

Through the above comparative analysis, the proposed model has achieved satisfactory
results. By analyzing all the results, it is summarized as follows:

1. The model proposed in this paper has better prediction performance. Experiments
show that the integrated prediction algorithm proposed in this paper can extract
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the spatial-temporal correlation of different input features more deeply and obtain
the model output with higher accuracy. The possible reason is that the integrated
model combines the advantages of multiple single models, which makes the model
have better feature extraction ability and nonlinear mapping ability and improves the
overall data extraction ability and prediction performance of the model.

2. Compared with other models, the graph network model with attention mechanism
can better express the relationship between different input feature nodes through
self-learning so that the model has better generalization performance. Compared
with other models, it has stronger spatial-temporal feature extraction ability, which
confirms the effectiveness of the model’s prediction method.

In summary, the model proposed in this paper meets the requirements of accuracy, and
the prediction accuracy is better than the existing prediction model. It has great potential
in improving the operating efficiency and profitability of wind energy systems.

5. Model Interpretability

The introduction of multiple attention mechanisms provides interpretable capabilities
for time series prediction models. In order to verify the rationality and effectiveness of
the explanatory ability of the model proposed in this paper, it will be analyzed from the
time dimension and the spatial dimension, and the rationality of the multi-dimensional
explanatory results will be verified by combining expert knowledge. Time dependence and
spatial dependence is a relative concept. Among them, temporal interpretability pays more
attention to the learning ability of historical time changes during training, while spatial
interpretability pays more attention to the spatial correlation between features.

5.1. Interpretability in Time Dimension

Increasing the attention mechanism of the time dimension in the model helps to
observe the dependence of the model on different times. In this paper, the moving window
size is set to 12, which means that the wind power at a future time point is predicted by
the data of the 12 points in the history. By extracting the attention mechanism weight of
the model at the 5th, 40th, and 100th iterations, the dependence of the model on the time
dimension is observed. As shown in Figure 5, the vertical axis of the graph represents the
different prediction time in the prediction result, and the horizontal axis represents the
weight of the observed historical moment over the prediction step. It can be observed that
with multiple iterative training of the model. The model pays more attention to the time
step closer to the predicted target time. Due to the strong randomness and volatility of the
wind speed affecting the wind power, the difference in the characteristics of the different
times is large, so the data at closer times have stronger references. The interpretable heat
map of the model in the time dimension is consistent with prior knowledge.
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5.2. Interpretability in Spatial Dimension

Wind farms collect a large number of different historical features through sensors,
but not all features may be directly related to wind power output. Therefore, this paper
introduces different historical features into the graph neural network model to mine hidden
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spatial dependencies and also initiates ‘noise reduction’ processing on many features,
making the model more robust. At the same time, the graph neural network uses the
gradient descent method to learn by itself, and the graph structure information also shows
the network’s understanding of spatial dependencies. The connection between nodes can
be used as the result of model space interpretability. At the same time, it should be noted
that since undirected graphs are used in this study, the connections between nodes can only
represent the correlation between the features learned by the model, but no direct causal
relationship can be determined.

In Figure 6, we can see that the features directly connected to the wind power node
include time, wind speed at height of 50 m, air temperature, atmosphere, and wind
direction at the hub height. According to expert knowledge, the change in temperature is a
prerequisite for the change in local air pressure, and the pressure gradient force is the main
driving force of wind speed. This force is generated by the pressure difference between
the two positions and determines the direction of the wind. At the same time, the greater
the pressure difference, the greater the wind. Because wind power is proportional to the
third power of wind speed, wind speed is the most important factor affecting wind power
generation. In order to generate as much power as possible, the wind turbine will make
the wind turbine always face the wind through the wind measurement system in the cabin
position. It is worth noting that the model here pays more attention to the wind speed at a
height of 50 m, perhaps because the model pays more attention to the influence of the wind
speed blowing towards the fan blades. At the same time, the wind speed at the height of 50
m is directly related to the wind speed at the hub height. The proposed model shows that
the direct influencing factors of wind farm output are consistent with expert knowledge,
and the reliability and rationality of the model are verified.
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6. Conclusions and Future Work

This paper proposes an interpretable wind power short-term prediction model using
deep graph attention networks. Specifically, wind power prediction is a time series problem,
and the prediction itself largely depends on the input of multiple historical characteristics of
wind farms. Different time features have different volatilities, and different features contain
the spatial attributes of the wind farm, which are the inherent attributes of the target wind
farm. Therefore, digging into the spatial-temporal characteristics of the wind farm is key to
improving the accuracy of wind power prediction. The simulation comparison shows that

1. The model proposed in this paper is higher than the existing model in terms of
the prediction accuracy, indicating that the model can more fully mine the spatial-
temporal characteristics of the multi-factor characteristics of the target wind farm.
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2. Under the complex meteorological conditions of wind power generation, the GAT can
better aggregate and extract the key information of the original multi-input features
and more deeply mine the spatial-temporal characteristics of the original features. It
provides a new solution to solve the problem of multi-factor feature modeling for
wind power prediction.

3. The model applies the attention mechanism to obtain interpretability from the spatial
and temporal dimensions. Because of the strong volatility of wind power, the long-
term information has little reference significance to the model, which leads to the
model paying more attention to the time step close to the predicted target time. The
graph node structure self-learnt by the graph network structure shows the feature
information that wind power prediction pays more attention to. The visualization
of model details and the more transparent operation mechanism also bring greater
application value to power grid operation scheduling and wind power consumption.

In future work, because the wind power output is affected by uncertain factors such
as meteorology and the environment, it has higher randomness and volatility. Based on
the high deterministic prediction accuracy of the model in this paper, wind power output
probability prediction modeling will be carried out in the future to further improve the
reliability of the prediction results.
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GNN Graph neural network
LSTM Long short-term memory
NWP Numerical weather prediction
RNN Recurrent neural network
CNN Convolutional neural network
GCN Graph convolutional network
GAT Graph attention network
SCADA Supervisory control and data acquisition
TCN Time convolutional network
GRU Gated recurrent unit
ARIMA Autoregressive integrated moving average
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