
Citation: Huang, C.; Zhao, Z.; Li, Q.;

Luo, X.; Wang, L. Wind Power Bidding

Based on an Ensemble Differential

Evolution Algorithm with a Problem-

Specific Constraint-Handling

Technique. Energies 2024, 17, 380.

https://doi.org/10.3390/en17020380

Academic Editors: Marco Mussetta,

Luis M. Fernández-Ramírez

and Mohamed Louzazni

Received: 18 December 2023

Revised: 6 January 2024

Accepted: 10 January 2024

Published: 12 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Wind Power Bidding Based on an Ensemble Differential Evolution
Algorithm with a Problem-Specific Constraint-Handling Technique
Chao Huang 1,2 , Zhenyu Zhao 1, Qingwen Li 3 , Xiong Luo 1 and Long Wang 1,*

1 School of Computer and Communication Engineering, University of Science and Technology Beijing,
Beijing 100083, China; chahuang3-c@my.cityu.edu.hk (C.H.); xluo@ustb.edu.cn (X.L.)

2 Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
3 Department of Civil Engineering, University of Science and Technology Beijing, Beijing 100083, China;

qingwenli@ustb.edu.cn
* Correspondence: lwang@ustb.edu.cn

Abstract: The intermittent nature of wind power generation induces great challenges for power
bidding in the electricity market. The deployment of battery energy storage can improve flexibility
for power bidding. This paper investigates an optimal power bidding strategy for a wind–storage
hybrid power plant in the day-ahead electricity market. To handle the challenges of the uncertainties
of wind power generation and electricity prices, the optimal bidding problem is formulated as a
risk-aware scenario-based stochastic programming, in which a number of scenarios are generated
using a copula-based approach to represent the uncertainties. These scenarios consider the temporal
correlation of wind power generation and electricity prices between consecutive time intervals. In the
stochastic programming, a more practical but nonlinear battery operation cost function is considered,
which leads to a nonlinear constrained optimization problem. To solve the nonlinear constrained
optimization problem, an ensemble differential evolution (EDE) algorithm is proposed, which makes
use of the merits of an ensemble of mutant operators to generate mutant vectors. Moreover, a
problem-specific constraint-handling technique is developed. To validate the effectiveness of the
proposed EDE algorithm, it is compared with state-of-the-art DE-based algorithms for constrained
optimization problems, including a constrained composite DE (C2oDE) algorithm and a novel DE
(NDE) algorithm. The experimental results demonstrate that the EDE algorithm is much more reliable
and much faster in finding a better bidding strategy against benchmarking algorithms. More precisely,
the average values of the success rate are 0.893, 0.667, and 0.96 for C2oDE, NDE, and EDE, respectively.
Compared to C2oDE and NDE, the average value of the mean number of function evaluations to
succeed with EDE is reduced by 76% and 59%, respectively.

Keywords: wind power bidding; battery energy storage; nonlinear constrained optimization; ensemble
differential evolution

1. Introduction

Renewable energies, e.g., wind power and solar power, are essential in order to achieve
carbon neutrality by the middle of the century, and the installation of renewable generation
has been increasing rapidly all around the world [1]. The intermittent nature of renewable
resources, however, makes it a great challenge for renewable energy producers to bid in the
electricity market [2,3]. In the deregulated electricity market, renewable energy producers
must buy or sell the imbalance between the day-ahead bid and the real generation in the
balancing market, which can lead to a great loss of profit [4].

The intermittent nature of renewable resources, i.e., solar radiation and wind speed,
introduce uncertainty to renewable power generation. To handle the challenge of uncer-
tainty, forecasting is a widely used technique, which can provide a forecasting value or
a forecasting interval [5,6]. Lee et al. [7] developed a wind power and electricity price
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probabilistic forecasting model, based on which an advanced offer curve was further built
in the day-ahead electricity market.

To incorporate the uncertainty of renewable generation and electricity prices in the
power bidding strategy, stochastic programming including scenario-based stochastic op-
timization [8], robust optimization [9], and chance-constrained optimization [10] have
been applied for the development of an optimal bidding strategy. Maneesha et al. [11]
developed a two-stage stochastic joint bidding framework for a wind power plant and
pumped storage plant. A robust bidding model in the day-ahead electricity market was
proposed by [12], in which a Gaussian mixture model was used to deal with the uncertain-
ties of renewable generation, while the information-gap decision theory was applied to
deal with the uncertainty of prices. Hosseini et al. [13] developed an auxiliary classifier
Wasserstein generative adversarial network-based wind scenario generation method to
capture its uncertainty in day-ahead wind power bidding. In [14], the Beta and Weibull
probability distribution function are used to generate scenarios of solar and wind power,
respectively, and forward-reduction-based algorithms are used for scenario reduction.
Among these stochastic programming methods, robust optimization is conservative while
chance-constrained optimization is difficult to solve. Scenario-based stochastic optimiza-
tion is easy to implement and provides a practical framework to yield efficient solutions
for time-sequential decision problems [15]. Such properties of scenario-based stochastic
optimization make it a competitive approach for renewable power bidding. However,
scenario-based stochastic optimization has to make a trade-off between modeling accuracy
and computation complexity whereby a large number of scenarios will better capture the
uncertainty while increasing the computation complexity. Renewable generation and elec-
tricity prices illustrate a high temporal correlation. Nevertheless, the temporal correlation
is seldom considered in the scenario-based stochastic optimization of the renewable power
bidding strategy.

In addition to stochastic programming, game-theory based approaches [16] and deep
reinforcement learning-based methods [17] have also been developed. In [18], a deep
reinforcement learning approach was proposed for the self-dispatch of a wind–storage
integrated system in the real-time electricity market, in which the integrated system could
learn the bidding strategy and charging policy from historical data and whose predictions
of wind power generation were unnecessary.

To control the financial risk of bidding offers due to renewable generation uncertainty,
risk management approaches, e.g., conditional value at risk (CVaR), are widely considered.
Ghavidel et al. [19] developed a risk-constrained bidding strategy for the joint operation of
wind power and compressed-air energy storage based on CvaR. In [20], a novel risk man-
agement method based on second-order stochastic dominance constraints was proposed
for wind power bidding.

To further weaken the impact of renewable generation uncertainty on power bid-
ding, the utility-scale deployment of battery energy storage has been used to improve
the flexibility of renewable energy systems for a more reliable and efficient integration
into power systems [21]. In [22], a robust model predictive control was developed for
the optimal power bidding of a wind farm in combination with energy storage. Nitsch
et al. [23] investigated the bidding strategy for battery energy storage on the day-ahead and
automatic frequency restoration reserve markets. The above studies rarely consider the
nonlinearity of the battery degradation cost that highly depends on the operation regime of
the battery, e.g., temperature, charging/discharging frequency, depth of discharge (DoD),
and state of charge (SoC). Improper operation can greatly shorten the life span of battery
devices. The studies in [24] illustrate that it is valuable to consider the nonlinearity of
the battery degradation function for the optimal operation of battery devices. Renewable
power bidding problems are often formulated as mixed integer linear programming, which
can be easily solved by commercial solvers. The consideration of the nonlinearity of the
battery degradation function will lead to nonlinear programming and will require an
efficient heuristic optimization method, e.g., evolutionary algorithms (EAs) [25]. EAs are
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widely applied in engineering to solve complex nonlinear and nonconvex optimization
problems [26,27]. However, to obtain satisfying optimization performance, proper EAs
should be designed to handle the challenges of being trapped in local optimal constraints
and large-scale decision making.

To summarize, the uncertainty of renewable generation induces great challenges for
power bidding in the spot electricity market. Scenario-based stochastic programming is
an efficient method for handling the challenges of uncertainty; however, previous studies
seldom consider the temporal correlation of renewable generation and electricity prices in
generating scenarios. Risk management approaches can be used to control the financial risk
of bidding strategies. The utilization of battery energy storage can improve the flexibility
of renewable energy systems for power bidding, while the operation cost of the battery is
rarely discussed.

Considering the above concerns, this paper investigates the optimal power bidding
strategy for a wind–storage hybrid power plant in the Nord Pool Electricity market, which
is Europe’s leading market offering day-ahead and intra-day markets to consumers. Plenty
of studies on power bidding are based on the Nord Pool Electricity market [28,29]. The
novelty and main contributions of this research are summarized as follows:

(1) A risk-aware scenario-based bidding strategy considering battery operation costs is
developed. To account for the temporal correlation of wind power generation and
electricity prices, a number of scenarios are generated using a copula-based approach.
Moreover, the conditional value at risk (CVaR) is applied to control the financial risk of
bidding strategy. More importantly, a more practical but nonlinear battery operation
cost function is considered to derive an appropriate battery operation regime.

(2) The power bidding strategy is formulated as a constrained nonlinear stochastic pro-
gramming. To solve the constrained nonlinear optimization problem, an ensemble
differential evolution (EDE) algorithm is proposed, in which an ensemble of mutant
operators is used to generate mutant vectors for the better exploration of the decision
space. In addition, a problem-specific constraint-handling approach is developed to
handle the constraint in the bidding problem.

(3) To validate the effectiveness of the proposed EDE algorithm in finding the optimal
bidding strategy, the proposed EDE algorithm is compared with state-of-the-art DE-
based algorithms for constrained optimization problems. The experimental results
illustrate that the proposed EDE algorithm is much more reliable and much faster in
finding a better bidding strategy.

The remainder of this paper is organized as follows. The methods and materials for
the development and validation of the optimal wind power bidding strategy are illustrated
in Section 2. The experimental results are provided in Section 3, and the conclusions and
discussions are given in Section 4.

2. Methods and Materials

In this section, the bidding problem for a wind–storage power plant will firstly be
introduced in Section 2.1, which is followed by the introduction of battery operation
costs due to battery degradation in Section 2.2. The formulation of risk-aware bidding
optimization problems considering the bidding revenue and battery operation costs is
presented in Section 2.3, while the EDE-based optimization algorithm is given in Section 2.4.
At the end of this section, the materials for the experimental study will be introduced.

2.1. Power Bidding in the Electricity Market

The revenue of a wind power producer in a short-term electricity market is composed
of three parts: power trading in the day-ahead market, in the intra-day market, and in the
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balancing market. In this paper, power trading in the intra-day market is not considered;
hence, the revenue for a trading day is given by (1):

R =
Nt

∑
t=1

πd,t · Pd,t · ∆t + πr,t · (PW,t − PB,t − Pd,t) · ∆t (1)

where πd,t and πr,t denote the electricity price at time period t in the day-ahead market and
the balancing market, respectively. The variables Pd,t and PW,t denote the power committed
by the wind power producer in the day-ahead market and the actual wind power generated
by the wind farm, respectively. The variable PB,t represents the charging power (if PB,t > 0)
or the discharging power (if PB,t < 0) of the battery energy storage system, and ∆t denotes
the duration of time interval t. The variable Nt denotes the number of time interval in a
trading day. In the Nord Pool market, Nt = 24 and ∆t = 1 h.

In the balancing market, if the actual power offered by the hybrid power plant is
greater than the committed volume, then the down-regulation price is activated; otherwise,
the up-regulation price is activated. The revenue, considering the up- and down-regulation
prices, is:

R =
Nt

∑
t=1

πd,t · Pd,t · ∆t +
{

πdown,t · (PW,t − PB,t − Pd,t) · ∆t, if PW,t − PB,t ≥ Pd,t
πup,t · (PW,t − PB,t − Pd,t) · ∆t, if PW,t − PB,t < Pd,t

(2)

where πup,t and πdown,t denote the up-regulation price and down-regulation price, respec-
tively, satisfying πdown,t ≤ πd,t ≤ πup,t.

Let us define
λdown,t =

πdown,t

πd,t
(3)

and
λup,t =

πup,t

πd,t
(4)

Then, the bidding revenue becomes

R =
Nt

∑
t=1

πd,t · Pd,t · ∆t +
{

λdown,t · πd,t · (PW,t − PB,t − Pd,t) · ∆t, if PW,t − PB,t ≥ Pd,t
λup,t · πd,t · (PW,t − PB,t − Pd,t) · ∆t, if PW,t − PB,t < Pd,t

(5)

2.2. Battery Energy Storage System’s Operational Costs

The operational costs of a battery energy system are caused by battery degradation.
DoD is the critical factor determining the battery cycle life, if it operates under certain
conditions on temperature and SoC, as illustrated in [30]. This paper considers the battery
cycle life as a function of DoD in (6) [31], which defines the battery life span in terms of the
number of charging/discharging cycles.

L(dB) = α0 · dB
−α1 · exp(−α2 · dB) (6)

where L denotes the battery cycle life and dB denotes the DoD. The parameters α0, α1, and
α2 are positive coefficients.

A charging event or a discharging event induces battery capacity degradation in (7),
and such degradation leads to the degradation cost in (8).

∆EB(dB) =
EB,r

2L(dB)
(7)

∆CB(dB) =
CB · EB,r

2L(dB)
(8)

where EB,r and CB denote the rated capacity and capital cost of the battery energy storage
system, respectively.
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In the power bidding problem, there can be several charging and discharging events for
a given operation regime

{
PB,t

∣∣∣Nt
t=1

}
. A charging or discharging event can be identified by

checking the power flow direction. A charging or discharging event sustaining k intervals
from t + 1 to t + k,

{
PB,t′

∣∣∣t+k
t′=t+1

}
, satisfies the condition in (9), whereby the power flow

direction should not change.{
PB,t′ · PB,t′+1 > 0, for t′ = t + 1, . . . , t + k − 1
PB,t′ · PB,t′+1 <= 0, for t′ = t + k

(9)

The DoD for the charging/discharging event is given by (10):

dB,t′ |t+k
t′=t+1

=


t+k
∑

t′=t+1
ηB,c ·PB,t′ ·∆t

EB,t
, if PB,t′ > 0

−
t+k
∑

t′=t+1
PB,t′ ·∆t

ηB,d ·EB,t
, if PB,t′ < 0

(10)

where ηB,c and ηB,d denote the charging efficiency and discharging efficiency, respectively.
The variable EB,t describes the battery capacity at the end of time interval t (or at the
beginning of time interval t + 1), and the change of EB,t between two consecutive events is
determined by (7).

Supposing that there are M charging/discharging events for the given operation
regime

{
PB,t

∣∣∣Nt
t=1

}
and each event sustains km time intervals from tm + 1 to tm + km, the

operational cost for such an operation regime is as follows:

C =
M

∑
m=1

CB · EB,r

2L
(

dB,t′ |tm+k
t′=tm+1

) (11)

To maximize the battery lifespan, its operation also satisfies following conditions:

PB,min ≤ PB,t ≤ PB,max (12)

SoCB,min ≤ SoCB,t ≤ SoCB,max (13)

where PB,min < 0 and PB,max > 0 denote the minimum discharging power and maximum
charging power, respectively. The variable SoCB,t represents the level of energy stored in
the battery at the end of time interval t, and its dynamic is defined by (14):

SoCB,t+1 = SoCB,t +


ηB,c ·PB,t+1·∆t

EB,t
, if PB,t+1 ≥ 0

PB,t+1·∆t
ηB,d ·EB,t

, if PB,t+1 < 0
(14)

2.3. Risk-Aware Bidding Optimization Problem

If we consider the revenue of bidding in the electricity market and the operational cost
of the battery energy storage system, then the net income, I, of the wind power producer
can be derived as follows:

I = R − C (15)

The wind power producer determines the bidding offer,
{

Pd,t

∣∣∣Nt
t=1

}
, and the operation

regime of the battery energy storage system,
{

PB,t

∣∣∣Nt
t=1

}
, to maximize the net income.

However, the above bidding problem is subject to uncertainty from wind power generation,
the day-ahead electricity price, and the imbalance price.
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The objective of the power bidding problem is formulated in (16) and is subject to the
constraints in (12) and (13), which maximizes the expected net income, E(I), considering
the risk.

max(1 − τ) · E(I) + τ · CVaRβ(I) (16)

The CVaR is defined as follows:

CVaRβ(I) = E
(

I
∣∣I ≤ VaRβ(I)

)
(17)

VaRβ(I) = max{i|FI(i) ≤ 1 − β} (18)

where τ is a weight parameter between the expected net come and CVaR, and the parameter
β denotes the confidence level. The function FI(i) denotes the cumulative function of net
income I.

The uncertainty in the bidding revenue comes from PW,t, πd,t, λdown,t, and λup,t. Note
that if λdown,t ̸= 1, then λup,t = 1 and vice versa. Let us define λt = λdown,t + λup,t − 1. It
is easy to derive that if λt ≤ 1, then λup,t = 1 and λdown,t = λt and that if λt > 1, then
λdown,t = 1 and λup,t = λt. Hence, only an uncertainty associated with PW,t, πd,t, and λt
should be considered.

Assuming that the random variables PW,t, πd,t, and λt are mutually independent
(cross-variable independent) as in [32], a number of scenarios generated from their dis-
tributions can be used to represent their uncertainties. The distribution of the day-ahead
electricity price and wind generation can be obtained through probabilistic forecasting
techniques [33,34]. The imbalance price illustrates high volatility and is difficult to fore-
cast. The frequency distribution of the historical data of λt is considered to represent its
probabilistic density function [32]. To consider the temporal correlation for each variable,
e.g., the correlation between PW,t and PW,t+1, a copula-based strategy is used to generate
scenarios [15]. If we suppose that there are Ns scenarios and that each scenario yields a net
income Is with given

{
Pd,t

∣∣∣Nt
t=1

}
and

{
PB,t

∣∣∣Nt
t=1

}
, then

E(I) =
1

Ns

Ns

∑
s=1

Is (19)

CVaRβ(I) =
1

β · Ns

β·Ns

∑
s′=1

Is′ (20)

where Is′ denotes the values of the net income in an ascending order of Is.

2.4. Optimization Algorithm

The objective function in (16) is nonlinear and nonconvex on the decision variables.
To solve the optimization problem, an ensemble DE (EDE) algorithm along with a problem-
specific constraint-handling technique is proposed.

2.4.1. Ensemble Differential Evolution Algorithm

A standard DE algorithm is composed of four stages, namely, initialization, mutation,
crossover, and selection [35]. In the proposed EDE algorithm, an ensemble of mutation
operators is adopted to generate mutant vectors. The flowchart of the proposed EDE
algorithm is shown in Figure 1, and the details of the algorithm are discussed below.

Figure 1. Flowchart of the proposed EDE algorithm.
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For notation simplicity in the explanation of the optimization algorithm, let us define the
decision vector as

→
x =

(
Pd,1, . . . , Pd,Nt , PB,1, . . . , PB,Nt

)
and the objective function as f

(→
x
)
.

In the initialization stage, a population of Np candidate solutions are randomly initial-

ized in the decision space, i.e.,
{→

x 1,
→
x 2 . . . ,

→
x Np

}
.

In the mutation stage, an ensemble of mutant operators is adopted to generate mutant
vectors, which takes advantage of different mutant operators for a better exploration of the
decision space. In the EDE algorithm, the population is divided into three sub-groups, and
in each sub-group, a particular mutant operator is applied. However, all the sub-groups
share the population for the selection of individuals to form differential vectors. The
following three mutant operators, namely, DE/rand/1 in (21), DE/current-to-best/1 in
(22), and DE/current-to-random/1 in (23), are considered:

→
v

g
i =

→
x

g
r1
+ Fg

i ·
(→

x
g
r2
−→

x
g
r3

)
for i = 1, . . . ,

Np

3
(21)

→
v

g
i =

→
x

g
i + Fg

1,i ·
(→

x
g
best −

→
x

g
i

)
+ Fg

2,i ·
(→

x
g
r1
−→

x
g
r2

)
for i =

Np

3
+ 1, . . . ,

2Np

3
(22)

→
v

g
i =

→
x

g
i + r ·

(→
x

g
r1
−→

x
g
i

)
+ Fg

i ·
(→

x
g
r2
−→

x
g
r3

)
for i =

2Np

3
+ 1, . . . , Np (23)

where
→
x

g
r1

,
→
x

g
r2

, and
→
x

g
r3

are three mutually distinct individuals randomly selected from the
population. The subscript i and the superscript g denote the ith individual in the population
and the gth generation in the evolution process, respectively. The variable F denotes the
mutant factor, and r is a random number uniformly generated from [0, 1].

The DE/rand/1 mutant operator is the most frequent one, while DE/current-to-best/1 can
speed up the convergence, and DE/current-to-random/1 promotes diversity [36]. Hence, the
ensemble of the above mutant operators is expected to improve the optimization performance.

In the crossover stage, the widely deployed binomial crossover in (24) is used:

ug
i,j =

{
vg

i,j, if rj < CRg
i or j = jrand

xg
i,j, otherwise

(24)

where j denotes the jth element in a vector, CR is the crossover rate, and jrand is an integer
uniformly selected from [1, 2Nt].

In this paper, a problem-specific constraint-handling technique will be proposed, and
the individuals are selected based on the objective function value, as in (25):

→
x

g+1
i =

{ →
u

g
i , if f

(→
u

g
i
)
≥ f

(→
x

g
i
)

→
x

g
i , otherwise

(25)

The mutation factor and crossover rate are critical for DE algorithms, and they are set
as follows [37]:

Fg+1
i =

{
Fl + r1 · Fu, if r2 < ξ1
Fg

i , otherwise
(26)

CRg+1
i =

{
r3, if r4 < ξ2
CRg

i , otherwise
(27)

where Fl and Fu are the lower and upper bounds of F, respectively; ξ1 and ξ2 are the control
parameters; and r1, r2, r3, and r4 are random numbers uniformly selected from [0, 1].

2.4.2. Constraint-Handling Technique

The generally considered constraint-handling techniques for EA-based constrained
optimization problems include the feasibility rule, penalty method, stochastic ranking
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method, ε-constraint method, and multi-objective method [38]. In this paper, a problem-
specific constraint-handling technique is proposed.

There are two kinds of constraints, namely, the boundary constraint in (12) and the
inequality constraint in (13). If a component vg

i,j of a mutant vector
→
v

g
i violates its boundary

[Lj, Uj], the component will be reset as follows [39]:

vg
i,j =

{
min

{
Uj, 2Lj − vg

i,j
}

, if vg
i,j < Lj

max
{

Lj, 2Uj − vg
i,j
}

, if vg
i,j > Uj

(28)

The problem-specific constraint-handling technique deals with the SoC constraint
in (13), which is a function of the decision variables,

{
PB,t

∣∣∣Nt
t=1

}
. For a charging event{

PB,t′
∣∣∣t+k
t′=t+1

}
, if SoCt+k > Socmax, then the charging event will be reset by (29):

PB,t′ =
SoCmax − SoCt

dB,t′ |t+k
t+1

· PB,t′ (29)

For a discharging event
{

PB,t′
∣∣∣t+k
t′=t+1

}
, if SoCt+k < Socmin, then the discharging event

will be reset following (30):

PB,t′ =
SoCt − SoCmin

dB,t′ |t+k
t+1

· PB,t′ (30)

The proposed constraint-handling technique maintains the power flow directions and
power ratio between time intervals learned from the EDE algorithm, which is valuable for
speeding up the convergence.

The framework of the proposed EDE algorithm is summarized in Algorithm 1.

Algorithm 1: Ensemble differential evolution

Input:
Np: the population size;
[Fl, Fu]: the boundary of mutation factor;
ξ1, ξ2: control parameters for mutation factor and crossover rate;
max_FES: maximum number of function evaluations;
Initialization:
Set g = 1; /* the number of generation */

Randomly generate an initial population from the decision space, i.e.,
{→

x
g
1 ,

→
x

g
2 , . . . ,

→
x

g
Np

}
;

Randomly initialize the mutation factor from [Fl, Fu];
Randomly initialize the crossover rate from [0, 1];
for i = 1 : Np do

if
→
x

g
i violates the constraints then

reset
→
x

g
i as per the proposed constraint handling technique;

Evaluate the objective function, f
(→

x
g
i
)
;

end
Select the best individual

→
x

g
best from the population;

Set FES = Np; /*FES denotes the number of function evaluations */
Population Evolution:
for i = 1 : Np do

if 1 ≤ i ≤ Np
3 then

generate mutant vector
→
v

g
i following DE/rand/1 strategy;

if Np
3 < i ≤ 2Np

3 then

generate mutant vector
→
v

g
i following DE/current-to-best/1 strategy;

if 2Np
3 < i ≤ Np then

generate mutant vector
→
v

g
i following DE/current-to-random/1 strategy;
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Algorithm 1: Cont.

if
→
v

g
i violates the constraints then

reset
→
v

g
i as per the proposed constraint handling technique;

Apply the crossover operation to generate trial vector
→
u

g
i ;

Evaluate the objective function, f
(→

u
g
i
)
;

Apply the selection operation;
end
Select the best individual

→
x

g
best from the population;

Update mutation factor;
Update crossover rate;
Set FES = FES + Np;
Set g = g + 1;
Stop Criterion:
If FES > max_FES then
stop the algorithm and output best individual

→
x

g
best in the population;

Else
repeat the “Population Evolution” process.

2.5. Experimental Materials

The day-ahead electricity price, imbalance price, and power generation of a wind
power plant in 2019 from the Nord pool electricity market, https://www.nordpoolgroup.
com/ (accessed on 1 June 2021), are used for the development of copula models and for
the derivation of the distribution of λt. The standard deviations of the forecasting errors
of the day-ahead electricity price and wind power generation are assumed to be 10%.
For each bidding day, 1000 independent scenarios will be generated to represent their
uncertainties. Figure 2 illustrates the day-ahead electricity price, imbalance price, and wind
power generation for this case study.

Figure 2. Electricity price and wind power for case study.

https://www.nordpoolgroup.com/
https://www.nordpoolgroup.com/
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The rated capacity of the battery energy storage system is 78 MWh with a charg-
ing/discharging efficiency of 0.98. The Pmax and Pmin are assumed to be 26 MW and
−26 MW, respectively, and SoCmin and SoCmax are assumed to be 0.1 and 0.9, respectively.

The setting of the parameters of the EDE algorithm is as follows: Np = 180, max_EFS =
5.4 × 105, Fl = 0.1, Fu = 0.9, and ξ1 = ξ2 = 0.1. The values of τ and β in the objective function
are set as follows: τ = 0.2 and β = 0.1.

To validate the effectiveness of the proposed optimization algorithm in optimal
power bidding, this paper compares the performance of the proposed optimization al-
gorithm against state-of-the-art DE algorithms for constrained optimization problems,
i.e., C2oDE [36] and NDE [40]. The C2oDE also deploys a variety of mutant operators to
generate trail vectors. However, the proposed EDE algorithm is different form C2oDE
in following ways: (i) in C2oDE, three trail vectors are generated for each individual by
applying different mutant operators, while only the best trail vector is compared with
the target individual for selection; (ii) the C2oDE integrates an ε-constraint method and
the feasibility rule to handle the constraints. The proposed EDE is also different from
the composite DE algorithms [24] in candidate selection and the constraint-handling tech-
nique. In NDE, a novel mutant operator is developed, and the feasibility rule is applied for
constraint handling.

3. Results

To illustrate the robustness of optimization algorithms in finding the optimal strategy,
25 independent runs are performed for each optimization algorithm on each bidding day.
This paper evaluates the optimization performance from the feasible rate (FR), success
rate (SR), optimization accuracy, and convergence speed [41]. A solution is feasible if it
satisfies the constraints. If at least one feasible solution is found in a run, it is called a
feasible run. Similarly, if a feasible solution satisfying the successful condition is found
in a run, it is called a successful run. In this study, the successful condition is defined as
f (

→
x ) ≥ 0.999 f (

→
x
∗
), where

→
x
∗

denotes the best-known solution by all the algorithms. The
best solution and the number of function evaluations (FEs) needed to find a successful
solution are recorded for each run. The FR and SR define the ratio of feasible runs and
successful runs with respect to total runs, respectively.

The best, mean, median, worst, and standard deviation (Std.) of the objective values of
the best solutions over 25 runs as well as the FR are reported in Table 1. From Table 1, the
proposed EDE algorithm outperforms the benchmarking algorithms in terms of objective
values on day 1 and day 3, while on day 2, C2oDE performs better than the proposed
EDE algorithm in terms of the best, mean, and median values. These results illustrate
that the proposed EDE algorithm is competitive in terms of optimization accuracy with
state-of-the-art optimization algorithms.

Table 1. Feasible rate (FR) and optimization accuracy over 25 independent runs.

Bidding Day Algorithm FR Best Mean Median Worst Std.

Day 1

C2oDE [36] 1 6.8595 × 104 6.8577 × 104 6.8574 × 104 6.8561 × 104 1.0116 × 101

NDE [40] 1 6.8594 × 104 6.8571 × 104 6.8573 × 104 6.8551 × 104 1.2398 × 101

EDE 1 6.8606 × 104 6.8583 × 104 6.8581 × 104 6.8572 × 104 8.6052 × 100

Day 2

C2oDE [36] 1 9.7789 × 104 9.7747 × 104 9.7751 × 104 9.7686 × 104 3.1887 × 101

NDE [40] 1 9.7778 × 104 9.7699 × 104 9.7704 × 104 9.7539 × 104 5.4927 × 101

EDE 1 9.7763 × 104 9.7730 × 104 9.7727 × 104 9.7709 × 104 1.4013 × 101

Day 3

C2oDE [36] 1 6.8804 × 104 6.8754 × 104 6.8746 × 104 6.8717 × 104 2.3752 × 101

NDE [40] 1 6.8778 × 104 6.8728 × 104 6.8728 × 104 6.8690 × 104 2.2401 × 101

EDE 1 6.8807 × 104 6.8766 × 104 6.8763 × 104 6.8720 × 104 2.5149 × 101
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Table 2 presents the best, mean, median, worst, and standard deviation of the number
of FEs needed to succeed over the successful runs as well as the SR. It is observable that the
proposed EDE algorithm provides a much higher SR than the benchmarking algorithms and
can find successful solutions with a much faster speed. More precisely, the average values
of SR on the three days are 0.893, 0.667, and 0.96 for C2oDE, NDE, and EDE, respectively.
Compared to C2oDE and NDE, the average value of the mean number of FEs needed to
succeed on the three days with EDE is reduced by 76% and 59%, respectively.

Table 2. Success rate (SR) and number of FEs needed to succeed over 25 independent runs.

Bidding Day Algorithm SR Best Mean Median Worst Std.

Day 1

C2oDE [36] 1 334,980 366,660 359,820 414,360 17,550

NDE [40] 1 97,020 169,236 153,540 287,640 49,104

EDE 1 32,040 45,900 45,540 63,900 7596

Day 2

C2oDE [36] 0.96 339,840 376,398 364,500 449,100 29,250

NDE [40] 0.72 63,000 243,414 228,240 540,000 125,064

EDE 1 32,400 78,840 69,300 171,900 31,482

Day 3

C2oDE [36] 0.72 353,700 427,086 409,860 510,840 55,476

NDE [40] 0.28 140,940 271,008 251,100 407,700 86,454

EDE 0.88 58,680 156,078 111,960 335,160 91,746

To better present the search process, Figure 3 illustrates the evolution of the best solu-
tion in a successful run (the run with the median number of FEs needed to succeed). These
figures clearly demonstrate the powerful capacity of the proposed EDE algorithm in finding
optimal solutions against the state-of-the-art algorithms for constrained optimization.

Figure 3. The evolution of the best solution in a run.
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To summarize, the proposed EDE algorithm generally outperforms the benchmarking
algorithms in finding optimal solutions, while it provides a much higher SR at a much
faster speed. That is to say, the proposed EDE algorithm is much more reliable and faster
in finding better solutions.

4. Conclusions and Discussions

In this paper, the optimal power bidding strategy for a wind–storage hybrid power
plant is studied. The challenge for power bidding mainly lies in the uncertainties of wind
generation and electricity prices. To handle this challenge, the power bidding problem is
formulated as a risk-aware scenario-based stochastic programming, in which a number
of scenarios are generated using a copula-based approach to represent the uncertainties.
The copula-based generation of scenarios considers the temporal correlation of wind
generation and electricity prices between consecutive time intervals. Moreover, this paper
considers a more practical but nonlinear degradation function of the battery to derive
a more appropriate battery operation regime, which leads to a nonlinear constrained
optimization problem.

To solve the nonlinear constrained optimization problem, an EDE algorithm is pro-
posed, which deploys an ensemble of mutant operators to generate mutant vectors. The
EDE algorithm makes use of the merits of each mutant operator to improve the optimization
performance. In addition, a problem-specific constraint-handling technique is developed.
The proposed EDE algorithm is compared with state-of-the-art DE-based algorithms for
constrained optimization problems, including C2oDE and NDE. The experimental results
illustrate that the proposed EDE algorithm is much more reliable and much faster in finding
a better solution. More precisely, the average values of SR on the three days are 0.893,
0.667, and 0.96 for C2oDE, NDE, and EDE, respectively. Compared to C2oDE and NDE, the
average value of the mean number of FEs needed to succeed on the three days with EDE is
reduced by 76% and 59%, respectively.

The numerical results demonstrate the efficiency of the developed bidding strategy
considering battery degradation costs. However, to further verify its effectiveness, experi-
ments on real wind–storage power plants are required.
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