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Abstract: In critical applications of electrical machines, ensuring validity and safety is paramount to
prevent system failures with potentially hazardous consequences. The integration of machine learning
(ML) technologies plays a crucial role in monitoring system performance and averting failures.
Among various motor types, permanent magnet synchronous motors (PMSMs) are widely favored
for their versatile speed range, enhanced power density, and ease of control, finding applications in
both industrial settings and electric vehicles. This study focuses on the detection and classification
of the percentage of broken magnets in PMSMs using a pre-trained AlexNet convolutional neural
network (CNN) model. The dataset was generated by combining finite element methods (FEMs) and
short-time Fourier transform (STFT) applied to stator phase currents, which exhibited significant
variations due to diverse broken magnet structures. Leveraging transfer learning, the pre-trained
AlexNet model underwent adjustments, including the elimination and rearrangement of the final
three layers and the introduction of new layers tailored for electrical machine applications. The
resulting pre-trained CNN model achieved a remarkable performance, boasting a 99.94% training
accuracy and 0.0004% training loss in the simulation dataset, utilizing a PMSM with 4% magnet
damage for experimental validation. The model’s effectiveness was further affirmed by an impressive
99.95% area under the receiver operating characteristic (ROC) curve in the experimental dataset.
These results underscore the efficacy and robustness of the proposed pre-trained CNN method in
detecting and classifying the percentage of broken magnets, even with a limited dataset.

Keywords: convolutional neural network (CNN); fault diagnostics; permanent magnet synchronous
motors (PMSMs); broken magnet; transform learning; signal processing

1. Introduction

Electrical motors play a crucial role in converting electrical energy into mechanical
energy. They are widely used in various industries and applications, including manufac-
turing, transportation, appliances, and many more [1]. Permanent magnet synchronous
motors (PMSMs) are popular in industrial applications because of their small size, high
efficiency, high torque, and excellent dynamic performance [2]. The actual use of motors
can cause them to be exposed to environmental, physical, and thermal stress, which can
change their normal structure and functioning, resulting in a breakdown. Any departure
from the machine’s expected behavior (under the operating circumstances) is referred to
as a fault in a machine. The machine’s thermal properties, acoustic noise and vibrations,
magnetic quantities like flux, and electrical quantities like current and voltage can all be
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signs of a fault. To prevent a defect from spreading further, it must be identified and treated
when it is still in its early stages [3]. Previous research has looked into the categorization
and modeling of faults in PMSMs [4]. Fault detection and diagnosis based on a motor
variable analysis is an important technique for ensuring the reliable operation of PMSMs in
various industrial applications. It allows for the early detection of faults, which can help
prevent more serious damage and reduce downtime for maintenance and repair. Various
elements of the motors are widely utilized to extract fault characteristics through different
processing techniques. These fault characteristics are then used to identify the specific
type of fault occurring in the motor, enabling maintenance personnel to take appropriate
corrective actions [5]. Among them, because it is inexpensive and non-invasive, motor
current signature analysis (MCSA) is an extensively utilized approach. The current of a
motor in operation is measured and stored in MCSA. The characteristics of the motor are
determined by analyzing the recorded signal in the time, frequency, or time-frequency
domains. This information is then used to diagnose the motor issues. The use of MCSA
has been widely employed to investigate motor faults, including rotor, bearing, eccen-
tricity, misalignment, and stator faults [6,7]. The rotor of PMSMs is a critical element,
and any faults in it can significantly impede the operational performance of the PMSMs.
There are two common types of rotor faults: eccentricity faults (static eccentricity and
dynamic eccentricity) and broken magnet faults [8,9]. Failure detection algorithms for the
non-stationary state often incorporate time-frequency analysis methods such as wavelet
analysis [10], short-time Fourier transform (STFT) [11], Hilbert–Huang transforms [12],
and Wigner–Ville distributions [13]. These techniques allow for a more comprehensive
analysis of signals in both the time and frequency domains, enabling the detection of faults
in systems exhibiting non-stationary behavior. Fast Fourier transform (FFT) is a widely
used method for accurately detecting current harmonics [14,15]. In PMSMs, electrical and
magnetic faults can introduce certain harmonics in the motor variable spectrum. These
harmonics can be analyzed to detect and diagnose the presence of a fault in the motor. The
fault pattern is defined as the specific combination of harmonics that are present in the
motor variable spectrum for a particular fault. However, in general, the harmonics that are
introduced in the motor variable spectrum due to faults can be expressed as follows [16]:

fpattern = (1 ± k
p
) fs, (1)

where k is an integer number, p is the number of pole pairs, and fs is the fundamental
frequency of the supply current [16]. According to (1), it is shown that different faults in
PMSMs have the same harmonic behavior, and the diagnosis of these faults is challenging.
Therefore, it is crucial to conduct research focused on precise and reliable techniques for
diagnosing and classifying broken magnet faults. Deep learning (DL)-based approaches
are employed to classify broken rotor bars and detect faults in induction motors (IMs) [17].
Deep-SincNet is capable of extracting fault characteristics from the raw data of bearings and
broken rotor bars in IMs [18]. The robustness of the DL methods is extracted with the raw
dataset for bearing fault detection. DL algorithms are capable of automatically extracting
features from bearing data without any prior knowledge of fault characteristic frequencies
or operating conditions, provided they are given a large enough dataset to train on [19].
The study of bearing fault detection using the convolutional neural network (CNN) method
is popular and has opened a new horizon in the areas of fault detection research [20]. The
combination of signal processing and CNN methods is used for inter-turn short-circuit
(ITSC), partial demagnetization, and static eccentricity fault detection [21]. The study
successfully diagnosed and classified various faults, including normal faults, winding end-
turn short circuit faults, demagnetization faults, and hybrid faults (combining winding end-
turn short circuit and demagnetization faults) using a CNN model in PMSM. Additionally,
the FFT model was used to analyze the characteristics of the fault types, while the FEM
method determined the characteristics of the phase currents. Three-phase current data from
experiments were used for training and testing the model, and the results demonstrate the
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effectiveness of the proposed method in fault diagnosis and classification [22]. In another
study, two feature extraction methods were used for fault detection. In the first method,
a combination of 1D-CNN and wavelet packet transform was utilized, and after these
methods, the supervised learning method was used for the classification of the faults [23].
Through the experiment, the frequency domain analysis of the current data of the PMSM’s
healthy state, the end-of-winding ITSC fault, the demagnetization fault, and the hybrid
fault was performed. Using 1D-CNN, the faults’ classification and diagnosis were carried
out. The results demonstrate that, when both errors were present at the same time, the 1D-
CNN was able to detect both. The features are automatically extracted from existing signals
using 1D-CNN. The proposed technique has a 99.29% success rate in fault diagnosis [24].
An alternative study presents a resilient method for diagnosing open-circuit faults by
employing a wavelet convolutional neural network. This approach utilizes compact sample
sets generated from normalized current vector trajectory graphs [25]. In addressing the
imperative task of detecting and classifying faults in PMSMs, previous research presents an
innovative intelligent approach employing bi-spectrum analysis and a CNN. Experimental
validation showcases the impressive classification effectiveness of the CNN model [26].

In the present study, a primary focus was the investigation and application of a novel
pre-trained AlexNet CNN for the detection and classification of damaged magnets in
PMSMs. Departing from traditional approaches laden with computational complexities or
intricate signal processing methods, the proposed method capitalizes on the benefits of deep
learning. Through the utilization of STFT graphical images derived from a meticulously
curated dataset, an exceptional validation accuracy (99.23%) and training accuracy (99.94%)
were achieved in the identification and classification of broken magnets. Furthermore,
the study emphasizes the significance of this work in the early detection and prevention
of damaged magnets, thereby paving the way for a comprehensive and fully automated
system within the realm of electric machine health monitoring. This paper is divided into
six sections, each focusing on specific aspects of the research. In Section 2, the impact of
broken magnets in PMSMs on the stator phase current is discussed, along with an expla-
nation of how STFT analysis is used to analyze and understand these effects. In Section 3,
the research paper provides a detailed description of how the dataset is rearranged us-
ing a simulation model and STFT analysis. Section 4 emphasizes the architecture of the
new pre-trained Alexnet CNN and highlights the utilization of robust transfer learning
techniques for the purpose of detection and classification. Section 5 explains the process
of obtaining the experimental dataset and demonstrates how the proposed model was
verified and tested using this dataset, and Section 6 concludes the study by summarizing
the key findings and main contributions of the research, emphasizing their significance and
suggesting potential directions for future research.

2. Fundamentals of PMSMs and STFT Analysis for Evaluating Impact of Broken
Magnets on Stator Phase Current

Physically modeling broken magnets in PMSMs involves the removal of sections
from the magnets, accurately simulating the presence of cracks or fractures. By physically
removing parts of the magnets, the effective magnetic field strength in the motor is reduced.
It is important to note that physically modeling broken faults by altering the magnets is
a controlled and deliberate process performed for experimental or testing purposes. In
real-world scenarios, broken magnets can occur for various reasons, such as mechanical
stress or electrical overloading, and they are typically considered undesired and uninten-
tional faults [27]. As a result, the motor may experience reduced output torque, decreased
efficiency, increased current harmonics, and increased heating in broken magnet conditions.
These effects can negatively impact the motor’s overall performance and reliability [28]. In
this study, the broken magnet was fitted on a PMSM. Figure 1a depicts the FEM representa-
tion of the intact rotor of the PMSM, whereas Figure 1b illustrates a side view of the rotor
with a broken magnet in one pole. In this case, a section corresponding to roughly 3% of a
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single permanent magnet (PM) area was deliberately removed from the magnets, forming
one pole.

(a) (b)
Figure 1. FEM depiction of (a) healthy four pole pair PMSM rotor and (b) PMSM rotor with the 3%
broken magnet of a single PM depicted by the red dotted circle.

In PMSMs, any form of broken magnet leads to a reduction in the rotor’s magnetic
flux. As a result, when a broken magnet occurs, the motor requires a higher current to
maintain the same load torque compared to a healthy motor. This is due to the direct
relationship between the electromagnetic torque of PMSMs and the cross-product of the
current vector and PM flux linkage. Furthermore, a broken magnet introduces periodic
disturbances in the PM magnetic field, causing distortions in the induced back EMF. These
distortions, in turn, have an impact on the shape and magnitude of the stator phase current
waveforms. Upon analyzing the stator phase current waveforms, it becomes apparent
that the presence of broken magnets in PMSMs leads to changes in the magnitudes of the
stator phase currents and slight distortions in their sinusoidal patterns. These variations
occur as a result of additional harmonics introduced into the waveforms. These changes in
the waveforms are depicted in the frequency spectra. If the magnets are not distributed
evenly throughout the rotor, it can lead to fault signature patterns as described in (1) due to
various shapes of broken PMs. The FFT graphs in Figure 2 depict frequency spectra for
the comparison of the PMSM phase current in a healthy motor and a motor with broken
magnet conditions using the simulation results. The data presented in the graphs illustrate
that, in the healthy condition, only the fundamental components appear. However, in
the broken magnet condition, the harmonics of the mechanical frequency are depicted
without the fundamental components. This demonstrates that the proposed method can
accurately predict the behavior of a given broken magnet motor, as the theoretical results
are in agreement with the simulation results.

While Fourier transform is a valuable tool for analyzing signals in the frequency
domain by decomposing them into complex exponentials at different frequencies, it does
not provide any information about when specific frequencies occur in the time domain [11].
The STFT functions by partitioning a signal into time-domain windows of equal width. The
frequency characteristics of each window are subsequently calculated using the FFT. The
choice of window size determines the level of time and frequency resolution in the STFT
analysis. Smaller windows yield a more precise time resolution but less accurate frequency
resolution, whereas larger windows offer an improved frequency resolution at the cost of
time resolution [29]. The STFT computes the FFT of a function within a symmetric window
function, denoted as W(t). This window function is shifted in time (t) and modulated at a
frequency ω, as expressed by the following equation [30,31]:

S(τ, ω) =

∞∫
−∞

f (τ)W(t − τ)e−jωtdt, (2)
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The result of performing the STFT analysis is a spectrogram, which displays the
distribution of energy among the frequency components of the signal as they change over
time. The spectrogram is presented as a three-dimensional plot, showcasing the evolving
frequency content of the signal throughout the duration. The formula for calculating the
spectrogram is as follows [30,31]:

E(τ, ω) = |S(τ, ω)|2, (3)

In real-world applications, signals are commonly sampled at a fixed sampling fre-
quency fp. Consequently, Equation (2) in the discrete domain can be expressed using the
following formula [30,31]:

SD[m, k] =
N−1

∑
n=0

x[n]W[n − mH]e−j 2πnk
N , (4)

The equation involves several parameters: N (the number of FFT points), n (the time-
domain input sample index), x[n] (the input sample), W[n] (the window function), H (the
window size or width), and k (the frequency index). When performing STFT analysis, it is
vital to specify these parameters during the algorithm design. They include the sampling
frequency fp, the number of input samples (Nt), the window size (H), and the choice of
window function (W[n]). Detailed explanations and analyses of these parameters, and
their impact on the outcomes of the STFT, can be found in various sources, including
references [31,32].
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Figure 2. Comparison of the FFT spectra of the stator current in phase-a for healthy and broken PM.

3. Dataset Rearrangement Process Using Finite Element Method and Short Time Fourier
Transform Analysis
3.1. FEM Simulation Model

RMxprt allows for the rapid realization of the initial motor design and efficient perfor-
mance verification, leading to reduced design possibilities for the motor [33]. The software
provides users with the capability to generate different motor models by defining various
parameters such as the stator and rotor diameter, iron core length, winding details, slot
configuration, wire characteristics, insulation, and other relevant factors. Additionally,
users can specify the size and material type of the PM [34,35]. Once the necessary parame-
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ters are defined, the software employs finite element calculations for both transient and
steady-state analysis using Maxwell’s equations. By appropriately setting the boundary
conditions and mesh division (as automatic meshing may yield inaccurate results), an
ANSYS® Maxwell® 2022 R2 (2D) (ANSYS, Canonsburg, PA, USA) model of the motor
is generated. ANSYS® Maxwell® 2022 R2, as a professional design software for rotary
motors, offers effective computational capabilities for evaluating performance indicators
across different motor types, such as induction motors, synchronous motors, and motors
with electronic or mechanical commutation. In this study, the PMSM was designed in
ANSYS® Maxwell®. Table 1 presents a concise overview of the key characteristics of the
designed motor.

Table 1. Parameters of the PMSM.

Parameters Name Value

Number of Slots 9
Number of Poles 8

Rated Voltage 220 V
Rated Power 0.4 kW
Rated Speed 3000 r/min

Output Torque 1.28 N·m
Efficiency 91%

In this paper, a total of thirty-seven (37) simulated PMSMs are examined in nine (9) classes,
one of which is in a healthy condition, and the others have various percentages and shapes
of broken magnets. Despite the differences in the shape and size of the broken magnet, the
same properties were applied to all of the motors in the simulation application. Figure 3a
shows a broken magnet within the red circle that is cracked by approximately 3% in one
magnet, which is labeled as “B1”, while Figure 3b demonstrates a broken magnet within
the red circle that is cracked by approximately 83% in one magnet, which is labeled as “B7”.
In this study, the healthy condition is labeled by “H”, and the motors with broken magnets
are labeled from “B1” to “B8”.

(a) (b)
Figure 3. Broken magnets: (a) approximately 3% damaged; (b) approximately 83% damaged.

The STFT spectrogram of the stator phase current was used to generate a dataset of
4200 images, which was utilized for training and validating a pre-trained Alexnet CNN
model. The goal was to create short-term visual representations. Table 2 provides an
overview of all the datasets used as input for the training and validation of the model. The
dataset was split into two groups, with 80% of the images used for training the model and
the remaining 20% used for validation. Initially, the images were sized 700 × 525 × 3, but
they were rearranged to suit the CNN model.
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3.2. STFT Spectrogram of Stator Phase Current in Healthy and Broken Magnet PMSM

In this study, an STFT analysis of the stator phase current signal was used to detect
symptoms of broken magnets in PMSMs. By analyzing the magnitude of specific harmonics,
valuable insights could be gained into the condition of the rotor. Figure 4 presents the
STFT spectrograms of the stator phase current and FEM model from all the labels. Healthy
motors and broken motors with different percentages and shapes of broken magnets were
used, both operating under the same conditions.

Table 2. Summary of training and validation datasets.

Label Situation Data Number Training Data Validation Data

H Healthy PM 200 160 40
B1 (0–10%) Broken PM 500 400 100
B2 (10–20%) Broken PM 500 400 100
B3 (20–30%) Broken PM 500 400 100
B4 (30–40%) Broken PM 500 400 100
B5 (40–50%) Broken PM 500 400 100
B6 (50–70%) Broken PM 500 400 100
B7 (70–90%) Broken PM 500 400 100

B8 (90–100%) Broken PM 500 400 100

(H)
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Figure 4. STFT spectrogram of phase-a currents and 2D FEM models of healthy and PMSM rotors
with different shapes and percentages of broken magnets.

4. Motivation for Developing the New Pre-Trained AlexNet CNN Model and Utilization
of Robust Transfer Learning Techniques for Detecting and Classifying Broken Magnets

The past few years have seen a great deal of focus on artificial intelligence (AI),
especially machine learning (ML) and DL techniques. Numerous researchers have utilized
these advanced techniques to explore a new horizon in various fields of technology. DL is
a subset of ML that uses algorithms to process data and create models that can learn and
make decisions on their own. It differs from other ML techniques in that it uses multiple
layers of neurons to process data and create more complex models. For a more precise
definition, DL is a form of AI that uses data processing. It is similar to the way a human
would learn by taking a pre-learned example and attempting to extract specific features
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automatically through multiple layers. The mathematical model of the accuracy of a DL
model can be calculated as follows [36,37]:

Precision =
Tp

Tp + Fp
, (5)

Recall =
Tp

Tp + Fn
, (6)

F1 = 2 × Precision × Recall
Precision + Recall

, (7)

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
, (8)

where Tp is a true positive, Tn is a true negative, Fp is a false positive, and Fn is a represented
false negative. Precision serves as an indicator of how accurate a model is in correctly
identifying positive instances. A high-precision value suggests that the model has a low
rate of false positives, making it dependable in its positive predictions. In DL, recall
measures the model’s completeness in identifying positive instances and is particularly
important when minimizing false negatives is crucial. A high recall value signifies that the
model successfully captures a large proportion of positive instances, thereby reducing false
negatives. This indicates that the model is reliable in not missing important positive cases.
The F1 score is a metric that combines precision and recall by calculating their harmonic
mean. It provides a balanced measure that ranges from 0 to 1. The F1 score reaches its
maximum value of 1 when both precision and recall are perfect, meaning there are no false
positives or false negatives. A higher F1 score indicates the better overall performance
of the model in accurately identifying positive instances. Accuracy is a fundamental
evaluation metric used in DL to assess the overall performance of a classification model. It
measures the proportion of correct predictions made by the model out of the total number
of predictions. A higher accuracy value indicates that the model has a greater ability to
make correct predictions across all classes. It is commonly employed as a primary metric
for evaluating classification models when the dataset is well balanced, with approximately
equal instances in each class.

In this paper, nine (9) different classes of healthy and broken magnet PMSMs are
investigated. We utilized this technique as an efficient and reliable solution when the
available data for training a model from the broken magnet was limited. However, due
to the challenges posed by the size and location of the broken magnet, diagnosing the
broken one under operational conditions proved to be quite difficult. To capture both
global and local information, a larger kernel size is preferred for the convolutional layer to
obtain global information, while a smaller kernel size is used to extract local information.
The neural network architecture used for broken magnet detection in the PMSM was
based on the pre-trained AlexNet model. It consists of 11 layers with a total of 58 million
adjustable parameters. Figure 5 depicts the architecture used for broken magnet detection
and additional details are provided in Table 3. The new pre-trained AlexNet model consists
of three max-pooling layers and five convolutional layers, each followed by a rectified
linear unit (ReLU) activation function.
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Figure 5. Architecture of the proposed pre-trained CNN model with transferred learning.

Table 3. Summary of the proposed pre-trained CNN with transferred learning.

No Layer Output Size Kernel Size Number of
Filters

Input Input Layer 227 × 227 × 3 - -
Conv 1 Convolution 55 × 55 × 96 11 × 11 96
Max 1 Max Pooling 27 × 27 × 96 3 × 3 96
Conv 2 Convolution 27 × 27 × 256 5 × 5 256
Max 2 Max Pooling 13 × 13 × 256 3 × 3 256
Conv 3 Convolution 13 × 13 × 384 3 × 3 384
Conv 4 Convolution 13 × 13 × 384 3 × 3 384
Conv 5 Convolution 13 × 13 × 256 3 × 3 256
Max 3 Max Pooling 6 × 6 × 256 3 × 3 256

Dense 1 Fully Connected 4096 - -
Dense 2 Fully Connected 4096 - -
Dense 3 Fully Connected rearranged for 9 - -

Soft 1 Softmax rearranged for 9 - -
Output Output Layer rearranged for 9 - -

Note: The red lines demonstrate the transfer learning section of the proposed method.

In our new model, to adapt the architecture for broken magnet detection in PMSM,
some layers were removed or modified. A “fully connected layer with 9 neurons” was
rearranged, and the “softmax function” was used to connect all units to the nine neuronal
outputs for broken magnet classification. The learning rate was adjusted to control the rate
of network updates. The learning rate of the layers before the last three layers remained
unchanged, while this rate in the new layers was increased to facilitate faster learning.
This allowed for quick weight updates in these layers. An NVIDIA GeForce 940MX (Santa
Clara, CA, USA), 6040 MB GPU laptop was used to run the proposed CNN model. The
training process took approximately 11 minutes with a batch size of 75, a maximum of
80 epochs, and a maximum of 520 iterations. The initial learning rate was set to 0.002.
The model achieved an impressive validation accuracy of 99.23%, indicating its success in
accurately detecting broken magnets. To visualize the training progress, Figure 6 shows
a graph depicting the accuracy and loss rates for both training and validation datasets
as the number of iterations increases. The accuracy and error graphs demonstrate the
effectiveness of the proposed new pre-trained CNN model, including transfer learning
techniques for detecting broken magnets.

Based on the simulation results, the proposed model achieved an accuracy of 99.94%
on the training data with a 0.0004% training loss. This means that the pre-trained Alexnet
CNN model with the rearrangement of fully connected layers was able to diagnose broken
magnets with high accuracy and use raw data without any additional computational
burden, which is a significant advantage of this method. Furthermore, to gain deeper
insights into the model’s performance, a confusion matrix was employed to evaluate its
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classification abilities. The confusion matrix provided a detailed breakdown of the model’s
predictions, enabling a comprehensive analysis of its true and false labels identified by the
model. Based on the confusion matrix as shown in Figure 7, the proposed model exhibited
exceptional performance in accurately classifying broken magnets, as evidenced by the high
accuracy rate observed during training and validation. This reinforces the effectiveness
of the pre-trained Alexnet CNN model with the rearrangement of fully connected layers
for detecting broken magnets with remarkable precision and recall. The utilization of
the confusion matrix helped us to assess the model’s ability to accurately detect broken
magnets across different classes.
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5. Discussion and Experimental Case Studies for Model Performance Evaluation

To validate the simulation results, an experimental approach was employed. A vertical
cut was made on one of the rotor magnets, as depicted in Figure 8. Subsequently, the motor
was tested under identical speed and torque conditions as used in the simulation. The
corresponding STFT spectrograms for both the healthy rotor and the rotor with a broken
magnet are presented beneath the respective rotor images. In the experimental case study,
a broken magnet with approximately 4% damage, which corresponds to the B1 class, was
employed. The methodology involved immersing the rotor in a non-conductive oil within a
precisely dimensioned measurement container meticulously designed to match the rotor’s
shape accurately. Through measurements conducted under both healthy and broken mag-
net conditions, precise volume data were obtained. The percentage of the broken magnet
sections was subsequently determined by analyzing the volume differences between these
two states. This non-destructive technique presents distinct advantages for assessing rotor
integrity, thereby facilitating data-driven maintenance decisions. In this study, 10% inter-
vals were chosen to categorize fault magnitudes in experimental applications. This decision
was driven by the practical considerations of real-world applications, where electrical
machines, such as PMSMs, play a pivotal role. It is well established that faults in such
systems can have adverse consequences, potentially leading to system failures and the
associated risks. Recognizing the critical need for early detection and proactive mitigation
of these effects, we adopted the 10% interval categorization to strike a balance between
granularity and predictive accuracy. This approach enables us to identify faults before
they escalate to levels that may jeopardize system integrity, ensuring the reliability and
safety of critical applications. Additionally, the 10% intervals provide a practical framework
that aligns with industry practices, allowing our methodology to be readily applied in the
field for predictive maintenance and risk mitigation. Moreover, this choice enhances the
statistical significance of our findings by ensuring that each fault magnitude category is
sufficiently populated, enabling robust analysis and meaningful results.

(a) (b)

Figure 8. Experimental PMSM rotor with corresponding STFT spectrograms under simulated condi-
tions: (a) healthy rotor; (b) rotor with a 4% broken magnet.

To facilitate this experimentation, a setup was prepared, as depicted in Figure 9. The
setup consisted of a PMSM, with its specifications detailed in Table 1. The experimental
setup featured a 0.4 kW star-connected PMSM under closed-loop vector control, coupled
with a hysteresis dynamometer for precise load adjustment. A flexible coupling was em-
ployed to minimize mechanical disturbances, and a 32-bit floating-point TMS320F28335
TI-DSP controller was used for precise motor control. Real-time monitoring of fault signa-
tures was accomplished through a 16-bit dual-core spectrum analyzer. The phase current



Energies 2024, 17, 368 12 of 17

measurement was facilitated by Hall-effect sensors, with data acquisition performed at a
high sampling rate of 50 kSamples/second. It is crucial to underscore that the identical
experimental conditions and variables, as described above, were meticulously replicated in
the simulation procedure. This rigorous alignment between the experimental and simula-
tion methodologies not only bolsters the validity of the results but also ensures a foundation
for seamless replication and further research endeavors.

In Figure 10, the FFT of the measured stator phase current of the tested motor is
presented in the frequency domain. It showcases the conditions of the motor with both
a broken magnet and in a healthy state, operating at rated speed and torque. In the
current spectrum, the signatures of the first and second harmonics show the broken magnet
effects precisely.

To evaluate the performance of the proposed pre-trained CNN model on the ex-
perimentally tested broken magnets, a comparative analysis was conducted to assess the
performance of the proposed CNN model on both the experimental and simulation datasets.
Figure 11 illustrates the loss and accuracy curves generated from experimental datasets.

(a)

(b)
(c)

(d)

(e)

Figure 9. Experimental setup of the broken magnet PMSM drive: (a) PMSM; (b) dynamometer;
(c) motor drive; (d) data acquisition card; (e) spectrum analyzer.

A striking alignment between the loss and accuracy curves obtained from the experi-
mental dataset and those previously generated from the simulation dataset, as shown in
Figure 6, was observed. This alignment suggests that the proposed CNN model consis-
tently exhibited strong performance across both datasets. Such consistency underscores the
robustness and reliability of the proposed pre-trained Alexnet CNN model in effectively
classifying and detecting various levels of broken magnets. The aim of designing the
experimental case study was to comprehensively evaluate the performance of the proposed
CNN model in practical conditions. To achieve this, the load and speed conditions used in
our simulation dataset were initially replicated to establish a baseline for comparison. By
doing so, it was ensured that the proposed model was tested under conditions that closely
mirrored the simulation environment, allowing an assessment of its ability to generalize
from simulations to real-world scenarios. Furthermore, the importance of evaluating the
proposed model’s robustness across a wider range of operating conditions was recognized.
To this end, additional load and speed conditions were introduced beyond those used in
the simulation dataset. Remarkably, the proposed model exhibited its best performance
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under these varying load and speed conditions, indicating its versatility and reliability in
real-world applications. The inclusion of these extra conditions in the experimental case
study further enhances the practical relevance of the findings, ensuring that the perfor-
mance assessment of the proposed pre-trained AlexNet CNN model is comprehensive and
representative of the challenges encountered in real-world motor systems. Additionally, a
receiver operating characteristic (ROC) graph was employed to demonstrate the perfor-
mance of the proposed model, as shown in Figure 12. The ROC graph is a powerful tool
that illustrates the trade-off between the true positive rate (sensitivity) and the false positive
rate (1-specificity) at different classification thresholds. In this context, the ROC graph is
used to assess how well the model distinguishes between healthy and broken magnets at
varying load and speed conditions.

0 50 100 150 200 250 300 350 400
Frequency (Hz)

 120

 100

 80

 60

 40

 20

0

FF
T(

   
)(d

B)

Broken Magnet Healthy

i a

fs - 3fs/4

fs + fs/4

fs + 3fs/4

Figure 10. FFT of the phase-a current for healthy and broken magnet cases of the experimentally
tested PMSM.
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Figure 11. Accuracy and loss curve of the proposed pre-trained AlexNet CNN model for experimental
case study under simulation-matching conditions (speed: 3000 rpm and load: 1.28 N·m).
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The experimental dataset, which includes the measured stator phase current of the
motor under different loads and speeds, was used to train the proposed CNN model
with transfer learning techniques. The ROC graph plots the model’s performance for
each load and speed condition, providing a comprehensive evaluation of its diagnostic
capabilities. A higher area under the ROC curve (AUC) indicates that the model can
effectively differentiate between healthy and broken magnets, regardless of the load and
speed variations.

Remarkably, the ROC graph demonstrates that the proposed transferred CNN model
achieves an AUC of 99.95%, signifying perfect discrimination between healthy and broken
magnets across all tested conditions. This indicates that the model exhibited exceptional
accuracy in classifying broken magnets, and its performance remained consistently robust
under different load and speed scenarios, affirming its efficacy in real-world applications
without imposing any significant computational burden.
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Figure 12. Receiver operating characteristic (ROC) curve for experimentally tested broken magnets
in different speed and load ranges.

6. Conclusions

In this study, a new pre-trained Alexnet CNN was investigated for the detection and
classification of broken magnets in PMSMs. The proposed transferred CNN method offers
several advantages over conventional tools, such as numerical models with computational
burden or complex signal processing methods. In this advanced method, the examination of
broken magnets of various shapes and damage percentages was conducted under different
conditions to interpret the subtle variations in the spectrum. By creating a dataset from
STFT graphical images, this proposed method achieved a validation accuracy of 99.23%
and a training accuracy of 99.94% for the detection and classification of broken magnets.
To demonstrate the consistency between the simulation and experimental results, the
simulation scenarios were put into practice on the experimental setup. This automated
identification and classification method was shown to aid in the early detection of broken
magnets, offering the potential for effective early prevention. By defining the input–output
parameters and integrating them as a sub-module within a fully automatic broken magnet
detection system, this approach holds the potential to evolve into a comprehensive and fully
automated system for detecting broken magnets. An intriguing avenue for future research
involves exploring different DL architectures for the classification and identification of
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various broken magnets in different kinds of electrical machines. Additionally, comparing
these designs to determine the optimal network for broken magnet detection is an important
area of study. However, as we look toward the application of the proposed methodology
in larger industrial or real-world schemes, several challenges and considerations come
to the forefront. Firstly, real-world systems operate under a wide range of conditions,
including varying loads, temperatures, and environmental factors. Adapting the proposed
methodology to account for this variability and ensuring its robust performance under
diverse conditions requires ongoing research and development. Furthermore, real-world
data often contain noise, uncertainties, and sensor inaccuracies. Addressing the impact
of these factors on the proposed methodology’s performance is crucial for its practical
deployment. Techniques for noise mitigation and uncertainty handling merit exploration.
To address these challenges, data augmentation to enhance dataset diversity, mechanisms
for online learning and model adaptation to evolving conditions, and the integration of data
from multiple sensors through sensor fusion in real-world industrial settings to validate the
proposed methodology’s performance and identify practical challenges are recommended.
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