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Abstract: Air pollutants such as carbon dioxide and nitrogen oxides emitted by the combustion of
fossil fuels have become the subject of increasing concern. Hydrogen has accordingly emerged as
a promising low-emission alternative energy source. Among the various methods for hydrogen
production, methane pyrolysis, which produces hydrogen without emitting carbon dioxide, has
gained substantial attention. This study evaluated the self-sustainability of a new hydrogen produc-
tion system based on methane pyrolysis, in which a portion of the hydrogen produced is used as
combustion fuel rather than relying on catalysts and electrical heating. Coupled heat transfer and
one-dimensional reaction simulations employing two plug-flow reactors of a counterflow double-
pipe heat exchanger were conducted to investigate the feasibility and efficiency of the proposed
system, as well as the influence of flow conditions on hydrogen production. The results confirmed
system viability, informed the estimation of hydrogen production rates, and provided methane
conversion rate data emphasizing the critical role of low-flow conditions and residence time in system
efficiency. Additionally, the production of carbon constituted a significant aspect of system efficiency.
These findings indicate that the proposed system can produce environmentally friendly hydrogen,
contributing to its potential utilization as a sustainable energy source.

Keywords: hydrogen; methane pyrolysis; hydrogen–air; non-catalytic reaction; double-pipe heat
exchanger

1. Introduction

Fossil fuels, such as coal, oil, and liquified natural gas, constitute 85% of the world’s
primary energy sources and, since 2020, provide 61.3% of the world’s electricity generation.
This figure demonstrates that the world is heavily dependent on fossil fuel combustion [1].
The combustion of fossil fuels emits large quantities of air pollutants, including carbon
dioxide and nitrogen oxides. These emissions have become problematic owing to their
significant negative impacts on the natural environment and human health [1–4]. This has
led to considerable research efforts to eliminate the emission of air pollutants. In particular,
hydrogen, which creates only steam as a byproduct when combusted, has attracted atten-
tion as a new energy source with a lower environmental and public health impact than
fossil fuels, resulting in the development of many hydrogen-related technologies [5,6].

Hydrogen is currently used in large quantities as chemical feedstock for ammonia pro-
duction, hydrogen refining, hydrogen-reduced steelmaking, and rocket fuel. As hydrogen-
related technologies continue to develop, the use of hydrogen will expand to a wider
variety of applications, including heating, power generation, fuel cells, and combustion
fuel, which will require mass production. Hydrogen production methods, such as steam
reforming, biomass gasification, water electrolysis, and pyrolysis, are classified by color
based on environmental impact. For example, hydrogen produced by steam reforming is
classified as blue hydrogen when the emitted carbon dioxide is captured and stored and
as gray hydrogen when the carbon dioxide is not captured [7]. Hydrogen produced by

Energies 2024, 17, 367. https://doi.org/10.3390/en17020367 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17020367
https://doi.org/10.3390/en17020367
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en17020367
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17020367?type=check_update&version=1


Energies 2024, 17, 367 2 of 20

water electrolysis is classified as green hydrogen, and hydrogen produced by pyrolysis is
classified as turquoise hydrogen. Notably, turquoise hydrogen produced by the thermal
decomposition (pyrolysis) of methane (the primary component of natural gas) effectively
excludes other substances. Consequently, solid carbon is produced instead of gaseous
carbon dioxide. This production method is also environmentally friendly because it can em-
ploy existing infrastructure and technology to transport raw materials and obtain hydrogen
from inexpensive fossil resources without emitting carbon dioxide.

Turquoise hydrogen is produced by reacting methane under high-temperature condi-
tions as follows:

CH4 = 2H2 + C(solid) ∆H
◦
25°C = +75 kJ/mol. (1)

Equation (1) indicates that the C-H bond in methane is characterized by a strong
covalent bond, implying that the thermal decomposition reaction of methane demands high
energy for the cleavage of this bond [8]. As a result, many studies have been conducted
using metal catalysts to produce turquoise hydrogen [9–24]. Catalysts supported on
high-surface-area ceramic substrates are generally considered effective owing to factors
such as increased active sites due to the increased surface area and heat and corrosion
resistance due to the ceramic material [16]. However, the significant economic cost of the
associated conditioning process has motivated research on the use of unsupported solid
metal catalysts [15–28]. Additionally, all catalyst-based methods face issues such as catalyst
deactivation [17,25–29] and high costs that can significantly impact the viability of the
hydrogen market.

Hydrogen production through the thermal decomposition of methane based on non-
catalytic gas-phase reactions requires a high activation energy, as indicated in Equation (1).
Therefore, a high reaction temperature is necessary to obtain the energy. However, electric
heating is usually used to produce turquoise hydrogen [30–34], and previous studies
have indicated that the cost of electricity significantly increases the price of the hydrogen
generated (102 USD/kg), making it economically infeasible [35] (generally, assuming no
value of carbon, the cost of selling hydrogen in methane pyrolysis is 3.7 USD/kg, compared
to 2.2 USD/kg in steam methane reforming [36]). Cheon et al. [37] conducted simulations
of a hydrogen production system utilizing a combustion heater and found that, depending
on the selling price of carbon, the system was less costly than other turquoise hydrogen
production methods involving electric heating, catalysts, and steam methane reforming
(blue hydrogen). This implies that combustion-heated methane pyrolysis holds promise for
future hydrogen production.

Therefore, in this study, we proposed and evaluated a system that utilizes the com-
bustion of a portion of the produced hydrogen, rather than electricity, as the heat source
for pyrolysis. This study employed a numerical model of a double-pipe heat exchanger
based on the plug-flow reactor to conduct a series of hydrogen combustion-heated methane
pyrolysis simulations that identified the optimal conditions, thus maximizing the feasibility
of hydrogen production.

2. Numerical Simulation Methods

In this study, we established a simulation environment for a double-pipe heat ex-
changer used in combustion-heated methane pyrolysis. In this section, we introduce the
numerical calculation method. Detailed chemical reaction calculations were performed
using a plug-flow reactor embedded in the Cantera software (ver. 2.6.0). The fluid flowing
through the pipes was modeled, and the methane conversion rate (α) and the amount of
hydrogen used in combustion (β) (Figure 1) were calculated from the methane flow rate at
the inlet and outlet of the outer pipe. During the modeling process, the pipes were divided
into finite cells, each treated as a zero-dimensional ideal gas reactor. Furthermore, coupling
was incorporated into the model to simulate heat transfer between the inner and outer
pipes of the heat exchanger. Section 2.1 introduces the proposed system and simulation
model, Section 2.2 discusses the fundamental equations of the plug-flow reactor model,
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Section 2.3 presents the basic equations for heat transfer, and Section 2.4 introduces the
coupling method for chemical reaction calculations and heat transfer.
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Figure 1. Configuration of combustion-heated methane pyrolysis hydrogen production system.

2.1. Proposed System and Simulation Model

Figure 1 shows a schematic of the proposed hydrogen production system evaluated in
this study. The yellow-framed area in the figure indicates where the reaction calculations
were undertaken considering a counterflow double-pipe heat exchanger. Since the focus of
this study is on the self-sustainability of the system, this study did not consider separation
costs and assumed room temperatures for the methane recovered by the system and the
combustion spent hydrogen.

The computational model of the counterflow double-pipe heat exchanger is depicted in
the lower section of Figure 1. In this study, the inner pipe was supplied with hydrogen fuel
and an oxidizer (air) at an equivalence ratio of φ = 1.0 considering the hydrogen combustion
reaction; the outer pipe was supplied with methane (CH4) as the low-temperature fluid
considering the thermal decomposition reactions of methane.

Figure 2 shows a schematic of the counterflow double-pipe heat exchanger employed
in this study, where T1in and T1out are the inlet and outlet temperatures on the high-
temperature side, respectively, T2in and T2out are the inlet and outlet temperatures on the
low-temperature side, respectively, Cp,1 and Cp,2 are the specific heat on the high- and
low-temperature sides, respectively, Q12 is the heat transferred from the outer pipe to the
inner pipe, and Q23 is the heat loss from the outer pipe to its surroundings. The dimensions
of the modeled methane pyrolysis reactor are user parameters described in the calculation
conditions in Section 3.
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Figure 2. Counterflow double-pipe heat exchanger model.

2.2. Plug-Flow Reactor Model

In this study, we assumed an absence of concentration or temperature gradients in
the radial direction of each pipe. Hence, we modeled the system using a one-dimensional
plug-flow reactor (PFR) from the open-source Cantera library, which was developed for
detailed chemical reaction calculations. This model is suitable when variations only occur
along the flow path from the inlet to the outlet of the reactor. The PFR model in this study
was longitudinally divided into cells with a width of ∆x, as illustrated in Figure 3, and
the simulation cells were integrated to replicate a one-dimensional flow for the reaction
calculations [38]. The properties of each cell were computed using Cantera’s Ideal Gas
Reactor feature. The basic equation for the PFR, substituting the effect of heat transfer for
the quantity of heat Qin (obtained in Section 3) received by the cell through heat exchange
with a high-temperature heat source and converging it with the Newton–Raphson method,
is as follows:

mcv
dT
dt = −p dV

dt + Q + ∑
up

.
mup

(
Hup − ∑

k
UkYk,up

)
− pV

m ∑
down

.
mdown − ∑

k

.
mk,genUk,

(2)

where
.

m is the mass flow rate of species into the seed cell per unit time, Hup is the total
enthalpy of cell, Uk is the total internal energy, V is the volume of the cell, cv is the specific
heat of the mixture, Yk is the mass fraction of each generated species, and T is the cell
temperature. The subscript up is the inflow to the cell, while down is the outflow from
the cell, the subscript k is the chemical species, and gen is the generation in the cell. For
detailed calculations regarding the PFR methodology, please refer to [38]. The solution is
closed in the equation of state; see reference [38] for the equation of state.
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2.3. Theory of the Counterflow Double-Pipe Heat Exchanger

The symbols for the various quantities considered in the heat transfer simulation are
defined in Figure 2.

Q12 = K12(T1 − T2), (3)
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where T1 is the temperature of the fluid in the inner pipe and T2 is the temperature of the
fluid in the outer pipe. The overall heat transfer coefficient K12 between the inner and outer
pipes is expressed as follows:

K12 =
1(

1
K1

)
+ γ1 +

(
δ
k

)
+ γ2 +

(
1

K2

) , (4)

where γ1 and γ2 are the fouling coefficients of the inner and outer tubes, respectively. In
this study, the surface was considered smooth, and the stain coefficient was set to 0. δ
is the pipe thickness, k1 and k2 are the thermal conductivity of the inner and outer pipe,
respectively, and K1 and K2 are the heat transfer coefficients between the inner and outer
fluids, respectively, and the pipe wall. The relationships between the Nusselt number Nu
and K1 and K2 are given by

K1 =
Nu1λ1

D1
, (5)

K2 =
Nu2λ2

D2
, (6)

where λ denotes the thermal conductivity of the fluid, and temperature dependence is also
considered. Because the simulation system used a double-pipe configuration, the effective
pipe diameter Deff2 is calculated as follows:

Deff2 = 4
π
4

(
D2

2 − D1
2
)

π(D2 + D1)
, (7)

where D2 and D1 are the actual outer and inner pipe diameters, respectively.
Owing to the change in temperature and chemical reactions, the physical properties

vary inside the pipe, influencing the heat transfer coefficient. Therefore, Nu was determined
using the Hausen equation under laminar conditions (with a Reynolds number Re < 2300)
as follows:

Nui = 3.66 +
0.068

(
Rei × Pri × Di

L

)
1 + 0.04

(
Rei × Pri × Di

L

) 2
3

, (8)

where Deff2 and D1 represent the diameters of the outer and inner pipes, respectively. The
subscripts eff2 and i (assigned as 1) indicate the outer and inner pipes, respectively. For
turbulent conditions (Re > 2300), the Colburn equation was employed as follows:

Nui = 0.023 × Rei
4
5 × Pri

1
3 , (9)

where Re can be calculated using the fluid density ρ, fluid velocity v, pipe diameter D, and
fluid viscosity µ as follows:

Rei =
ρiviDi

µi
. (10)

Equations (8)–(10) are calculated based on the physical properties of the outer and
inner pipes obtained from the state equations in [38].

The Prandtl number Pr is obtained using the specific heat Cp, viscosity coefficient µ,
and thermal conductivity k as follows:

Pri =
Cpiµi

ki
. (11)

Pr is calculated based on the physical properties of the outer and inner pipes, obtained
from the equation of state. The equation of state and Reynolds number can be found in
reference [38].
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Because the heat transfer between the outer pipe and the external environment must
be considered, this study calculated the heat transfer to the external environment Q23 using
the external heat transfer coefficient K23 and external ambient temperature T3 as follows:

Q23 = K23(T2 − T3), (12)

where K23 is calculated in the same manner as Equation (4).

2.4. Programmatic Association

In Cantera, a reactor (a single cell) was treated as having an inlet and outlet connecting
it in series with other reactors. Thus, the calculations proceeded sequentially from the
upstream to the downstream end of each pipe. However, the direct simulation of heat
transfer between the inner and outer pipes in a counterflow double-pipe configuration is
infeasible in a typical one-dimensional model. Hence, a modified approach was used to
simulate heat transfer in which the inner and outer pipes were simulated as coupled PFRs,
as depicted in Figure 4.
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The heat transfer Q12 between the inner and outer pipes can be calculated as follows:

Q12 = K12(T1 − T2) (13)

where K is the overall heat transfer coefficient, T1 is the inner pipe temperature, and T2 is
the outer pipe temperature.

This approach enables the simulation of heat transfer between the inner and outer
pipes by coupling PFRs that replicate their behaviors.

The two PFRs were solved sequentially from their upstream ends while considering
the heat exchange between the inner and outer pipes as well as the effects of the chemical
reactions. The primary focuses of this calculation are the chemical reactions, fluid flow,
and heat conduction. Considering the small diameter of the pipes in this study, the
effects of diffusion, such as concentration distribution and thermal diffusion (temperature
distribution), were deemed negligible and disregarded. In addition, we assumed the
absence of a radial temperature distribution, allowing us to neglect multidimensional flow
effects. Consequently, calculations could be performed from upstream to downstream
without considering the downstream effects.
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As shown in the lower part of Figure 4, the PFRs modeling the inner and outer
pipes were arranged in series. The simulation proceeded by sequentially solving the
corresponding cells of each pipe and calculating the heat exchange between them. This
computational procedure was implemented using the following iterative method:

1. Calculate the temperature in the PFR on the high-temperature side while maintaining
a constant temperature in the PFR on the low-temperature side.

2. Calculate the temperature in the PFR on the low-temperature side while maintaining
the temperature in the PFR on the high-temperature side at the value obtained in
Step 1, and compute the heat transfer.

3. Recalculate the temperature in the PFR on the high-temperature side while maintain-
ing the temperature in the PFR on the low-temperature side at the value obtained in
Step 2, and compute the heat transfer.

4. Recalculate the temperature in the PFR on the low-temperature side while maintaining
the temperature in the PFR on the high-temperature side at the value obtained in
Step 3, and compute the heat transfer.

5. Repeat Steps 3 and 4 until the convergence criteria presented in Section 2.5 are satisfied.

2.5. Convergence Criteria

For the iterative calculation of heat transfer between coupled PFRs, convergence was
determined using the squared error between the relevant physical quantities at the exit of
the inner pipe in successive iterations as follows:

error =
√

Σ(∅n −∅n−1)
2, (14)

where ∅ is the selected physical quantity being assessed and n is the iteration number.
As this investigation focused on hydrogen concentration, the convergence assessment
employed the temperature T1out and hydrogen mole fraction XH2_2out at the exit of the
inner pipe as ∅ values. Convergence was considered achieved when the error calculated
using Equation (14) fell below the specified threshold—set to 10−3.

3. Numerical Analysis

This section presents the numerical analysis of the proposed combustion-heated
methane pyrolysis system shown in Figure 1. This analysis considered hydrogen combus-
tion and methane pyrolysis, for which calculations were performed using the counterflow
double-pipe heat exchanger introduced in Section 2.4. The conditions under which indepen-
dent system operation was possible were evaluated by comparing the inflow of hydrogen
fuel at the inlet of the inner pipe with the outflow of produced hydrogen at the outlet of
the outer pipe and calculating the amount of remaining hydrogen as the product. These
conditions were defined using the following relationship:

.
VH2_prod. = (2α − β)

.
V1in_CH4 , (15)

where
.

VH2_prod. is the generated hydrogen flow rate,
.

V1in_CH4 is the methane inflow rate,
α is the methane conversion rate, and β is the hydrogen combustion rate; system feasi-
bility was confirmed when

.
VH2_prod. was greater than 0. Methane conversion α is also a

measure of the degree of change in a particular chemical substance induced by a reaction
in a chemical process or reaction and an indicator of the rate of change from methane
(before the reaction) to the product (after the reaction).

.
V1in_CH4 and β are user-set as

calculation conditions.
In this analysis, Shimizu’s detailed reaction model [39] was used for hydrogen com-

bustion, and the Ranzi-based model [40] developed in our previous work [41] was used for
methane pyrolysis.
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3.1. Determining Basic Model Configuration

The thermal decomposition of methane is considered a moderately endothermic
reaction. Non-catalytic methane thermal decomposition reactions generally require high-
temperature conditions given the strength of the C-H bonds [30,35,42–48]. Methane begins
to decompose and produce a small percentage of hydrogen at temperatures at or above ap-
proximately 1000–1100 ◦C [30,35,45–48]. Furthermore, it has been suggested that methane
is almost entirely decomposed at temperatures at or above approximately 1150 ◦C, cor-
responding to a hydrogen yield of approximately 0.85–0.97 [35,42–44,47,48]. Therefore,
we conducted heat transfer and reaction analyses to determine the basic configuration of
the counterflow double-pipe heat exchanger capable of achieving a target temperature of
1200 ◦C considering a high-temperature T2 fluid in the inner pipe and low-temperature
fluid T1 in the outer pipe. The heat exchanger was modeled using the method described in
Section 2 with the geometry shown in Figure 2. The pipe length L was estimated without
considering heat exchange with the surrounding environment. The calculation conditions
for these analyses are listed in Table 1. The subscripts 1 and 2 represent the inner and outer
tubes, respectively, and the subscripts in and out represent the inflow and outflow into and
out of the tubes, respectively.

Table 1. Calculation conditions to determine basic model configuration.

Conditions Parameters Set Value

Geometry conditions
Inner pipe diameter, D1 20 mm
Outer pipe diameter, D2 40 mm

Double-pipe length, L 3 m

Flow rate conditions

Methane flow rate,
.

V2in_CH4
2.55 L/min

Combustion hydrogen flow rate,
.

V1in_H2
1.7 L/min

Equivalence ratio, φ 1.0
Oxidizing agent Air

Pressure, p 101,325 Pa

Figure 5 illustrates the results of these analyses: Figure 5a depicts the counterflow
double-pipe heat exchanger model used in the calculations, with the left end set at 0 m and
the right end set at 3 m, Figure 5b presents the results of hydrogen combustion in the inner
pipe, and Figure 5c shows the thermal decomposition of methane within the outer pipe.
The gas flow directions are indicated by the arrows in the respective diagrams.

This calculation treated the system as an adiabatic container without considering any
heat exchange with the surroundings. However, the combustion hydrogen temperature
results in Figure 5b suggest that heat exchange occurred between the inner and outer pipe.
Additionally, the gradual temperature gradient observed in the regions circled in green in
Figure 5c suggests that an endothermic reaction occurred. Because only methane flowed
through the outer pipe, we can assume that the thermal decomposition reaction of methane
described in Equation (1) began at approximately 1.4 m. The temperature of methane gas
at this location was approximately 1000–1100 ◦C, which is consistent with the experimental
data on gas-phase methane thermal decomposition found in the literature [30,35,45–48].
Furthermore, the target temperature of 1200 ◦C was achieved at 2.5 m from the methane
inlet in the outer pipe. The results indicate that, under the conditions of this study, a length
of approximately 3.0 m is required to achieve the desired target heating temperature of
1200 ◦C and achieve methane pyrolysis without the use of a catalyst.

In terms of system feasibility, Figure 5 shows that under the conditions outlined in
Table 1, the value of α was 0.59, and the value of β was 0.67; thus, according to Equation (15),
.

VH2_prod. = 1.30 L/min, satisfying the system feasibility condition of
.

VH2_prod. > 0. The
purpose of this study was to investigate the technical feasibility of a hydrogen production
process and to determine optimal flow conditions. Therefore, the basic configuration
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evaluated in this study employed a 3.0 m long heat exchanger. The methane inflow
conditions (

.
V2in_CH4 =2.55 L/min) in this section also identified the upper and lower

process limits of β as 1.6 and 0.4, respectively, at the combustion flow rate; these details are
discussed in Section 3.2.
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in the inner pipe (red: temperature; gray: H2O mole fraction); (c) gas flow characteristics in the outer
pipe (blue: temperature; orange: CH4 mole fraction).

3.2. System Investigations

This section describes the calculations conducted to investigate the characteristics of
the system under various flow conditions. These calculations were achieved by varying
the hydrogen flow rate for combustion

.
V1in_H2 in the inner pipe and the methane flow rate

.
V2in_CH4 in the outer pipe utilizing the basic model configuration obtained in Section 3.1.
The calculation conditions employed during this analysis are listed in Table 2.

Table 2. Calculation conditions to conduct system investigations.

Conditions Parameters Set Value

Geometry conditions
Inner pipe diameter, D1 20 mm
Outer pipe diameter, D2 40 mm

Double-pipe length, L 3.0 m

Flow rate conditions

Methane flow rate,
.

V2in_CH4
1.5–5.0 L/min

Combustion hydrogen flow rate,
.

V1in_H2
1.0–10.0 L/min

Equivalence ratio, φ 1.0
Oxidizing agent Air

Pressure, p 101,325 Pa
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3.2.1. General System Performance

Figure 6 depicts the general system performance according to the hydrogen flow
rate

.
V1in_H2 and methane flow rate

.
V2in_CH4 . The conditions under which the generated

hydrogen flow rate satisfied the system feasibility condition (
.

VH2_prod. > 0), indicating
system independence, are enclosed by the red lines. These results indicate the combustion
conditions under which the system is feasible and inform the estimation of the conditions
required for maximum hydrogen production within the considered ranges. The hydrogen
production levels depicted in Figure 6 increase with the methane flow rate until the maxi-
mum hydrogen production is achieved at a methane flow rate of 10 L/min, after which
hydrogen production begins to decrease. Thus, the optimal conditions were achieved
when both the methane and combustion hydrogen flow rates were 10 L/min, resulting in a
hydrogen production rate of 2.7 L/min (calculated using Equation (15)).
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Figure 6. Produced hydrogen flow rate (
.

VH2_prod) according to methane and combustion hydrogen

flow rates (
.

V2out_CH4 ,
.

V1in_H2 ).

A detailed analysis of the changes in Figure 6 is shown in Figure 7, which presents
the outer pipe temperature T, velocity v, residence time τ, and mole fraction of methane
XCH4 obtained when varying the methane flow rate

.
V2in_CH4 (5, 10, and 25 L/min) while

maintaining a constant combustion hydrogen flow rate
.

V1in_H2 of 10 L/min. The residence
time τ was calculated as

τ =
π
4 × (D2 − D1)

2 × L
.

V2in_CH4

, (16)

where D1 and D2 are the inner and outer diameters, respectively. L is the length of the
pipe.

.
V2in_CH4 is the flow rate of the gas flowing into the outer tube, that is, the flow rate

of methane of the raw material in hydrogen production. Because the residence time τ is
inversely proportional to the flow rate, a decrease in the residence time is considered to have
limited methane gas heating, hindering the reaction. This is consistent with other findings
in the literature [49–52], which reported that an increase in residence time τ consistently
led to higher hydrogen yields across all temperature conditions. Therefore, under the
conditions applied in this study, which were primarily related to the model geometry, a
minimum residence time of at least 3.0 s was required.
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Figure 7. Characteristic results in the inner part of the outer pipe under methane flow rates (
.

V2in_CH4 )
of 5, 10, and 25 L/min.

To the right of the line in Figure 6 representing the condition for maximum hydrogen
production (a methane flow rate of 10 L/min), increasing the methane flow rate clearly led
to an increase in hydrogen production; to the left of the line, the reduction in residence time
had a significant effect on hydrogen production. In the region above the line representing
the condition for maximum hydrogen production (a hydrogen flow rate of 10 L/min),
an increase in the recovered hydrogen β consumed by combustion decreased the overall
hydrogen yield from the system; in the region below the line, a decrease in recovered
hydrogen β consumed by combustion led to a decrease in thermal energy, preventing
the attainment of the 1200 ◦C target heating temperature and resulting in a less favorable
reaction with reduced hydrogen production.

Figure 8 shows the simulated methane conversion rate α, indicating that under the
conditions yielding the maximum hydrogen production rate shown in Figure 6, the methane
conversion rate α was approximately 60%. Thus, the proposed system must employ a
separator to separate methane and hydrogen, as a high concentration of hydrogen is
necessary to reduce energy costs in practical applications. Furthermore, the combustion
of 1 mol of methane results in the emission of 1 mol of carbon dioxide; therefore, an
improvement in the methane conversion rate α is expected to lead to a proportional
reduction in carbon dioxide emissions. Additionally, as the hydrogen used in fuel cells must
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have a minimum purity of 99.97%, the conditions that yield the highest concentrations of
hydrogen must be investigated. Figure 6 clearly indicates that high hydrogen concentrations
were achieved over a wide range toward the lower end of the considered methane flow rate
range. This likely occurred owing to the adequate heating of methane gas with increased
residence time τ, which promoted the reaction. Indeed, the top row of Figure 7 shows
that an increase in the flow rate

.
V2in_CH4 led to a decrease in the residence time τ, which

is confirmed by Equation (16). Therefore, a decrease in residence time τ significantly
contributes to a decrease in the methane conversion rate α. Focusing on the middle and
bottom rows in Figure 7, the velocity v increased linearly before changing to increase
gradually in a quadratic manner. The point of transition between these behaviors aligns
with the initiation of methane thermal decomposition, as indicated by the temperature and
CH4 mole fraction results. The linear increase in the flow rate reflects the characteristics
of thermal expansion owing to methane heating through heat exchange, whereas the
quadratic increase is believed to be influenced by the increase in the number of moles
owing to methane thermal decomposition reactions. This suggests that methane thermal
decomposition reactions occur not only from the results of the methane mole fraction but
also from the changes in velocity v.
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Figure 8. Methane conversion rate (α) according to methane and combustion hydrogen flow rates
(

.
V2out_CH4 ,

.
V1in_H2 ).

Figure 8 also indicates that a hydrogen concentration greater than 80% was widely
achieved with a higher combustion hydrogen flow rate

.
V1in_H2 . Figure 9 accordingly

presents the outer pipe temperature T, velocity v, residence time τ, and mole fraction of
methane X2out_CH4 obtained when varying the combustion hydrogen flow rate

.
V1in_H2

(4 and 7 L/min) and maintaining a constant methane flow rate
.

V2in_CH4 . Notably, the
temperatures T reported in the middle row of Figure 9 indicate that a higher combustion
hydrogen flow rate corresponded to a more rapid increase in temperature along the pipe.
This was likely a result of the higher hydrogen combustion heat input from the inner
pipe, which caused the temperature to increase and led to a higher degree of methane
decomposition. This increased the number of moles in the outer pipe under the same
methane flow rate

.
V2in_CH4 , consequently increasing the velocity v of the outer pipe,

resulting in varying residence times τ.
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Figure 9. Characteristic results of the inner part of the outer pipe under combustion hydrogen flow
rates (

.
V1in_H2 ) of 4 and 7 L/min.

These observations suggest that residence time τ plays a critical role in the methane con-
version rate

.
V2in_CH4 when varying the methane flow rate and that conditions with increased

heat input from the inner pipe can enhance the methane conversion rate α. Additionally, the
findings presented in Figures 6 and 8 offer valuable insights when estimating the suitable
conditions for various applications of the proposed hydrogen generation system.
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3.2.2. Outer Pipe Temperature

Next, we evaluated the ability of the proposed system to achieve the target temperature
of 1200 ◦C in the outer pipe. The results are presented in Figure 10 in terms of the distance
from the outer pipe inlet, with shorter distances indicating a wider region above 1200 ◦C.
The figure indicates that a lower methane conversion rate is a result of the limited region
in which the target heating temperature is exceeded, and therefore, more of the pipe is
less conducive for reactions. This suggests that hydrogen production can be increased by
extending the residence time, expanding the distance over which heat exchange occurs,
and improving the heat exchange efficiency through changes in the system design.
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Figure 10. Locations (x) at which 1200 ◦C is achieved in the outer pipe.

Figure 11 shows the temperature distributions obtained under combustion hydrogen
flow rates

.
V1in_H2 of 2, 10, and 20 L/min, while the methane flow rate

.
V2in_CH4 was held

constant. The region enclosed by the green circle exhibits a gradual temperature gradient,
suggesting the occurrence of endothermic reactions such as methane pyrolysis; the region
enclosed by the red circle displays a steeper temperature gradient, indicating that these
reactions were completed. Under the highest combustion hydrogen flow rate, much of the
pipe length was wasted owing to the early completion of the reactions, whereas under the
other two flow rates, the target temperature was not achieved, indicating insufficient heat
exchange and inadequate pipe length. Thus, these results confirm that optimal conditions
exist for each parameter.
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Figure 11. Temperature (T) distributions in the outer pipe under combustion hydrogen flow rates
(

.
V1in_H2 ) of 2, 10, and 20 L/min.

3.2.3. System Efficiency

The energy efficiency of hydrogen production in the system ηH2 was determined
as follows:

ηH2 =

.
mp−H2 ∆qH2
.

mr−CH4 ∆qCH4

, (17)

where
.

mp−H2 is the mass flow rate of hydrogen at the outlet,
.

mr−CH4 is the mass flow rate
of methane at the inlet, ∆qH2 is the higher heating value of hydrogen, and ∆qCH4 is the
higher heating value of methane.

Figure 12 illustrates the system efficiency for the area enclosed by the red frame
in Figure 1. The maximum efficiency achieved under the conditions considered in this
study was 30%. Furthermore, the system exhibited higher efficiency at lower flow rates
for both methane and combustion hydrogen owing to the associated elevated methane
conversion rate, as illustrated in Figure 8, leading to the production of a larger quantity
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of hydrogen. Finally, the reduced consumption of combustion hydrogen led to a higher
hydrogen content in the product. Consequently, the system efficiency is expected to be
higher under low-flow conditions.
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Figure 12. System efficiency map (product: hydrogen).

Similar to Equation (17), the energy efficiency of hydrogen and carbon production
when considering both hydrogen and carbon as products was determined as follows:

ηH2,C =

.
mp−H2 ∆qH2 +

.
mp−C∆qC

.
mr−CH4 ∆qCH4

, (18)

where
.

mp−C is the mass flow rate of carbon at the outlet and ∆qC is the higher heating
value of carbon.

Figure 13 shows the system efficiency when considering the co-production of hydrogen
and carbon, indicating similar results to the methane conversion rate map in Figure 8. This
correlation can be attributed to the fact that carbon, unlike hydrogen, is not reclaimed
within the system, leading to outcomes that directly correspond to the methane conversion
rate. This implies that carbon exerts a more significant influence on the system efficiency
than hydrogen when both are considered products. Moreover, when carbon is considered
a product, the maximum system efficiency approaches approximately 55%, indicating
the potential for substantial enhancement. Because the sale of generated carbon for use
in various commercial applications could help to reduce the market price of hydrogen,
further investigation of the carbon produced from methane pyrolysis and carbon capture
technologies is recommended.

The hydrogen production and methane conversion rates presented in Section 3.2.1
and the system efficiency results discussed in this section suggest that investigations
should focus on the lower range of methane flow rates to capitalize on the corresponding
relatively high methane conversion rates and determine the conditions that optimize
hydrogen production.
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4. Conclusions

The production of hydrogen by methane pyrolysis has been extensively investigated
through both experiments and numerical analyses. However, many previously proposed
methane pyrolysis methods involve the use of catalysts or electrical heating, which often
incur significant financial costs. Therefore, a novel methane pyrolysis hydrogen production
system in which a portion of the generated hydrogen is used for combustion to heat the
methane was developed. In addition to detailed chemical reaction calculations, we created
a computational environment for the proposed counterflow double-pipe heat exchanger
utilizing a coupled PFR model to numerically simulate heat transfer between the inner and
outer pipes. The following conclusions were drawn from the results of this study:

• An investigation of the fundamental geometry of a counterflow double-pipe heat
exchanger was conducted using the PFR-based model. The results indicate that under
the conditions of this study, a length of approximately 3.0 m is required to achieve the
desired target heating temperature of 1200 ◦C and achieve methane pyrolysis without
the use of a catalyst. Furthermore, this configuration met the feasibility criteria for the
proposed system under the considered conditions.

• The base configuration applied in this study was applied to explore the system vi-
ability by varying the methane and combustion hydrogen flow rates to determine
the conditions for achieving the maximum produced hydrogen flow rate. The results
indicate that given the considered study configuration, a minimum methane residence
time of at least 3.0 s is required.

• The methane conversion rate map revealed a methane conversion rate of approxi-
mately 60% at the point where hydrogen production was maximized. The methane
conversion rate increased as the methane flow rate decreased and the combustion
hydrogen flow rate increased. Thus, the residence time and conditions that allow
greater heat transfer from the inner pipe to the outer pipe were identified as significant
contributors to higher methane conversion rates.

• Methane conversion and hydrogen production maps were obtained to provide an
index for estimating the system conditions according to the desired hydrogen genera-
tion application.
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• The flow conditions investigated in this study confirmed that the optimal conditions
were a methane flow rate of 10 L/min and a combustion hydrogen flow rate of
10 L/min (β = 1.0), at which the methane conversion was α = 0.64 and the product
hydrogen flow rate was 2.7 L/min.

• By focusing on the temperature of the methane gas in the outer pipe, an optimal
configuration was observed for each set of conditions, suggesting that increasing
the residence time, enhancing the heat exchange distance, and improving the heat
exchange efficiency through modifications in the pipe geometry, such as increasing the
inner tube diameter and attaching fins to the inner tube to enlarge the heat transfer
surface area, can improve hydrogen production.

• An investigation of system efficiency produced a map indicating higher efficiency at
lower methane flow rates. Furthermore, system efficiency improved when carbon was
considered as a product, suggesting that carbon also has a significant impact on system
efficiency and indicating the necessity of further investigations into the production of
carbon by methane pyrolysis.

This study successfully demonstrated the feasibility of a novel combustion-heated
methane pyrolysis hydrogen production system in which a portion of the generated hy-
drogen is used to heat the methane. This system provides an environmentally friendly
and cost-effective approach to hydrogen production. Our findings indicate the potential
for increased hydrogen production at reduced cost owing to the ability to utilize gener-
ated carbon, suggesting that the proposed system provides an effective method for future
hydrogen production.
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