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Abstract: This study presents a novel approach for predicting hierarchical short time series. In this
article, our objective was to formulate long-term forecasts for household natural gas consumption by
considering the hierarchical structure of territorial units within a country’s administrative divisions.
For this purpose, we utilized natural gas consumption data from Poland. The length of the time
series was an important determinant of the data set. We contrast global techniques, which employ a
uniform method across all time series, with local methods that fit a distinct method for each time
series. Furthermore, we compare the conventional statistical approach with a machine learning
(ML) approach. Based on our analyses, we devised forecasting methods for short time series that
exhibit exceptional performance. We have demonstrated that global models provide better forecasts
than local models. Among ML models, neural networks yielded the best results, with the MLP
network achieving comparable performance to the LSTM network while requiring significantly less
computational time.

Keywords: hierarchical forecasting; short time series; local approach; global approach; household
gas consumption

1. Introduction

The energy mix of a country determines the sustainability of its energy sources,
which, in turn, significantly affects the environmental, economic, and social facets of energy
production and consumption. This mix is largely shaped by a nation’s geographical location
and historical context. In the case of Poland, its energy infrastructure has traditionally been
coal-centric, making its energy sector the sixth largest in Europe. Roughly, 49% of Poland’s
energy originates from hard coal, followed by 26% from lignite, and about 8% from the
combustion of natural gas. When contrasted with the energy mix of the European Union,
distinct differences emerge. In 2019, renewable energy sources comprised 35%, nuclear
energy accounted for 25.5%, and natural gas stood at 21.7%. The smallest proportion, 14.7%,
was attributed to energy produced through coal combustion [1].

Although Poland’s energy mix has remained largely unchanged for the past three
decades, the next thirty years might see a significant shift due to evolving EU policies. Par-
ticularly noteworthy in this context is the role of natural gas, which is being viewed as a tran-
sitional fuel in the journey towards a greener Polish energy sector. Consequently, there is a
growing need to develop more sophisticated tools for analyzing gas consumption patterns.

In Poland, the industrial sector consumes 65% of the natural gas, with the remaining
35% linked to household (domestic) consumption. This consumption meets the needs of
over 7.2 million private consumers, who represent more than 93% of the gas recipients
in Poland [1]. The annual natural gas consumption trends in Poland are illustrated in
Figure 1. In this article, we focus on building methods for forecasting gas consumption in
the household sector (individual consumers and small industry).
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Forecasting long-term household natural gas consumption is intrinsically more chal-
lenging than its industrial counterpart. This complexity stems from various factors. First,
the ongoing expansion of the gas network infrastructure influences consumption patterns.
As of 2017, gas was accessible in only 58% of Polish municipalities. However, the strate-
gic plan of the Polish Gas Company, the primary distribution operator in the country,
aims to extend it. The goal is to bring gas to an additional 300 municipalities, raising the
penetration rate to about 70%, thereby covering 90% of Poland’s populace [2]. Second,
population migrations between regions cause shifts in local gas consumption, even if the
overall national consumption remains unchanged. The next limitation lies in the length and
level of aggregation of time series provided by the Polish Statistical Office [3]. A potential
solution is the decomposition of this time series into lower administrative levels, but this
approach comes with its own challenges. Specifically, such data are often noisy, making it
scientifically challenging to develop an effective method for forecasting hierarchical, short
time series. The political transformations in Central Europe were not just systemic changes
but also marked a shift in data collection methodologies. Consequently, many time series
from the Central Statistical Office are short. Moreover, climate change added complexity by
causing temperature fluctuations that influence gas consumption. Within homes, natural
gas is mainly used for heating and cooking.
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Figure 1. Natural gas consumption in Poland, own study based on [3,4].

The above-mentioned reasons highlight two main challenges faced by the authors of
the article. The first is building a method for long-term forecasting of gas consumption in
the household sector within the territorial divisions of Poland. The second challenge relates
to the data set structure, particularly the hierarchy of short time series. This article aims to
find a method that can effectively forecast this kind of data. There are two main approaches
to forecasting hierarchical time series [5,6]. The first is the local (series-by-series) approach,
which handles each time series separately. However, in our data set, this approach can
face issues such as limited number of observations and the risk of overfitting. The second
approach, known as the global or cross-learning approach, assumes that all time series
in the data set come from the same stochastic process. This can lead to better forecasting
accuracy because of the larger sample size. Even though the global approach might seem
limiting, recent studies show it works well even with heterogeneous data sets (time series
comes from different objects). A challenge with using the global approach for such data
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sets is the wide variation in time series, which arises from different consumption patterns
of Polish territorial units.

Recently, there has been a debate in the scientific literature about the best forecast-
ing methods for hierarchical time series—whether traditional statistical methods such as
ARIMA and ETS applied to local models or machine learning methods such as LSTM
applied to global model are more effective. In [7], the authors found that for univariate
hierarchical time series forecasting, statistical methods are often more accurate than ma-
chine learning methods. However, ref. [8] showed that this is mostly true for shorter time
series. As the time series becomes longer, or when more series are considered, machine
learning methods start performing better. In [9], similar research for hierarchical time series
found that machine learning methods outperformed others, both in the series-by-series and
cross-series approaches. Unfortunately, individual time series in these data sets were quite
lengthy (over 100 observations), and machine learning generally excels in such situations.
There are no studies in the literature on the hierarchy of short time series.

To develop a forecasting method for such a data set, the authors needed to address
four research questions.

1. A common approach to forecasting the above-mentioned data set involves using
classical statistical methods series-by-series. The first hypothesis sought to answer the
question: Can classical statistical forecasting methods, when applied locally, ensure
accurate predictions for multiple hierarchy levels and short time series?

2. Methods based on machine learning, which typically struggle with short time series,
might surpass the results of classical statistical methods when using a global model.
The next hypothesis aimed to verify whether employing the global approach would
enhance forecast accuracy in such data sets;

3. Subsequently, the authors tested if using the global approach, along with explanatory
variables, could improve the model’s performance;

4. The next hypothesis assessed whether incorporating multiple explanatory variables
would notably enhance forecast accuracy compared to the time series predictions alone:

5. Lastly, the study evaluated if the LSTM network might outperform other forecasting
techniques for short time series.

The rest of the paper is organized as follows. In Section 2, a general overview of the
current state-of-art of natural gas forecasting research and hierarchical time series forecast-
ing methodology is presented. In Section 3, data used in the study, our methodology and
forecasting procedure are presented. Results of research, comparison of model’s perfor-
mance and discussion are presented in Section 4. The article ends with short conclusions
and directions for future research.

2. Related Work
2.1. Natural Gas Forecasting Research

While long-term natural gas demand forecasting is a widely recognized research area,
it has yet to yield fully satisfactory solutions [10]. This is due to a wide range of factors
influencing demand in the long horizon and differences in gas consumption patterns
between countries. The most well-known model for predicting the production of fossil
fuels is the Hubbert model [11]. According to his theory, the production of any fossil fuel
first increases due to the discovery of new resources and technology improvements, then
reaches its peak and declines. The Hubbert model is regarded as a foundational work
and one of the first studies in natural gas forecasting. Despite its simplicity, it worked
reasonably well in long-term forecasts. It was popular from 1950 to 1970. Since then, there
has been significant development in gas consumption forecasting methods, including the
increasing use of machine learning methods in forecasting in recent years.

Wang et al. [12] utilized the multicycle Hubbert model for forecasting gas production
in China, whereas the Grey model was used for forecasting consumption. Grey theory is
exceptionally useful for building forecasts with small amounts of incomplete data, which is
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a typical situation in long-term forecasting. Models based on Grey theory have been popular
in the last decade [13–15] and they have given good results in short-time forecasting.

Long-term forecasting is the subject of only about 20% of studies [10,16,17]. Usually,
long-term forecasts are constructed on the basis of dependent macroeconomic variables
(such as GDP, population, unemployment rate, etc.) to estimate a nation’s overall con-
sumption, neglecting considerations of regional disparities and the diverse categories
of gas consumers (private-industrial). Illustrative instances of such detailed models in-
clude Forouzanfar et al.’s forecasts for Iran [18], utilizing logistic regression and genetic
algorithms; Gil and Deferrari’s predictions for Argentina [19], employing logistic models,
computer simulations, and optimization models; and Khan’s analysis of Pakistan [20],
involving regression and elasticity coefficients.

Long-term forecasting models should additionally account for the examination of
challenging-to-quantify elements, such as political regulations or shifts in private consump-
tion patterns. To address this, efforts are underway to approximate consumer behavior by
leveraging textual data streams on the web and employing sentiment analysis [18].

Long-term forecasting methodology of natural gas consumption is frequently created
for individual countries. Some important studies for particular countries include: [19]
(decomposition method), [20] (neural networks, Belgium), [21] (Spain, stochastic diffusion
models), [22] (Poland, logistic model), [23] (Turkey, machine learning, neural networks), [13]
(Turkey, Gray models), [24] (Argentina, aggregation of short- and long-run models), [15]
(China, grey model). However, these models are usually country-specific, which makes
it difficult to use for other countries. The necessity for such specificity arises from the
differing economic, social, and geographical landscapes, as well as unique data availability,
regulatory environments, and energy infrastructures in each country.

Short-term natural gas consumption is an important area of research in forecasting.
Short-term consumption forecasts traditionally use time series forecasting models such as
ETS family [25] or ARIMA/SARIMA [26]. The use of BATS/TBATS models is a relatively
new approach [27,28]. Traditional time series models are often replaced by artificial neural
networks, including deep neural networks and long short-term memory (LSTM) [29–31].
Long-term forecasting is the research area in only about 20% of studies [10,16,17,32]. Usu-
ally, long-term forecasts are constructed using models with dependent macroeconomic
variables (GDP, population, unemployment rate, etc.), without distinguishing between
spatial and types of gas consumption (private–industrial), which is the core of our analysis
in this paper. Exceptions are the forecasts for Iran [33] (logistic regression and genetic
algorithms) and Argentina [24] (logistic models, computer simulation and optimization
models), [34] (regression, elasticity coefficients). Medium-term forecasting of natural gas
incorporates mainly economic and temperature variables [35].

Traditionally, econometric and statistical models have been frequently used in forecasting.
The most popular group of models are econometric models (e.g., [36,37]) and statistical
models [19,38]. Recent research focused attention on artificial intelligence methods [20,39–41].
One of the latest studies [10] compares the accuracy of more than 400 models of energy
demand forecasting. The authors of this study found that statistical methods work better
in short- and medium-term models, while in the long-term models, methods based on
computational intelligence are more appropriate. One of the reasons is that computational
intelligence methods are more advantageous for poorly cleaned data. Typical data sets
used in gas demand forecasts are gas consumption profiles, macro- and microeconomic
data (e.g., households) and climatic data [42].

Forecasting natural gas consumption in households (or domestic, residential) has
been the subject of very few scientific studies. Bartels and others [42] used gas con-
sumption profiles of households and their economic characteristics, macro- and microeco-
nomic data including regional differences in natural gas consumption and climatic data.
Sakas et al. [43] proposed a methodology for modeling energy consumption, including
natural gas, in the residential sector in the medium term, taking into account economic,
weather and demographic data. Hribar et al. [44] used various machine learning models to
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forecast short-term natural gas consumption in the city of Ljubljana. The best results were
obtained with linear regression and a recurrent neural network that incorporated past and
predicted ambient temperatures as regressors. Lu et al. [45] utilized a model based on a
fruit fly optimization algorithm and support vector machine to forecast short-term load for
urban natural gas for Kunming City. A comprehensive and up-to-date literature review on
energy demand modeling can be found in the work of Verwiebe et al. [46].

Poland experienced a decade of strong economic growth, leading to a significant
increase in energy demand, including that of natural gas, which is a crucial element in
Poland’s energy sector. Forecasting natural gas consumption in Poland is not a particularly
popular research focus. Researchers concentrate on models with a local territorial scope,
as highlighted in [47,48]. Cieślik and others [49] studied the impact of infrastructural
development (electrical network, water supply, sewage system) on natural gas consumption
in Polish counties. Szoplik [50] used neural networks to construct medium-term forecasts
for households located in a single urban area. Research akin to that proposed in this article
includes [51], which employs a combination of ARIMA and LSTM models to construct
forecasts for the entire country. In this study, alongside historical natural gas consumption in
Poland, factors such as global prices of primary fuels are also utilized. In contrast, our model
focuses on hierarchical forecasting of territorial units (especially county (poviat) level).

A common practice is forecasting the demand for gas for business purposes for distri-
bution companies. An example of such forecasts are studies on gas demand for Eastern and
Southeastern Australia [52]. Similar forecasts are made for Polska Spółka Gazownictwa—
the main Polish distribution company. Commercial forecasts consider detailed data on
existing customers and their past gas consumption. The challenge remains in accounting
for future changes in the number of recipients and their gas consumption characteristics.

2.2. Forecasting of Short Time Series

A time series is typically represented as a sequence of observations, given by
Y =

{
yt, . . . , yt, . . . , yT

}
. When forecasting a time series, the goal is to estimate the fu-

ture values yT+1, . . . , yT+h, where h represents the forecasting horizon. The forecast is
typically denoted as ŷT+h. There are two primary groups of forecasting. The univariate
method predicts future observations of a time series based solely on its past data. In
contrast, multivariate methods expand on univariate techniques by including additional
time series as explanatory variables [53].

In the literature [8], univariate methods are generally classified into three main groups.
The first group comprises simple forecasting methods that are often used as benchmarks.
The most common example is the naive method, which predicts future values of the time
series based on the most recent observation:

ŷT+h = yT . (1)

Other methods in this group are mean, seasonal naive, or drift.
Statistical groups encompass classical techniques such as the well-known ARIMA and

ETS families of methods. The ARIMA model, which stands for autoregressive integrated
moving average, represents a univariate time series using both autoregressive AR and
moving average MA components. The AR(p) component predicts future observations as a
linear combination of past p observations using the equation:

ŷT+h = c +
p−1

∑
i=0

ϕiyt−i + εt, (2)

where c is constant, ϕi represents the model’s parameters and εt is white noise.
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The MA(q) component, on the other hand, models the time series using past errors. It
can be represented as:

ŷT+h = µ + εt +
q−1

∑
i=0

θiεt−i, (3)

where µ denotes the mean of the observation and θi models’ parameters.
Selecting parameters manually for ARIMA models can be challenging, particularly

with forecasting numerous time series simultaneously. However, the auto-ARIMA method
provides a solution by automatically testing multiple parameter combinations to identify
the model with the lowest AIC (Akaike Information Criterion).

The ETS family is a smoothing technique that uses weighted averages of past values,
with the weights decreasing exponentially for older data points. Each component of
ETS: Error, Trends and Seasonality is modeled by one recursive equation. The auto-ETS
procedure, analogous to auto-ARIMA, automates the process of identifying the best-fitting
ETS model for a given time series [54].

An important aspect of statistical forecasting is stationarity, which refers to a time
series whose statistical properties, such as mean and variance, remain constant over time.
Many real-world processes lack stationary structures. While models such as ETS do not
require constant stationarity, others, such as ARIMA, use differencing transformations to
achieve it.

The third group is Machine Learning (ML) models. In this approach, time series
forecasting corresponds to the task of autoregressive modeling AR(p). This necessitates
transforming the time series into a data set format. Let (xi, yi) constitute a set of observa-
tions referred to as the training set. Transformation between time series and training set is
modeled by equation:

xi = yi−1, . . . ., yi−p, yi ∈ Y. (4)

The xi is called feature vector.
Machine learning (ML) in time series forecasting learns relationships between input

features and an output variable. In general, the assumptions of ML models lead to multiple
regression problems.

Regardless of the chosen approach, time series forecasting is strongly influenced by
the number of available observations. Gas consumption data for households in Poland
constitute a short time series due to the limited historical data available. Forecasting with
this kind of time series can be tricky. As noted by Hyndman [9], two rules should be met
when utilizing a short time series for forecasting: Firstly, the number of parameters in the
model should be fewer than the number of observations; secondly, forecast intervals should
be limited. The literature on short time series forecasting is limited. The comprehensive
article “Forecasting: Theory and Practice” [55] does not mention short time series. The
literature suggests [56,57] that uncomplicated models such as ARIMA, ETS, or regression
perform exceptionally well with small time series.

Using ML to forecast short time series seems counterintuitive, as machine learning
methods demonstrate a significant improvement in predictive performance as the sample
size increases. Cerqueira et al. [8] counter those results that favored traditional statistical
methods, revealing that such conclusions were only valid under extremely small sample
sizes. In scenarios with a more substantial amount of data, machine learning methods
outperform their statistical counterparts. This advantage is attributed to the inherent nature
of machine learning algorithms, which are designed to learn and adapt from larger data sets,
thereby enhancing their forecasting accuracy and reliability. Machine learning’s capacity to
handle complex, nonlinear relationships within data further strengthens its suitability for
diverse and intricate forecasting scenarios.

Machine learning (ML) methods can be particularly advantageous for short time
series forecasting in certain conditions. For short series with intricate patterns or nonlinear
relationships, ML algorithms can outperform traditional statistical methods due to their
ability to capture complex dependencies and interactions within the data. Furthermore,
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ML methods are beneficial in scenarios where short time series data are high-dimensional
or when integrating multiple data sources, as ML algorithms can efficiently process and
analyze such complex data sets. However, it is important to note that the success of ML
in short time series forecasting also depends on the quality and nature of the data, and in
some cases, traditional statistical methods might still be more appropriate.

2.3. Hierarchical Forecasting

Time series often follow a structured system called hierarchical time series (HTS),
where each unique time series is arranged into a hierarchy based on dimensions such as
geographical territory or product categories (Figure 2). Many studies, such as [58–61],
discuss forecasting HTS. In HTS, level 0 consists of a completely aggregated main time
series. Level 1 to k − 2 breaks down this main series by features. The k − 1 level contains a
disaggregated time series. The hierarchy vector of time series can be described as follows:

yhts
t =


y0

t
y1

t
...

yk−1
t

, (5)

where y0
t is an observation of the highest level, and yk−1

t vector of observations at the
bottom level. The summing matrix S defines the structure of the hierarchy:

yhts
t = Syk−1

t . (6)
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In this context, the summing matrix S is a mathematical construct that transforms
disaggregated time series data at the bottom level yk−1

t into a coherent hierarchical structure
yhts

t , ensuring accurate aggregation and alignment across different levels of the hierarchy.
When forecasting with HTS, it is important to obtains consistent results at every level.

Firstly, each series is predicted on its own, creating base forecasts. Then, these forecasts
are reconciled to be coherent [60]. Traditionally, there are four strategies for reconciling
forecasts: top-down, bottom-up, middle-out and min-T. The top-down strategy begins
by forecasting at the highest level of the hierarchy and then breaks down the forecasts
for lower-level series using weighting systems. This disaggregation is done using the
proportion vector p =

(
p1, . . . , pj, . . . , pmk−1

)T , which represents the contribution of each
time series. Typical ways to calculate p are averages of historical proportions, averages of
the historical values or proportions of forecasts. A detailed explanation of disaggregation
methods is included in Appendix A.
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Let
∼
yt is a vector of reconciled, forecasted observations. The top-down approach can

be expressed as
∼
yh = pSy0

h. (7)

Similarly, the bottom-up approach produces forecasts at the bottom level k − 1 and
then aggregates them to upper levels:

∼
yh = Sŷk−1

h . (8)

Another approach, known as the middle-out strategy, combines elements of both the
top-down and bottom-up strategies. It estimates models from an intermediary stage of the
hierarchy where predictions are most reliable. Forecasts at higher levels than this are synthe-
sized using a bottom-up approach, while forecasts for observations below this midpoint are
calculated using a top-down approach. One of the most promising reconciliation methods
is the min-T [62]. In this approach, the total joint variance of all obtained consistent fore-
casts is minimized. The approach described here is usually called local. Another modern
ML-based approach is the work of Pang et al. [63], who adopted k-means clustering along
with geographical hierarchy. Mancuso et al. [64] presented the idea of using a deep neural
network to directly produce accurate and reconciled forecasts. They extracted information
about the structure of the hierarchy straight through a neural network.

3. Materials and Methods
3.1. Data Set Description

The data set details the consumption of natural gas by households in Poland, cate-
gorized by territorial units. The data set contained data at 4 levels of hierarchy: country,
provinces (voivodships), counties (poviats), and municipalities (communes). Natural gas
consumption from several or a dozen municipalities is aggregated into a county of which
they are a part. Subsequently, the gas consumption of counties (ranging from 12 to 42, de-
pending on the province) is summed up to determine the gas consumption of the province.
In turn, the gas consumption of all 16 provinces is aggregated to determine the gas con-
sumption of the entire country. The information used to forecast natural gas consumption
in Poland from 2000 to 2020 came from the Polish Central Statistical Office’s local database
(known as GUS—Local Data Bank, 2022). Each time series included yearly data, and the
longest series had 20 observations. Given the short length of these series, it is not possible
to identify seasonality. Table 1 presents the structure of the data set.

Table 1. Hierarchy of the data set.

Level Number of Series Total Observations per Level

Country 1 21
Province (voivodship) 16 361

County 341 7149
Municipality (commune) 1851 38,791

In the analyzed period, the average annual gas consumption for a single county was
approximately 149,917 MWh. Individual observation ranged from 0 to 3,508,184 MWh, with
the latter being for the county with the highest natural gas consumption. For individual
provinces, the average consumption stood at 3,189,765 MWh, while a single commune had
an average consumption of 27,603 MWh. In 2000, the total gas consumption for all territorial
units covered in our study was 45,888,090 MWh, which increased to 58,584,611 MWh by 2020.

3.1.1. Data Preprocessing

Before forecasting, the input data set required preparation. The raw data were collected
in various units of measurement. Up until 2014, data in the data set were recorded in volume
units (m3). Starting from 2014, data were provided in megawatt hours (MWh). To ensure
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consistency, volume data from the preceding period were converted to MWh using the
average calorific value of natural gas.

Territorial units with either a lifespan shorter than 15 years or less than 15 years of
gas network coverage were omitted from the research sample. Additionally, territorial
units affected by division or aggregation due to changes in territory were also excluded.
These exclusions were necessary to maintain the data set’s integrity and alignment with
the research objectives.

The final data set comprises a total of 46,297 observations, representing natural gas
consumption in the investigated territorial units. However, it is important to note that
this count is slightly lower than the theoretical count of territorial units multiplied by the
number of analyzed years. This discrepancy arises due to the formation, combination, or
dissolution of certain counties during the study period.

3.1.2. Explanatory Variables

The data set for natural gas consumption was expanded to include several explanatory
variables to enhance forecast performance. The initially chosen variables are listed in
Table 2, and they were selected based on their availability in hierarchical form and their
potential significant impact on the dependent variable. We chose variables that were most
strongly correlated with the dependent variable and also had the highest impact on the
dependent variable based on entropy estimation from k-nearest neighbors distances, and
additionally chosen by AIC criterion used in forward stepwise selection [65–67]. Conse-
quently, we selected the variables: population, households with gas access, and number
of dwellings. Descriptive statistics of selected explanatory variables are presented in
Table 3. In the further part of the article, we will be using two data sets—univariate refers to
forecasting using only data on household gas consumption, while univariate also includes
explanatory variables.

Table 2. Preselected variables for forecasting natural gas consumption.

Variable Explanation

population Total number of inhabitants of a given territorial unit
households Number of households in a given territorial unit
households with gas access Number of households with access to the gas network

dwellings Number of apartments or single-family homes in a
territorial unit

dwellings built in a given year Number of apartments or single-family homes
commissioned in a given year in the area of a given unit

length of a gas network Total length of the gas distribution network in a given
territorial unit

The value of the variable for the superior unit is the sum of the values of the subordinate units.

3.2. Methodology

In the current state of scientific knowledge, no consensus has been reached regarding
whether statistical models or machine learning (ML) models offer superior accuracy in hier-
archical time series forecasting. Makridakis demonstrated in [7,9] that the choice of model
depends on the characteristics of the data set. After analyzing the two aforementioned
works, it was hard to determine which approach would be more suitable for our data set.
On the one hand, the data set comprises numerous short time series, which suggests that
statistical models might be appropriate. On the other hand, the relationships between the
series, the similarities in individual series’ behaviors, and the data set’s size indicate that
ML methods might perform better.

The next challenge is the application of local and global approaches. The local approach
(series-by-series) processes each time series independently. The global approach, assuming
that all time series come from the same stochastic process, constructs a model on all
available data in a data set. The local approach has two drawbacks [5]. The size of a single
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time series can lead to the situation that individual forecasting models for each time series
become too specialized and suffer from overfitting. Temporal dependencies that may not
be adequately modeled by algorithms. To avoid this problem, analysts should manually
input their knowledge into algorithms, which is time-consuming and makes the models
less accurate and harder to scale up, as each time series needs human supervision.

Table 3. Descriptive statistics of explanatory variables.

Variable
Level

Country Province County Municipality

Gas consumption
[MWh]

avg 52,095,287 3,255,956 152,773 28,145
std 3,152,298 2,626,010 261,999 103,042

max 58,584,612 11,920,993 3,508,185 3,508,185
min 47,861,391 477,309 16 3

population

avg 35,470,005 2,216,876 104,018 19,163
std 176,351 1,310,045 129,364 58,184

max 35,603,931 5,100,691 1,794,166 1,794,166
min 35,158,436 594,578 4302 1021

households with gas
access

avg 8,408,569 525,536 24,659 4543
std 428,245 343,761 46,467 20,823

max 9,522,706 1,608,416 687,908 687,908
min 7,938,363 113,846 1 0

dwellings

avg 13,061,565 816,348 38,304 7057
std 661,606 507,996 61,718 27,915

max 14,200,526 2,300,920 1,020,433 1,020,433
min 12,067,040 209,748 1694 243

There is another way to approach this problem, known as global [68] or cross-learning [69].
In the global approach, all the time series data are treated as a single comprehensive group.
This approach assumes that all the time series data originate from objects that behave
in a similar manner. Some researchers have found that the global approach can yield
surprisingly effective results, even for sets of time series that do not seem to be related.
Ref. [70] demonstrates that even if this assumption does not hold true, the methods still
provide better performance than the local approach.

In the global approach, a single prediction model is created using all the available
data, which helps mitigate overfitting due to the larger data set for learning. However, this
approach has its own limitations: It employs the same model for all time series, even when
they exhibit differences, potentially lacking the flexibility of the local approach.

Therefore, the decision was made to compare the predictive capabilities of two ap-
proaches: a local approach based on statistical models and a global approach utilizing
machine learning models. Consequently, three models were built: local univariate statistical
model, a global univariate ML model, and a global ML multivariate model.

3.2.1. Local Univariate Model

As stated below, the local model assumes that an individual forecasting model is
estimated for each time series. The optimal hyperparameters for such a model are obtained
through an automated procedure that minimizes the Akaike Information Criterion. Given
the number of parameters to be estimated during forecasting, we limited the tested models
to univariate statistical models. Due to the length of individual series, we could not employ
ARIMAX or LSTM networks because the number of parameters to be estimated exceeds
the number of observations in a single time series. To construct the classical hierarchical
approach, we considered the following families of forecasting models as base forecasts:

• NAÏVE—naïve forecast (benchmark);
• 3MA—moving average using three last observations;
• ARIMA—the auto-regressive integrated moving average model;
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• ETS—the exponential smoothing state-space model.

Due to the absence of seasonality in the data, other automated forecasting models such
as TBats were omitted. The selection of methods for generating forecasts was conducted
based on an analysis of the literature [57].

In the next step, the best base forecast is reconciled by four common reconciliation
algorithms: bottom-up, top-down, middle-out, and Minimum Trace. The outcomes of the
reconciled models were compared against two global models—univariate and multivariate.

The benchmark time series models described above were implemented using the
‘fable’ package (v.0.3.3) in R (v.4.3.1) [71]. The ‘hts’ (v.6.0.2) R package was employed for
conducting hierarchical time series forecasting [72]. Additionally, the ‘fable’ package was
utilized to automatically fine-tune the parameters for ARIMA and ETS.

3.2.2. Global Univariate and Multivariate Models

To create univariate and multivariate global models, we employed the following
machine learning algorithms:

• Multilayer Perceptron (MLP): An artificial neural network architecture with multiple
layers capable of learning complex patterns across various data types. It is an example
of the classic architecture of neural networks;

• Long Short-Term Memory (LSTM): A form of recurrent neural network designed to
capture sequential dependencies, making it effective for tasks involving sequences
and time-series data. Very often used in forecasting;

• LightGBM: A high-performance gradient boosting framework used for structured/
tabular data, utilizing ensemble learning to enhance predictive accuracy. It is an
example of a machine learning algorithm being an efficient alternative to artificial
neural networks.

Both LSTM and MLP networks were implemented using the TensorFlow (v.2.10.0)
library in Python (v.3.7) [73], and lightGBM in R (library ‘lightgbm’ v.4.0.2) [74]. The LSTM
is very popular for forecasting time series [6,51,75]. We also used a classic perceptron
neural network MLP. While the feed-forward network is not as adept at forecasting time
series as the LSTM network, short time series might not provide sufficient data for the
LSTM network to showcase its advantages. LightGBM is a gradient-boosting framework
that utilizes tree-based algorithms. Although not intrinsically designed for time series,
LightGBM’s ability to handle large data sets, rapid training speed, and efficiency in feature
selection make it a versatile choice for forecasting tasks.

In both variants of the global model, the data set was divided into training and testing
data using the cross-validation methodology. In the univariate variant, we employed three
regressors representing lags up to three periods. The univariate model for natural gas
consumption in any territorial unit i in period t can be expressed as:

ŷi
t = f

(
yi

t−1, . . . , yi
t−3

)
(9)

We set the lag based on the analysis of the automatically tuned ARIMA models.
In multivariate models, explanatory variables also include lagged values up to three
periods. Explanatory variables in multivariate models were natural gas consumption,
population, households with gas access, and the number of dwellings. Additionally, the set
of explanatory variables was expanded to include the following regressor: province code.
A detailed explanation of these variables is included in Section 3.1.2. Due to nonlinear
activation, the data are scaled before training using min–max scaling. The multivariate
model for natural gas consumption in any territorial unit i in period t is as follows:

ŷi
t = f

(
yi

t−1, . . . , yi
t−p, vi, x

i
1,t, xi

1,t−1, . . . , xi
1,t−p, . . . , xi

n,t, xi
n,t−1, . . . , xi

n,t−p

)
, (10)
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where xn is n-th explanatory variable and vi is the province (voivodeship) code for i-th
territorial unit.

To obtain training and testing sets for machine learning algorithms, we needed to
create variables representing the lag in gas consumption over time. In the context of the
global model, increasing the lag by subsequent years extended the length of the training
series but decreased the size of the training set. For instance, for the training set spanning
2000 to 2015, using the entire time series produced only one observation for each territorial
unit. Yet, incorporating a 3-year lag as delayed variables resulted in 13 observations for
each unit. This decision yielded 28,626 observations from 2003 to 2015 in the training set
for forecasts spanning 2016 to 2020, and 19,790 observations in the training set for forecasts
from 2012 to 2016.

A further consideration was how to obtain lagged variables for gas consumption in
the testing set. For 5-year forecasts, the last four years must be forecasts. Two strategies
were possible here. The first, a rolling approach, involves populating the testing set with
forecasts from the global model for the forthcoming years, necessitating the creation of five
global models. Alternatively, the second approach involves forecasting the explanatory
variables—in this scenario, gas consumption—using time series forecasting methods for
the entire testing set. Thus, the global model is constructed only once. This methodology is
both quicker and less labor-intensive, making it a more pragmatic option. We adopted this
latter approach, with gas consumption forecasts derived from the ARIMA model. It also
enabled a standardized forecasting methodology in comparison to the multidimensional
model with explanatory variables, elaborated upon in the subsequent subsection. A brief
overview of the forecasting procedure can be seen in Figure 3, and the scheme of the
cross-validation technique is depicted in Figure 4.

In all cases, we employed the recursive multistep forecasting strategy for both individ-
ual and global models. The direct strategy is inappropriate for short time series and long
forecasting horizons as this strategy can cause a high variance of forecasts [76].

The entire process of forecasting with the use of the global model is outlined in the
following steps:

1. Select potential explanatory variables;
2. Preprocess data: Fill in missing data, correct outliers, and consider territorial unit

divisions, mergers, and formations in the past;
3. Conduct explanatory variable selection, retaining variables with the greatest impact

on the explained variable;
4. Normalize the variables;
5. Add variables indicating affiliation to the level of territorial hierarchy (e.g., provinces).

Apply one-hot encoding for region codes;
6. Divide the data set into training and testing sets. Multiple splits for the training

and test sets can be achieved using fixed-origin or rolling-origin setups, alternatively
employing expanding-window or rolling-window setups for cross-validation [77,78].
The subsets of training and testing sets created for cross-validation are called folds;

7. Forecast the explanatory variables for h forecasted years using the selected forecasting
method (e.g., ETS, ARIMA, LSTM or other) separately for each training fold;

8. Introduce additional explanatory variables into the model, representing lagged values
of selected variables for 1, 2, . . ., p prior years;

9. Choose a machine learning algorithm for building the global model;
10. Train one model on the first entire training set (fold) constructed for cross-validation

to obtain the first global model;
11. Generate forecasts for each territorial unit independently using the global model and

the first testing set data;
12. Reconcile forecasts using the selected method;
13. Repeat this procedure for all training subsets and corresponding test subsets to acquire

models and forecasts for cross-validation;
14. Evaluate models and results [78];
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15. If results are not acceptable, choose another machine learning algorithm and repeat
steps 9–14;

16. Select and accept the final model to be used for forecasting;
17. Take the entire data set and generate forecasts for the next h periods.
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All steps describe the construction of the global multivariate model. For the global
univariate model, the procedure is limited to steps 2, 4, 6 and 8–17.

Both LSTM and MLP networks were constructed with a single hidden layer, generally
deemed suitable for time series forecasting. The learning rate parameter, which prevents
becoming stuck in local minima during learning, was set to the default for the Adam
optimizer, which is 0.001. The number of neurons in the input layer was determined using
results from the SciKit Learn library with grid search. We began with the guideline that the
number of neurons in the input layer should be roughly half of the total input variables
and that the number in the hidden layer should be the average of neurons in the input and
output layers. The final count of neurons was optimized using the SciKit Learn library.
The same library determined the dropout rate for each layer—a parameter essential for
curtailing model overfitting and enhancing generalization. This parameter defines the
likelihood that some layer cells will be temporarily omitted during neural network training.
The optimizer parameter, which determines the method for error function optimization,
was selected empirically. It governs how weights are adjusted throughout the neural
network training. In line with our methodology, the built-in RMSprop optimizer from the
Keras library produced the most optimal outcomes. The number of epochs was evaluated
experimentally: Beginning with a range from 50 down to 10 epochs, we observed that the
learning error stabilized after just 10 epochs. Bearing in mind the need to shorten learning
time, we fixed the number of epochs at 20. The hyperparameters of both neural networks
are presented in Table 4.

Table 4. Parameters of neuron networks.

Parameter LSTM, MLP Local LSTM, MLP Global

Input layer—number of neurons 9 16
Hidden layer—number of neurons 6 8

Dropout rate 0.4 0.4
Learning rate 0.001 0.001

Number of epochs 20 20

LightGBM, as a gradient boosting framework, has numerous hyperparameters that
users can tune to optimize model performance. We use ‘keras’ library to choose the best
combination of parameters. For this data set, the most important parameters (most impact
of solution) are ‘max_depth’: 3, ‘learning_rate’: 0.01, boosting_type: ‘gbdt’. For hierarchical
reconciliation, we used ‘hierarchical forecast library’ [79].

3.2.3. Model Selection

To evaluate models, we divided the data into two sets: training (in-sample) and testing
(out-of-sample). The forecasting horizon (h) was set to 5. The training set was used for
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estimating hyperparameters, while the test data helped determine performance metrics.
We employed the rolling origin out-of-sample cross-validation technique [78,80] to assess
our model’s robustness. This technique maintains the forecast length constant but shifts the
forecast’s starting point over time. We segmented our data set into five folds spanning 2012
to 2016, with each fold representing a split point into training and testing data (Figure 4).
This created multiple train/test partitions. For each fold, the best-performing model was
retrained using the in-sample data. Forecasts are then recursively generated for the out-of-
sample period. By averaging the errors across these folds, we were able to derive a robust
estimate of the model’s error.

To evaluate forecasting performance, we use two metrics, root mean square
error (RMSE):

RMSE =

√√√√ 1
T − t

T

∑
i=t+1

(yi − ŷi)
2 (11)

and mean absolute percentage error (MAPE):

MAPE =
1

T − t

T

∑
i=t+1

|yi − ŷi|
yi

. (12)

The MAPE and RMSE are scale-independent, so they can also be used to compare the
performance of forecasts across different series. Therefore, by averaging their values from
multiple series, we can obtain a single measure of how accurately the forecasts predict a
group of series.

We also analyzed the execution time of methods. The execution time of the algorithm
is averaged between folds.

4. Results and Discussion
4.1. Local Univariate Model

Table 5 showcases the comparison between benchmark and local statistical models
without reconciliation. The “average performance” refers to the mean value obtained
through cross-validation based on five consecutive folds from 2012 to 2016 and averaged
across all hierarchy levels. The table underscores the difficulties of forecasting short
time series. In the training sample, exponential smoothing methods excel, aligning with
findings from [57]. Yet, when comparing results from test and training samples, a notable
discrepancy emerges, suggesting the model’s overfitting to the training data. All methods
have similar outcomes, with an average error of around 15% on the testing set.

Table 5. Average performance of local models without reconciliation.

MAPE [%] RMSE

Train

auto ARIMA 12.2 7325
auto EST 10.7 7745

NAÏVE (benchmark) 13.2 8716
3-MA 14.5 8748

Test

auto ARIMA 17.2 10,476
auto EST 15.6 9423

NAÏVE (benchmark) 15.0 10,068
3-MA 15.2 9120

Ultimately, the best model was the ETS family. In terms of matching, the simple models
(M,N,N) and (A,N,N) were the best, accounting for 90% of the fitted local models. This is
also consistent with literature results, where simple exponential smoothing is typically the
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best solution for short time series (e.g., [57]). Based on those results, the ETS model was
adopted as the base forecast.

In the subsequent step, we reconciled the base forecast, as shown in Table 6. Reconcili-
ation does not substantially improve the forecasting performance. The average MAPE for
the local model stands at just over 15%. This means that statistical models cannot be used
to build an accurate prediction for the analyzed data set.

Table 6. Average performance of ETS local models with different reconciliation methods.

MAPE RMSE

Top-down 15.6 9423
Bottom-up 15.6 9370

Min-T 15.4 9368
Middle-out 15.5 9348

Bold font indicates the best result.

4.2. Global Univariate and Multivariate Model

In the next step, we compared the performance between the best local model and the
global univariate (Global) and multivariate models (with explanatory variables—Global
ex). Table 7 summarizes the results. Figure 5 presents boxplots depicting the distribution
of MAPE mean errors for individual folds. The boxplot indicates that the distribution
of MAPE errors for ETS is significantly narrower than for benchmark, although average
MAPE is practically the same. Global models overperform local ones, but choosing the best
global univariate model is not easy.

Table 7. Average performance of global models for hierarchical forecast reconciled with middle-out
approach.

Method Approach MAPE [%] RMSE

LightGBM Global Global univariate 9.8 7729
LSTM Global Global univariate 8.5 5476
MLP Global Global univariate 9.2 7264

LightGBM Global ex Global multivariate 9.2 7189
LSTM Global ex Global multivariate 7.8 5478
MLP Global ex Global multivariate 7.1 4970

Bold font indicates the best result.
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Univariate LSTM and MLP neural network models have a similar average; however,
the errors from the MLP model exhibit greater volatility. LightGBM, despite obtaining an
average MAPE higher than methods based on neural networks, yields results with low
variability. It is challenging to determine which ML model is superior. The LSTM model
has shorter whiskers, while the MLP model’s box is slightly lower in position. Furthermore,
it is evident that the MLP model fails in several folds, as indicated by the outliers on the
boxplot. Global, univariate models outperform local ones, although distinguishing between
the two can be difficult. Based on the variability of results, it seems that the LSTM models
offer the best performance, but the average MAPE and RMSE are slightly lower for MLP.

We use the Nemenyi test [81] to compare how well different methods perform. This
test ranks the methods in each fold, then averages those ranks and produces confidence
bounds (CI) for those means. The means of ranks correspond to medians, so this means
that by using this test, we compare the medians of errors of different methods. If CI for
different methods overlaps, it means their medians are statistically the same. The results
are presented in Figure 6. The forecasting methods are sorted vertically according to the
MAPE mean rank. The graph shows that the MLP Global ex, LSTM Global ex, LSTM global,
and MLP global have similar medians at the 95% confidence level (because their bounds
intersect). For these methods, we conducted another Nemenyi test for each hierarchy level
in all folds. So, we evaluated 20 forecasts (5 (folds) times 4 (methods) times 1 (time series))
at country levels, 320 forecasts at the voivodship level, 6820 forecasts at county levels, and
37,020 forecasts at commune levels. The results are presented in Figure 7 and in Table 8.
This meant evaluating 20 forecasts at the country level (5 folds × 4 methods × 1 time
series), 320 at the voivodship level, 6820 at the county level, and 37,020 at the commune
level. Detailed results can be found in Figure 7 and Table 8.

Table 8. Detailed performance of global models for different levels of hierarchical forecast reconciled
with middle-out approach averaged across all folds 2012–2016.

Method Approach Level 0
Country

Level 1
Province

Level 2
County

Level 3
Commune

MAPE [%]

LSTM Global univariate 3.5 4.3 6.5 8.8
MLP Global univariate 5.1 5.6 7.3 9.6

LSTM Global ex Global multivariate 3.7 4.3 6.1 8.1
MLP Global ex Global multivariate 3.3 4.0 5.6 7.3

RMSE

LSTM Global univariate 2,104,511 156,496 10,266 2153
MLP Global univariate 3,251,453 221,999 12,928 2611

LSTM Global ex Global multivariate 2,321,036 168,800 10,116 2046
MLP Global ex Global multivariate 1,971,673 147,538 9192 1897

Bold font indicates the best result.

These results highlight that models’ performances vary significantly across the hierar-
chy and are influenced by the hierarchical level. Only at the country level are the differences
between methods statistically insignificant. Interestingly, the univariate LSTM and multi-
variate MLP models show comparable performance. As we go deeper into the hierarchy,
the multivariate MLP method consistently outperforms the others, with the advantage
becoming more pronounced at lower levels. Comparing the univariate models, LSTM
consistently outperforms MLP, with this advantage increasing at lower hierarchical levels.
A comparison of results for different folds used in cross-validation procedure is presented
in Table 9. The overall result of hierarchical forecasts for all 16 provinces (voivodeships) for
the period 2016–2020 obtained using the MLP network is presented in Figure 8.

Compared with ref. [51], the accuracy of our model at the country level is worse (3.3%
vs. 2% in the mentioned study). This means that potentially great benefits for the accuracy
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of the model could introduce a combination of our approach with a model of forecasting
gas consumption based on global factors.

Using the prepared data set, we additionally assessed the performance of classical
econometric models, such as linear regression and panel data models. However, these
methods proved to be inadequate for forecasting territorial gas consumption, yielding
MAPE errors of over 30%. This is likely due to the nonlinear relationship between the
explanatory variables and the forecasted variable. It would be worth exploring the addition
of higher-order variables, logarithmic transformations, or variable interactions in these
models. Nevertheless, the classical and labor-intensive econometric approaches, which
do not guarantee success, are clearly outperformed by neural network models. However,
the interpretability of the impact of individual variables on the dependent variable is
compromised in neural network models.
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Table 9. Performance of global models for hierarchical forecast reconciled with middle-out approach
in consecutive folds.

Method Fold 2012 2013 2014 2015 2016

MAPE [%] Approach

LSTM Global univariate 9.1 9.4 9.8 7.6 6.4
MLP Global univariate 8.3 8.7 10.8 12.0 6.1

LSTM Global ex Global multivariate 9.7 8.7 6.7 6.8 6.8
MLP Global ex Global multivariate 7.9 7.9 6.9 6.3 5.9

RMSE

LSTM Global univariate 5321 6163 6939 5088 3866
MLP Global univariate 5767 6898 7922 11,874 3857

LSTM Global ex Global multivariate 6392 6468 4419 5359 5112
MLP Global ex Global multivariate 5775 5740 5260 4651 3537
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Finally, we compared the execution times of the algorithms. The results are as expected:
Statistical methods outpace ML methods in terms of speed. The computation time for
the global univariate MLP model is significantly faster than that of the LSTM, further
emphasizing the advantages of this model over others. Calculations were performed on a
Dell PowerEdge R440 computer, 2 Intel Xeon Silver 4210, 2.2 Ghz processors, 128 GB RAM,
operating system: Windows Server 2019 Datacenter. A comparison of computational time
for all models is presented in Table 10.

Our research demonstrates the superiority of global model approaches over local ones
for data sets comprised of very short time series. These series were further shortened due to
the division of the data set into training and testing sets, along with the application of cross-
validation. In the shortest version subjected to validation, a single time series in the data set
consisted of only eight observations. We compare the forecasting performance of our global
method with a local statistical approach and top-down, bottom-up, middle-down, and
min-T reconciliation. Regardless of the reconciliation approach used, the local method’s
average forecast accuracy was lower than that of the global method, considering the mean
MAPE. The difference between the best MAPE for the local approach and the worst for
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the global exceeded six percentage points. In general, global models with reconciliation
ensured higher accuracy of forecasts measured by MAPE metrics by six to nine percentage
points compared to the benchmark—the naïve method without reconciliation.

Table 10. Comparison of computational time.

Method Approach Computational Time [h]

Benchmark Local 0.02
ETS with reconciliation Local 0.04

LightGBM Global univariate 0.06
LSTM Global Global univariate 0.30
MLP Global Global univariate 0.25

LSTM Global ex Global multivariate 0.80
MLP Global ex Global multivariate 0.40

This suggests that for such data sets, the accuracy improvement from introducing
a data hierarchy is insufficient. The similarity in territorial behavior plays a much more
significant role. This is surprising given that Poland, due to its historical and demographic
conditions, is not considered territorially homogenous. Imperial borders from before
World War I still affect the average age in rural areas, subsistence farming, infrastructure,
forestation, and central heating in houses. All these factors indirectly influence gas con-
sumption. Figure 8 clearly illustrates this diversity. It shows the 16 provinces and their
gas consumption, which varies significantly across different regions. The global method
managed this well.

In the global approach, the choice of method greatly influences the final outcome.
While in our approach, the MLP variable, on average, most accurately predicted outcomes,
it is important to note that it also had the greatest variance (Figure 5). The forecast’s
accuracy of MLP exhibits notable sensitivity to the partitioning of the data set into training
and testing subsets. This implies that the point at which the data are divided between
these two sets significantly influences the model’s performance. The accuracy of LightGBM
forecasts depended least on the division between the test and training variables. This
observation is important for long-term forecasting, where consistent accuracy is more
desirable than high accuracy with large fluctuations.

Introducing additional information, such as a multivariate series, does increase fore-
cast accuracy, though interestingly, this improvement is not as significant (averaging just
over one percentage point) as introducing the global approach. This indicates that better
territorial grouping should improve forecast results.

For the two best methods, we returned the average forecast error for each hierarchical
level. To formally test whether the forecasts produced by the considered hierarchical
methods are different, we used the Nemenyi test. The Nemenyi test finds groups of
predictions that do not seem to be significantly different from each other. The good thing
about this method is that it does not make any guesses about how the data are spread out,
and it does not need many one-on-one comparisons between predictions, which could
negatively affect the results. Then, the different methods of forecasting are organized
by their average score based on the measurement we are looking at. Figure 7 shows the
Nemenyi test with a 95% confidence interval for different hierarchical levels. As seen, the
lower the hierarchy level, the greater the advantage of MLP with additional variables. For
univariate approaches, LSTM performs significantly better. This approach demonstrates
that the lower the hierarchy level, and thus the smaller the territory, the more crucial the
choice of forecasting method becomes. This is due to the fact that at the lowest level, data
are extremely noisy and difficult to forecast, as confirmed by the low bottom-up results in
the local approach.
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5. Conclusions and Future Studies

In this article, we address forecasting on large hierarchical data sets with short indi-
vidual series. Our insights can be used to forecast scenarios with limited information. We
demonstrate that, for this data set, classical forecasting methods implemented locally, even
when reconciled, are surpassed by ML global models. Specifically, models such as LSTM or
MLP exhibit a commendable ability to generate coherent forecasts across various hierarchi-
cal levels. A noteworthy observation is that the efficacy of the right ML methods varies
based on the context, underscoring the need for a nuanced approach in their application.

Global ML methods outperform their statistical counterparts in hierarchical forecasting.
For a univariate approach, the LSTM has a slight edge over the MLP. Multivariate methods
surpass univariate ones, but the significance of this advantage becomes apparent only when
considering hierarchical levels. Bottom-level series are noisy and challenging to predict,
yet univariate MLP methods handle them effectively. Incorporating additional explanatory
variables also enhances forecasting accuracy.

Research on the use of global models is a relatively new and highly promising area
of study. Our research has shown that in the case of short time series, training the model
on the entire data set leads to generalization and higher accuracy in forecasting individual
time series related to specific territorial units. Forecasting gas consumption, considering
hierarchical structure, can be practically conducted using any of the ML methods we
employed. The differences in forecast quality are not too significant. The key practical
issue may be the computational cost, which is noticeably lower for gradient-based methods
than for neural networks. In the case of artificial neural networks, the LSTM network
has proven to be computationally inefficient, resulting in no significant improvement in
forecast accuracy despite the long computation time, which may arise from the issue of
short time series.

The proposed approach proves effective in forecasting domestic natural gas consump-
tion, with the resulting errors acceptable for long-term planning. However, our approach
exhibits significant forecast variability at lower hierarchical levels. More research could tar-
get optimizing bottom levels and investigating reconciliation at different aggregation tiers.

Our study introduces a new method for predicting hierarchical time series with a
limited number of observations. We found that global modeling techniques (transfer learn-
ing), which apply machine learning, are more effective for data sets with a limited number
of observations than local statistical modeling approaches. Our research highlights the
benefits of using simpler network structures like Multilayer Perceptrons (MLPs), proving
them to be more efficient for forecasting. Furthermore, we observed that adding more
explanatory variables offers only a minor improvement to the global model. This suggests
that in data sets of short time series, utilizing transfer learning is more advantageous than
adding extra variables. However, the extent of these benefits seems to depend on the depth
of the territorial hierarchy to which the time series belongs, indicating a need for further
research. When compared to the results of Manowska et al. [51] on short time series at
the country level, our model shows worse accuracy, even though both approaches yield
precise forecasts. This implies that including variables that describe the global behavior of
phenomena could enhance the accuracy of country forecasting. Therefore, an interesting
direction for future research would be to develop a hybrid model that combines our global
MLP or LSTM model at lower territorial levels with a model presented in [51] at the country
level, using reconciliation to maintain forecast consistency. This approach would allow
for effective forecasting across different levels of a country’s territorial hierarchy, aiding in
strategic decisions for gas network expansion.

The second important contribution of our study is demonstrating the robustness of
our method. A major challenge in such time series is the risk of overfitting due to a limited
number of observations [82]. By employing a rolling-origin method and the Nemenyi test,
we showed that changing the forecasting horizon, and thus the length of a single time series,
does not significantly impact the method’s effectiveness. While the forecast error varies
with different forecasting horizons, the ranking of methods remains consistent and stable.
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Our proposed approach outperforms other comparable methods in time series modeling
regardless of the specific series chosen.

A limitation of our research is the employment of unmodified standard ML algorithms,
where customized adaptations might enhance forecasting accuracy. A promising solution
would also involve applying time series decomposition and ensemble learning with various
machine learning algorithms, as demonstrated in [83]. Additionally, our study utilizes
a reduced data set, excluding municipalities with a very small number of observations.
Future forecasting endeavors should incorporate these municipalities, albeit with a po-
tential minor decrease in forecast accuracy. This holistic methodology and its associated
limitations pave the way for refined models and expanded data sets in future research.

For future work, exploring the structural aspects of hierarchy—including the number
of levels, series, and other elements such as correlations between territories at different
levels—would be beneficial. There is a need for more research to select the best forecasting
model not only for size of time series but also considering such criteria as hierarchical
level, time series characteristics (such as variability) and forecast horizon. Integrating
these as features in a global ML model could help pinpoint the best forecasting and
reconciliation methods.

While our proposed method can generate five-year forecasts based on recursive multi-
step forecasting, further studies should focus on other multistep forecasting techniques.
Lastly, our findings indicate that ML approaches to hierarchical forecasting excel for point
forecasting. A potential avenue for future research is to expand this evaluation to forecast-
ing uncertainty.
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Appendix A

Hierarchy Disaggregation of Forecasts in the Top-Down Strategy

Disaggregation of hierarchy from higher level to lower one is done using the propor-
tion vector p =

(
p1, . . . , pj, . . . , pmk−1

)T , which represents the contribution of each time
series. Typical ways to calculate p are:

• Averages of historical proportions

pj =
1
T

T

∑
t=1

yk−1
i,t

y0
t

, (A1)

• Average of the historical values

https://bdl.stat.gov.pl/bdl/dane/podgrup/temat
https://ec.europa.eu/eurostat/data/database
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pj =
∑T

t=1
yk−1

i,t
T

∑T
t=1

y0
t

T

, (A2)

• Or proportions of forecasts

pj =
K−2

∏
k=0

ŷk
t,i

Ŝk+1
t,i

, (A3)

where ŷk
t,i is base forecast of the series that corresponds to the node, which is k levels above

the node j, and Ŝk+1
t,i is sum of the base forecasts below the series that is k levels above node j.
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