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Abstract: The main objective of this study is to put forward effective schemes for alleviating reservoir
choke caused by emulsification or Jamin’s effect using the dilution method by light crude oil, as
well as sharply increased viscosity. In this study, water-in-heavy-oil (W/O) emulsions with varying
water fractions were prepared with heavy oil from Bohai Bay, China. Mixtures of W/O emulsions
and light crude oil samples (light oil and light heavy oil) with varied dilution ratio (1:9, 2:8, 3:7) are
tested, respectively by the electron microscope and by the rheometer. W/O droplets’ distribution and
viscosity variations are obtained to evaluate the emulsion stability and viscosity reduction effects
by dilution. Results show that W/O droplets, size distribution range increases with the increase
of water fractions. W/O droplets with larger size tend to be broken first in the dilution process.
Light oil could reduce emulsions’ viscosity more effectively than light heavy oil. Viscosity reduction
mechanisms by dilution could be concluded as the synergistic effects of dissolving heavy components
and weakening oil–water film stability. Therefore, light oil is suggested as the optimal one for solving
formation plugging. The poor performance of Richardson model is related to the re-emulsification
between free water and crude oil favored by light heavy oil, and demulsification favored by light oil.
The modified model shows a significant improvement in prediction accuracy, especially for W/O
emulsions with large water fractions. This study demonstrates a promising and practical strategy of
solving heavy oil well shutdown problems and viscosity increasing by injecting light crude oil in the
thermal stimulation.

Keywords: W/O droplet stability; viscosity reduction by dilution; W/O emulsions; light crude oil;
a modified model

1. Introduction

The global remaining technically recoverable reserves of oil and gas decreased slightly
by 0.23% from 2021 to 2022. There were 1125.29 × 108 t of remaining technically recoverable
reserves of unconventional oil and gas in 2022, accounting for 25.91% of the total value in the
world, among which heavy oil contains the largest reserve [1,2]. Therefore, unconventional
resources such as shale oil and tight oil are being explored, heavy oil remains one of major
energy components [3–5]. Heavy oil is a typical crude oil of containing low fraction of
light hydrocarbons and high fraction of asphaltenes and resins [6], which results in a poor
flowability, as well as a poor recovery. Thermal recovery is usually employed to improve oil
recovery, for example, cyclic steam injection or hot water flooding. However, the viscosity
would sharply increase in the late period of thermal recovery. Main reasons came down to
the emulsification of abundant W/O droplets’ formation caused by high-speed shear in
porous media. Emulsification could result in decreased oil recovery, the reduced process
efficiency, the increased process costs, revenue loss and even a well shutdown [7]. Detailed
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reasons could be attributed to several mechanisms. Firstly, Jamin’s effect would occur when
emulsified oil droplets flow through small throats of porous media [8–10]. Additionally,
Soo et al. concluded the stable transport process of emulsions in porous media is similar
to a filtration process, in which the droplets not only block pores with smaller sizes, but
also are captured on pore walls or in crevices. In this way, droplets were retained in
pores and permeability decreased [11]. At the same time, the prolonged high-temperature
operation would cause the deposition of heavy components of the crude oil on the rock
surfaces, resulting in decreased permeability [12,13]. Therefore, preventing emulsification
or destroying W/O droplets’ stability was critical for heavy oil recovery.

Teasing out emulsion formation mechanisms is precondition of better understand-
ing W/O droplets’ breaking principles with varying water fractions. One emulsion is a
dispersion with a poor stability formed by a complex mechanism. Mohammadian et al.
found that the viscosity increased with the increase of water fraction and explained its
underlying mechanisms [14]. Elevated results of hydrogen bonds, hydrodynamic forces,
and flow resistance were related to the decreased distance among droplets as water content
increased, while it usually forms different structures as the water concentration increases
since coalescence, such as W/O, O/W, W/O/W, and O/W/O structures. Conversely, W/O
droplets could resist coalescence, separation, and sedimentation at low water cut [15,16].
Recent findings reveal that stable emulsions are easily formed with the high molecular
weight amphiphiles of crude oil, protecting water droplets against coalescence and break-
ing [17–20]. Khvostichenko and Andersen [21] also found that the water solubility in
asphaltene-toluene solutions increased as the asphaltene concentration increased. For
example, stable emulsions were formed at water volume ratio up to 50%, while the waxy
oil could form stable emulsions with the water fraction as high as 70%.

Emulsion stability is strongly associated with active components, including asphaltenes,
carboxylic organic acids, and fine inorganic particles and their combinations [22]. As-
phaltenes are one of the primary causes of the emulsion stability in petroleum mixtures
since its roles in stabilizing the oil–water film [23,24]. Asphaltene particles impart stability
to oil–water interfaces by providing resistance to water droplets coalescence [25]. In de-
tails, molecular dynamics simulations of asphaltenes behavior on the water–oil interface
were attentively performed by Yuan et al. and Kuznicki et al. [26–28]. π-π interactions
of asphaltene molecules have an essential effect on the stability of the oil–water interface
and asphaltene molecules have a specific orientation on the oil–water interface. Charged
terminal groups has a distinct affinity for the toluene-water interface while uncharged
molecules did not show similar behavior. Silva et al.’s research showed that hydrophobic
ionic liquids and longer cation alkyl chains favored the demulsification, which implied the
cation type’s influences on the stability of water–oil film [29]. Theoretically, the interfacial
charge is the first defense line of the emulsion stability, in which significant electrical
double-layer repulsion exists among droplets, while the second line is the film [30]. Once
the deformation of droplets causing film to thin below a critical thickness would result
in the droplets coalesce [31]. In summary, the emulsion stability mechanisms could be
concluded as van der Waals forces, steric repulsion, Gibbs–Marangoni effect, and interfacial
film formation [32–35].

Scholars provided solutions of weakening the water–oil film stability from perspectives
of interfacial tension and interfacial charges to promote the demulsification and viscosity
reduction economically and environmentally. The stabilizing effect of interfacial charges
on emulsion films is listed as follows: the emulsion droplets coalesce were prevented by
the repulsion of droplets’ film with identical charges. The more stable the emulsion is, the
higher film strength and the higher charge density are. Proposed solutions to break water-
in-oil emulsions and emulsify the crude oil to form the O/W emulsion are usually chemical
EOR operations, such as alkali, emulsification oil flooding agents or their combinations.
Crude oil–water–rock interactions have been modified by EOR chemicals through a series
of complicated physical chemical reactions [36–38]. Surfactants tend to decrease the oil–
water interfacial tension (IFT) and alkali saponifies indigenous acidic components in the
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crude, resulting in the higher water solubility and lower IFT. Their impacts arise due to
chemicals adsorption on the interface, by which they alter surface electric charges and
interfacial tensions. In the case of the bitumen-aqueous interface, optimal primary recovery
efficiency was found to be associated with a maximum in interfacial electric charge and a
minimum in interfacial tension [39]. However, Jamin’s effect still occur when emulsified
O/W droplets flow through small throats of porous media [40]. Furthermore, the pollution
problems and the cost resulted by alkali’s serious adsorption or caused by the produced
water process and a large amount of the chemical agents injected inspired us to put forward
a more environmentally scheme.

The dilution method has aroused wide attractions for its successful applications
in petroleum exploitation with advantages of low energy consumption, environmental
protection and low cost. For example, light hydrocarbons as a steam additive or steam
replacement fluid achieved success in expanding-solvent steam-assisted gravity drainage,
vapor extraction, and cyclic solvent injection, wellbore dilution and crude oil transportation,
and the dissolve of plugging by hot oil injection [41–43]. Consequently, the viscosity,
pour point, colloidal content, and asphaltene concentration of heavy oil are significantly
reduced with low viscosity oil dilution, improving oil quality of crude oil [44,45]. With the
dilution ratio increasing, highly condensed aromatic basic, nonpolar, and acidic asphaltene
multilayered films stabilizing emulsions were precipitated once the solvent diluent added
beyond the critical dilution concentration [46]. Diluted bitumen-water interfacial tension
decreased sharply with increasing the solvent dosage in the bitumen [47,48]. Wu’s study
revealed that the concentration of bitumen would influence or even determine the emulsion
stability since its role in oil–water interface. For example, the addition of kerosene, or diesel,
or light crude oil (15–20 wt%) to heavy crude oil could reduce almost 90% of the heavy oil
viscosity with the value of 4000 mPa·s [49]. Scholars proposed to improve the quality of
the heavy oil emulsions through dilution with light oil [50].

Extensive work has been conducted to determine how nature and amount of the
diluent affects the ability of the oil phase to stabilize emulsions, as well as viscosity [51–53].
Czarnecki and Moran presented a model explaining the oil–water interface stabilization at
low or high dilution. The interface remained flexible at low dilutions (high bitumen con-
centrations), while it is rigid at high dilutions. Hence, water in the froth after Athabasca Oil
Sands processing could be separated using the dilution method [51]. The emulsion stability
of water-in-diluted bitumen emulsions decreased as the naphtha to bitumen ratio increased
from 0.5 to 1.5 [52]. He et al. tested (diluted) bitumen-water interfacial tensions and con-
cluded that solvent addition facilitated the bitumen liberation and recovery, which is related
to reduced bitumen-water interfacial tension and the reduction in bitumen viscosity [53].
Essentially, diluted bitumen-water interfacial tension decreased sharply with the solvent
ratio increasing, as well as the viscosity. In addition, Sullivan and Kilpatrick [54] compared
the heavy oil’ solubility in the solvent and the aromatic hydrocarbons. Employed solvents
were pure refined oils, fractionated oil, natural gas condensate, and other light oils [55–59].
Results show that asphaltene particles and resin asphaltene would still aggregate on the
oil–water interface, forming W/O droplets, or even causing asphaltene precipitation, while
heavy oil in aromatic solvents better solvates asphaltene aggregates since its increased resin
or aromatic solvent content. Based on the principle of “like dissolves like”, it seems that
light crude oil could better solve the heavy oil and eliminate asphaltene aggregation.

The heavy oil quality was thoroughly improved from aspects of chemical composition,
density, and rheology, which is the highlight of the dilution method. The diluent oils mixing
with the heavy oils were usually propane, toluene, heptane, naphtha, heavy oil distillation
fractions and light crude oil [60–63]. C3–C12 hydrocarbon or mixtures are usually selected as
displacement phase in the solvent-based method to assist viscosity reduction and enhance
oil recovery. In addition, Ilyin et al. suggest bio-oil as the diluent oil, which is obtained
from forest and agricultural wastes by thermochemical processing [64]. These pure refined
oils are not economical since they are a series of processing. Light crude oil shows a high
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potential in demulsification and viscosity reduction. Hence, we suggest light crude oil as
the dilution solvent to reduce viscosity and eliminate emulsion plugging in formation.

In this work, rheological tests and microscopic analysis were conducted on a heavy
oil sample and two light crude oil samples from Bohai oilfield, as well as diluted water-
in-heavy-oil (W/O) emulsions with varying water fractions. Based on experiment results,
the demulsification characteristics when W/O emulsions mixing with light crude oil were
clarified, as well as the viscosity reduction law. The possible microscopic mechanisms of
viscosity reduction by dilution were proposed and optional oil type for solving formation
plugging was suggested. Finally, applications of viscosity prediction models for diluted
W/O emulsions was analyzed. This study is expected to provide a reference for the practical
applications in the solvent-based heavy oil recovery methods, formation blockage solution,
wellbore dilution and heavy oil transportation.

2. Materials and Methods
2.1. Materials

Three crude oil samples were chosen from Nanpu oilfield, Bohai Bay. Two light crude
oil samples include one light oil sample (namely L1), and one heavy oil with relative low
viscosity as light heavy oil (namely L2). The heavy oil sample (namely A0) is selected
from A1H1 well, while two other light crude oil samples are produced from two nearby
production well. The samples’ viscosity can be found in Table 1.

Table 1. Experimental crude oil viscosity data (50 ◦C, mPa·s).

Samples L1 L2 A0

Viscosity 12.3 243.6 1453.0

2.2. Experimental Apparatus

An oil degassing dehydrator was purchased from Yangzhou Huabao Oil Instrument
Co., Ltd., Yangzhou, China. The dehydration temperature is 120 ◦C and the dehydration
time is about 8 h until no water droplets observed using BX53 electron microscope.

BX53 electron microscope produced by Olympus Corporation of Japan, Tokyo, Japan.
The magnification is 40×–1000×. The sample are prepared by the doctor blade method
with the advantages of uniform sample and easy observation to observe the micro-state of
O/W emulsion.

HAAKE MARSIII modular rheometer produced by Thermo Fisher Scientific Co., Ltd.,
Karlsruhe, Germany, was employed in our experiments. The highest operating temperature
is 300 ◦C and the highest test pressure is 40 MPa. The rotor P35TiL is installed and the test
temperature range is 50~80 ◦C in this study. The test gap is 1.0 mm and shear rate is 5 s−1.

2.3. Experimental Procedures

The flow chart of research methodology could be found in Figure 1 including (1) dehy-
dration, heavy oil emulsion preparation, diluted heavy oil emulsion samples preparation,
and the test steps.

(1) Dehydration. Crude oil was dehydrated and degassed using the electric dehydrator
under the temperature of 120 ◦C for about 12 h firstly, and microscopic analysis was
employed to ensure that water is removed thoroughly during the dehydration.

(2) Heavy oil emulsion preparation. Heavy oil emulsions with varied water contents of
30%, 40%, 50% and 60% (named A30, A40, A50 and A60, respectively) were obtained
by mixing crude oil and water by stirring.

(3) Diluted heavy oil emulsion samples preparations. Heavy oil emulsions were mixed
with varied ratio of light crude oil to obtain diluted heavy oil emulsions, and the
dilution ratio were 1:7, 2:8, 3:7. Heavy oil emulsions and diluted heavy oil emulsions
preparation process is shown in Figure 2.
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(4) Tests. Microscopic observation of diluted heavy oil emulsions performed by Olympus
BX53 Microscope. and the rheological tests by Haake MARS III rotational rheometer
were performed on heavy oil emulsions and diluted heavy oil emulsion samples.
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3. Results and Discussion
3.1. Water Fraction’s Effect on W/O Emulsion Viscosity

To figure out the emulsification behavior of heavy oil emulsions with varied water
fractions, the rheological tests (50–80 ◦C) and microscopic analysis was conducted. Results
showed that the viscosity of heavy oil emulsions increased with the water content increasing
(Table 2 and Figure 3). The viscosity increased as the water fraction increased from 30% to
60%, revealing that the phase reverse point is less than 60% in this study. the phase reverse
points of heavy oils in China are usually 20~50%, such as Tahe, Shengli extra-heavy oil, and
Henan oilfield [65]. It could be inferred that the corresponding asphaltene and colloidal
content of Bohai heavy oil samples may be even higher than areas listed above.

Table 2. Viscosity of heavy oil with varied water content (mPa·s), 50 ◦C~80 ◦C.

Temperature
50 ◦C 60 ◦C 70 ◦C 80 ◦CWater Content

0% 1453 712 394 245
30% 2742 1350 753 453
40% 4290 2132 1181 723
50% 7698 3895 2234 1309
60% 9854 4983 2932 1658



Energies 2024, 17, 332 6 of 18

Energies 2024, 17, x FOR PEER REVIEW 6 of 18 
 

 

Table 2. Viscosity of heavy oil with varied water content (mPa·s), 50 °C~80 °C. 

 Temperature 
50 °C 60 °C 70 °C 80 °C 

Water Content  
0% 1453 712 394 245 

30% 2742 1350 753 453 
40% 4290 2132 1181 723 
50% 7698 3895 2234 1309 
60% 9854 4983 2932 1658 

 
Figure 3. The viscosity of heavy oil with varied water content(viscosity at 50 °C, flowability 20 °C). 

The viscosity and visible flowability of heavy oils with varied water contents are 
shown in Figure 3. As the water content increased from 0% to 60%, the viscosity increased 
from 1453 mPa·s to 9854 mPa·s, which reflects its influences on flowability. The micro-
scopic analysis in Figure 4 could present the W/O droplets distribution and their size. The 
W/O droplets distribution became denser, and the overall self-emulsification degree of the 
heavy oil increased, resulting in an increased friction between the droplets, as well as the 
viscosity. However, as the water fraction increased, the droplets number increased, but 
the proportion of small droplets decreased. In this way, the W/O droplets size distributed 
around the larger range with the increase of water fraction. 

    
30% 40% 50% 60% 

Figure 4. Microscopic observation of heavy oil with varying water content at room temperature 
(Yellow: crude oil; transparent bubbles: water droplets). 

3.2. The Dilution Ratio’s Effect on W/O Emulsion Viscosity 

0

2,000

4,000

6,000

8,000

10,000

12,000

0 10 20 30 40 50 60 70

vi
sc

os
ity

, m
Pa

·s

water content, %

Figure 3. The viscosity of heavy oil with varied water content (viscosity at 50 ◦C, flowability 20 ◦C).

The viscosity and visible flowability of heavy oils with varied water contents are
shown in Figure 3. As the water content increased from 0% to 60%, the viscosity increased
from 1453 mPa·s to 9854 mPa·s, which reflects its influences on flowability. The microscopic
analysis in Figure 4 could present the W/O droplets distribution and their size. The W/O
droplets distribution became denser, and the overall self-emulsification degree of the heavy
oil increased, resulting in an increased friction between the droplets, as well as the viscosity.
However, as the water fraction increased, the droplets number increased, but the proportion
of small droplets decreased. In this way, the W/O droplets size distributed around the
larger range with the increase of water fraction.
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3.2. The Dilution Ratio’s Effect on W/O Emulsion Viscosity

As shown in Figures 5 and 6, the larger the dilution ratio is, the larger the viscosity
reduction rate will be. The dilution ratio of 2:8 is suggested as the optimal one for reducing
viscosity in our study. The viscosity reduction rate of dead crude oil diluted by light oil
L1 (dilution ratio, 2:8) is close to 80%, and even arrives at 90% once the temperature rises
to 80 ◦C. Similarly, the viscosity reduction rate of the heavy oil emulsions (water content,
50%) could be more than 95% and rise to 99% when the temperature is up to 80 ◦C. The
comparison results between heavy oil and its emulsions show that light oil has a better
viscosity reduction effect on heavy oil emulsions. It is probably related to the influences of
the W/O droplets by dilution, which are analyzed further in this section and Section 3.3.
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Figure 6. The viscosity reduction rate of heavy oil emulsions (water content, 50%) by light oil L1.

To explore reasons for discrepancy of the viscosity reduction effect by dilution between
water in heavy oil emulsion and dead heavy oil, the subtraction of viscosity reduction rates
of heavy oil emulsions with varied water content and corresponding diluted emulsions
was calculated, respectively. In this case, the subtractions could reflect relative influencing
factors except dilution ratio and temperature, such as demulsification of heavy oil emulsions
during dilution. As shown in Figure 7, the difference in viscosity reduction rate decreased as
the dilution ratio increased at the same temperature. Additionally, the difference in viscosity
reduction rate decreased as the increase of temperature with the same dilution ratio.
Therefore, the increased temperature and dilution ratio may weaken the demulsification
effects on viscosity reduction.
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Figure 7. The subtractions of viscosity reduction rates of diluted heavy oil emulsions and diluted
dead heavy oil (dilution ratio 1:9, 2:8 and 3:7, 50~80 ◦C).

The viscosity reduction rates were calculated based on rheological tests as shown in
Figure 8. It could be seen that the viscosity reduction rate of water in heavy oil emulsions
increased, as the water content increased from 0% to 50%, while the viscosity reduction
rate decreased when the water content was close to 60%. Heavy oil emulsions probably
contained free water with the high-water fraction of 60%. Therefore, the emulsification
occurred again between free water and introduced light crude oil, which increased the
viscosity to some extent [59]. The transition was more pronounced during the dilution
process with light heavy oil. Light heavy oil has a larger amount of polar component, and
Hence, favor the emulsification between free water and crude oil more sufficiently, which
could be proved in following microscopic analysis.
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Figure 8. The viscosity reduction rates of diluted heavy oil emulsions by light oil and light heavy oil
(50 ◦C).

Light oil showed better viscosity reduction effect on water in heavy oil emulsions
than light heavy oil as illustrated in Figure 8. For example, the viscosity reduction ratio of
light oil at the dilution ratio of 1:9 is even better than that of light heavy oil at the dilution
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ratio of 30%. The emulsification degree of heavy oil was enhanced when the water fraction
increased as illustrated in Figure 4. However, the emulsion’s stability was disrupted once
mixed with low viscosity oil. Detailed discussion and demonstration from microscopic
view are shown in Section 3.3.

3.3. W/O Droplets Stability in the Dilution Process

The W/O droplets density and their size distribution after dilution reflects demulsifi-
cation characteristics and W/O Droplets stability. Droplet size distributions were quantita-
tively analyzed as shown in Figure 9, including diameter range and median diameter.
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W/O droplets properties of diluted W/O emulsions by light oil could be summarized
as follows: the W/O droplets density decreased as the dilution ratio increased, as well
as the W/O droplets size; the demulsification process was enhanced with the increase of
light oil dilution ratio; and the W/O droplets’ stability is weakened in the dilution process,
for example, diameter ranges were (0.35, 3.75) µm, (0.35, 2.31) µm, and (0.29, 1.55) µm,
respectively when the W/O emulsions with water fraction of 60% diluted at 1:9, 2:8 and
3:7. The W/O droplets’ stability of W/O emulsions after diluting with 30% light heavy oil
were also analyzed, contrastively and complementally. Compared with the dilution results
of light oil, W/O droplets distribution was denser and the droplets size were distributed
around the larger range in the dilution process by light heavy oil. For example, the W/O
droplets’ size distributed mainly from 0.29 µm to 1.25 µm (water fraction 30%, dilution
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ratio 3:7, light oil), while the W/O droplets’ size was distributed mainly from 0.32 µm to
2.52 µm (water fraction 30%, dilution ratio 3:7, light heavy oil).

Both light oil and light heavy oil could disturb the W/O droplets stability, especially
droplets with large size. Light oil showed a stronger demulsification ability than light heavy
oil. On the contrary, the re-emulsification between free water and crude oil is pronounced
in the mixing process of W/O emulsions and light heavy oil when the water fraction is
large, which will weaken the viscosity reduction effect by dilution. Light oil is suggested as
the dilution oil for alleviating formation plugging caused by emulsification or Jamin’s effect.
The demulsification would assist the viscosity reduction effect by dilution. In summary, the
synergistic effects of the dilution effects of dissolving heavy components by light crude oil
and the weakened oil–water film stability would reduce the viscosity of W/O emulsions.

The emulsions stability mainly depends on the stability of the oil–water interfacial film,
which is closely related to interfacial electrostatic properties [66]. The interfacial electrostatic
properties are determined by the polar component aggregations on the water–oil film,
including asphaltenes, colloids, and petroleum soap with negative charges. Previous work
revealed that protrusions and aggregation of asphaltenes on the water–oil interface would
promote the emulsions stability through further enhancing the repulsive effect between
liquid droplets. In this way, adding diluent oil reduces the asphaltenes content per unit
volume, weakens the repulsive forces, and reduces the emulsion stability. Droplets repulse
each other and prevent coalescence when approaching.

Take the asphaltene for example, the asphaltene content decreased when mixing
with light crude oil in the dilution process. In this way, light crude oil could hinder the
asphaltene aggregation through weakening the interactions on water–oil interface, which
is similar with the ionic liquids’ viscosity modifiers principle of charge-transfer interactions
on the oil–water interfacial film [67,68], Theoretically, the emulsion stability in the dilution
process could be explained by the electric double layer model as illustrated in Figure 10.
The adsorption and aggregation of polar components on the oil–water interface decrease
when mixing with the light crude oil, resulting in a reduction in the charge amount on
oil–water interface. The repulsive force between W/O droplets would decrease. In this
way, droplets tend to aggregate, the water–oil film is inclined to drainage and rupture,
and finally the droplets coalesce. In addition, the W/O droplets with the larger size were
more inclined to undergo demulsification firstly, and Hence, droplets size would tend to be
uniform as illustrated in Figures 9 and 11.
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3.4. Viscosity Prediction of Diluted Water-in-Heavy-Oil Emulsions

The dilution process of heavy oil emulsions with light crude oil could be considered
as the process of mixing dead heavy oil with light crude oil at first and then emulsifying
mixtures with water. Firstly, the viscosity of dead crude oil mixtures could be calculated by
the Arrhenius model [69] as follow

µd = µ1
X1 µ2

X2 (1)

To simplify, the mass fraction of water in heavy oil emulsion and light crude oil was
calculated using the volume ratio V1, V2 as follows,

X1 =
V1(1 − ϕd)

V1(1 − ϕd) + V2
(2)

X2 =
V2

V1(1 − ϕd) + V2
(3)

where, µd is the viscosity of the crude oil mixture, mPa·s; µ1, µ2 are the viscosities of the
heavy oil and diluent oil, respectively, mPa·s; X1, X2 are the mass fractions of the heavy oil
and diluent oil, respectively.

Viscosity prediction models of diluted water-in-oil emulsions as listed in Table 3 are
obtained through combining Equation (1) with viscosity prediction models of water-in-oil
emulsions, including Einstein model, Brinkman model, Taylor model, Richardson model,
Hatschek model, Krieger–Dougherty model, Guth–Simha model, and Vand model [70,71].
Applications of viscosity prediction models above were evaluated by abundant experimen-
tal data. The viscosity prediction model performance was evaluated based on the relative
deviation and mean absolute deviation between the predicted values and the measured
ones (Table 4 and Figure 12). The Richardson model prediction showed the best accuracy
with the relative deviation of 13.8%. However, the prediction accuracy of Richardson model
significantly became poor with the water content exceeding 50%. The maximum relative
deviation was up to 44.1%.

In conclusion, the Richardson model possesses a better prediction accuracy than other
models except a great discrepancy at high water content, which was selected to furtherly
estimate viscosity of diluted W/O emulsions. The combined model of Equation (1) and
Richardson model (Table 3) was preliminarily proposed for viscosity prediction of diluted
water in heavy oil emulsions.

µm = µ1
X1 µ2

X2 exp(2.5ϕd) (4)
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Table 3. Viscosity prediction models of diluted water-in-oil emulsions.

Model Formula

Richardson µm = µ1
X1 µ2

X2 exp(2.5ϕd)

Einstein µm = µ1
X1 µ2

X2 exp(1 + 2.5ϕd)

Brinkman µm = µ1
X1 µ2

X2 (1 − ϕd)
− 5

2

Taylor µm = µ1
X1 µ2

X2 (1 + 2.5 µd+0.4µc
µd+µc

ϕd)

Hatschek µm =
µ1

X1 µ2
X2

1− 3√ϕd

Krieger-Dougherty µm = µ1
X1 µ2

X2 (1 − ϕd/0.7)−1.5

Guth-Simha µm = µ1
X1 µ2

X2 (1 + 2.5ϕd + 14.1ϕd
2)

Vand µm = µ1
X1 µ2

X2 (1 + 2.5ϕd + 7.31ϕd
2 + 16.2ϕd

3)

Table 4. Prediction error results of different viscosity prediction models for water-in-oil emulsions.

Dilution
Ratio

Water
Content

Experimental
Value by
Dilution

Relative Deviation, %

Einstein Brinkman Taylor Richardson Hatschek Krieger-
Dougherty

Guth-
Simha Vand

1:9 30% 1973 −3.2 26.9 −26.6 13.5 63.4 20.1 56.2 46.1

2:8 30% 1392 4.9 30.2 −18.7 19.5 73.2 23.1 58.2 47.2

3:7 30% 1067 6.1 25.5 −15.8 17.6 71.6 18.8 49.4 39.0

4:6 30% 915 −16.6 −5.6 −32.1 5.1 53.9 4.7 27.8 19.4

5:5 30% 747 −33.8 −27.7 −44.6 0.0 46.6 −1.3 16.3 9.5

1:9 40% 2963 −29.3 13.5 −49.4 −8.5 28.9 9.9 38.7 34.1

2:8 40% 2010 −22.6 12.7 −43.2 −4.4 36.0 7.4 39.4 32.3

3:7 40% 1385 −14.6 14.2 −35.7 1.2 45.3 8.1 40.9 32.1

1:9 50% 3488 −35.8 34.6 −56.2 −7.0 29.3 41.5 50.4 53.5

2:8 50% 2400 −32.8 20.4 −53.0 −8.7 27.6 19.7 42.9 41.3

3:7 50% 1495 −19.4 26.2 −41.9 3.1 45.6 21.6 54.9 49.0

4:6 50% 1198 −38.1 −13.7 −54.0 −6.5 33.6 2.3 33.4 25.7

5:5 50% 809 −51.4 −38.6 −62.6 −44.1 −19.2 −42.0 −25.0 −30.2

1:9 60% 6111 −62.0 12.8 −75.1 −37.6 −12.8 48.1 4.6 13.9

2:8 60% 3555 −54.5 6.2 −69.3 −31.3 −4.6 17.5 12.8 17.5

3:7 60% 1916 −37.7 18.6 −56.8 −13.1 21.0 20.1 37.9 38.0

Mean absolute deviation, % 28.9 20.5 45.9 13.8 38.3 19.1 36.8 33.0

Viscosity prediction results based on Equation (4) under varying experimental temper-
atures are described in Figure 12, including diluted water in heavy oil emulsions by light
oil (12 mPa·s) or light heavy oil (248 mPa·s). Predicted viscosity values of diluted water in
heavy oil emulsions by light oil (12 mPa·s) are larger than measured values, while predicted
viscosity values of diluted water in heavy oil emulsions by light heavy oil (248 mPa·s) are
smaller than measured values. At the same time, the discrepancy between the predicted
values and the measured values seem to have been influenced by the dilution ratio and
water fractions. Reasons could be related to the emulsification and demulsification in
Section 3.3. The demulsification is obvious in the mixing process of water in heavy oil emul-
sions and light oil, which benefits the viscosity reduction by dilution. The re-emulsification
between free water and crude oil is pronounced in the mixing process of water in heavy oil
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emulsions and light heavy oil, which weakens the viscosity reduction by dilution. Hence,
influences of water fractions, dilution oil viscosity and dilution ratio should be taken into
full consideration when modifying the viscosity prediction model.
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Figure 12. Predicted values by Richardson model and experimental values for W/O emulsion by
dilution with varying water fractions (30~60%) and varying temperatures (50~80 ◦C).

In consideration of viscosity underestimation and overestimation of Equation (4) at
the high-water content, our improved model introduces correction coefficients to weaken
the influence of water content at low levels and strengthen its influence at high levels.
Additionally, the logarithmic transformation of the viscosity and water content values after
mixing indicates a power-law relationship between the two models. It could be concluded
that the viscosity prediction accuracy is influenced by the demulsification process caused
by the dilution ratio and dilution oil’s viscosity. The modified viscosity prediction model
with variable constants of coefficients is designed as below:

µm = c1µX1
1 µX2

2 exp(c2ϕd)
c3 (5)

where c1, c2, and c3 are variable constants. Each group of variable constants are obtained
through fitting the experimental data of diluted W/O emulsions with varying water
fractions under a certain temperature.

Comparison results between predicted viscosity of the modified model and exper-
imental measured viscosity were shown in Figure 13 and Table 5. In addition, almost
every correlation index R2 in each temperature group is larger than 98%, indicating a good
applicability of viscosity prediction. Hence, Equation (5) is proposed to better suit the
viscosity prediction of diluted W/O emulsions with considering sort of factors, including
dilution ratio, water fractions, and dilution oil types.
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Figure 13. Predicted viscosity values by the modified model and experimental values for diluted
W/O emulsion with varying water fractions (30~60%) and varying temperatures (50~80 ◦C).

Table 5. Values of correlation index R2 are listed in table.

Light Crude Oil Type Temperature/◦C
Variable Coefficients

R2
c1 c2 c3

Light heavy oil
(248 mPa·s, 50 ◦C)

50 1.231 2.342 2.035 94.13%

60 1.125 2.481 1.872 98.43%

70 1.048 2.609 1.706 98.53%

80 0.999 2.717 1.556 98.63%

Light oil
(12 mPa·s, 50 ◦C)

50 1.018 2.074 2.815 98.59%

60 1.148 1.994 3.228 98.61%

70 1.369 1.934 3.853 98.15%

80 1.424 1.920 3.750 97.04%

4. Conclusions

In our study, one heavy oil sample and two light crude oil samples from Bohai oil field
were chosen to conduct the rheological tests and microscopic analysis, as well as mixing
samples of heavy oil emulsions with varied water fractions and light crude oil. The dilution
method could be used for emulsions transportation in pipeline, low viscosity oil injection
for heavy oil recovery through huff-n-puff or assisting thermal technology. Remarked
conclusions are summarized as follows,

(1) The heavy oil emulsions viscosity increased from 1453 mPa·s to 9854 mPa·s as the water
fractions range from 0% to 60%. Furthermore, the W/O droplets size distribution range
increased with the water content increasing, reflecting the W/O droplets stability.

(2) Mixing with light crude oil could reduce the viscosity of heavy oil emulsions and
improve the flowability effectively. The viscosity reduction rate by dilution increased
as the water content increased when the water fraction was less than 60%.

(3) The microscopic analysis about W/O droplets distribution and their size could reveal
that the dilution process probably affects the oil–water film stability by adjusting
interfacial electrostatic properties, as well as the repulsion between W/O droplets. The
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demulsification would assist the viscosity reduction effect by dilution. In conclusion,
the synergistic effects of the dilution effects of dissolving heavy components and the
weakened oil–water film stability in the dilution process would reduce the viscosity
of W/O emulsions.

(4) The poor performance of the Richardson model for predicting viscosities of diluted
water in heavy oil emulsions may be related to the emulsification between free water
and crude oil and demulsification. The modified Richardson model which introduced
coefficients of variable constants showed a significant improvement of prediction
accuracy, especially for diluted water in heavy oil emulsions with large water fractions.
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Nomenclature

µd The viscosity of the diluted heavy oil, mPa·s
µ1, µ2 The viscosity of heavy oil, the viscosity of diluent oil, mPa·s
X1, X2 The mass fraction of heavy oil, the mass fraction of diluent oil
µm The viscosity of the mixture of heavy oil and diluent oil, mPa·s
µc The viscosity of crude oil, mPa·s
ϕd The water content ratio
c1, c2, c3 Variable constants
X1, X2 the volume fraction of heavy oil, the volume fraction of diluent oil
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