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Abstract: A discharging circuit with high energy efficiency is designed for supercapacitors. In this
design, the capacitors are connected in parallel during charging and connected in series during
discharging. With this method, the voltage of the capacitors in series becomes two times larger during
discharging; thus, the step-down circuit can be used to produce the desired output voltage. The
efficiency of the step-down circuit is four times larger than that of the step-up circuit in simulations.
The experimental results agree well with the theoretical values. These results show that a step-down
circuit is superior to a step-up circuit for extracting electrical energy from supercapacitors.

Keywords: extracting energy from supercapacitors; step-down circuit; step-up circuit; series–parallel
conversion

1. Introduction

Recently, the storage of renewable energy has become an important issue [1–15]. To
store this energy, supercapacitors are important due to their large power density, which
is 10 times larger than that of lithium-ion batteries [1,3,9]. Moreover, their operating
temperature has a wider range [3]. The lifetime of supercapacitors is 1,000,000 cycles [4],
while that of lithium-ion batteries is about 5000 cycles [5,6], and their energy density is
currently about 17 Wh/kg [2], which is 20% that of iron phosphate lithium-ion batteries
at 100 Wh/kg [7]. However, this energy density is not a serious problem when they are
used in a sufficiently wide space. These advantageous characteristics make supercapacitors
very suitable for storing energy from renewable resources. However, there is a problem
in that the energy-stored capacitor voltage decreases when a supercapacitor is discharged.
Therefore, a step-up circuit is usually used to maintain the output voltage. However, the
discharging method with a step-up circuit is not the only one that uses two supercapacitors.
Another method uses capacitors that are connected in parallel during charging and in series
during discharging. With this series–parallel conversion method [16,17], the capacitor
voltage becomes two times larger during discharging; thus a step-down circuit can be used
to produce the desired output voltage. In this paper, we investigate which method, the
step-up or step-down method, is better from the viewpoint of power efficiency.

2. Theoretical Analysis

Figure 1 shows a step-down circuit, which has two switching transistors (S1 and S2),
an inductor, and a load resistor RL [18,19]. The power supply voltage is VDD. The S1 and
S2 transistors are turned on alternately. The inductor has inductance L and resistance Rind.
The switching transistor is set to be ideal like a mechanical switch, and the on-resistance in
the transistor is Ron. The ratio between the time when S1 is ON and a period is defined as
the duty ratio d. Then, the output voltage Vout is equal to dVDD. The inductor current i is
almost constant in the steady state.
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resistor RLi  is investigated. The current through the capacitor in Figure 2a is defined as 

1Ci . The direction of the current flowing from the top to the bottom of the capacitor is 

defined as positive. From the current law, we have 1 .C RLi i i= +  Next, we consider the 

current law in Figure 2b. The current through the capacitor in Figure 2b is defined as 2Ci . 

The positive direction is the same as from top to bottom. Then, we have 2 0C RLi i+ =  in 

Figure 2b. Using the law of charge conservation at the capacitor, we have: 

1 2(1 ) 0.C Cdi d i+ − =  (1) 

 

Figure 2. Step-up circuit: (a) 1S  is closed; (b) 2S  is closed. 

The value of 1Cdi  is equal to the charge amount from the power supply to the capac-

itor when 1S  is ON, and 2(1 ) Cd i−  is equal to the charge amount from the capacitor to 

the load resistor when 2S  is ON. Therefore, using (1), we have:  
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Figure 1. Step-down circuit: (a) S1 is closed; (b) S2 is closed.

Figure 2 shows a step-up circuit, which has two switching transistors (S1 and S2), an
inductor, a capacitor, and a load resistor. The inductor has inductance L and resistance
Rind. Similar to the step-down circuit, the ratio between the time when S1 is ON and a
period is defined as d. In this circuit, the output voltage is equal to VDD/d. When S1 or S2
is turned on, the inductor current i flows as shown in Figure 2a or Figure 2b, respectively.
The current i is also almost constant in the steady state. Here, the current through the load
resistor iRL is investigated. The current through the capacitor in Figure 2a is defined as iC1.
The direction of the current flowing from the top to the bottom of the capacitor is defined
as positive. From the current law, we have i = iC1 + iRL. Next, we consider the current law
in Figure 2b. The current through the capacitor in Figure 2b is defined as iC2. The positive
direction is the same as from top to bottom. Then, we have iC2 + iRL = 0 in Figure 2b.
Using the law of charge conservation at the capacitor, we have:

diC1 + (1 − d)iC2 = 0. (1)
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Figure 2. Step-up circuit: (a) S1 is closed; (b) S2 is closed.

The value of diC1 is equal to the charge amount from the power supply to the capacitor
when S1 is ON, and (1 − d)iC2 is equal to the charge amount from the capacitor to the load
resistor when S2 is ON. Therefore, using (1), we have:

iRL = −iC2 =
d

1 − d
· iC1. (2)

Then, we have:

i = iC1 + iRL = iC1 +
d

1 − d
· iC1 =

1
1 − d

· iC1 =
iRL
d

. (3)
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Therefore, we have the following relationship in the circuit shown in Figure 2:

iRL = di. (4)

This relationship was confirmed in SPICE simulations, as shown in Figure 3. In the
simulation, i was a constant 5 A and d was 0.8. Then, iRL was equal to 4 A. When S1 was
ON (1 ≦ t ≦ 9 µs), iC1 was 1 A. During this time, i = iC1 + iRL was satisfied. When S2 was
ON (9 ≦ t ≦ 11 µs), iC2 was −4 A.
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Figure 3. Current waveforms of inductor current (red line), load resistor current (blue line), and
capacitor current (green line).

The relationship iC2 + iRL = 0 was also satisfied during this time. From the simulation,
the described equation could be confirmed.

Next, the energy efficiency of the step-down circuit ηdn was considered. The current
trough load resistor is a constant i. Then, the output power Pout is RLi2. The input power
Pin is the sum of the power consumption of Roni2, Rindi2, and RLi2. Then, ηdn is derived as
Pout/Pin and written as:

ηdn =
RL

Ron + Rind + RL
. (5)

The energy efficiency of the step-up circuit ηup can be calculated in the same way. This
time, the current trough load resistor is written as di from (4). Then, ηup is derived as:

ηup =
RLd2

Ron + Rind + RLd2 . (6)

Next, we investigated the energy efficiency in a SPICE simulation. During the step-
down simulation, the power supply voltage was set to 5 V and the output voltage was 3 V.
During the step-up simulation, the power supply voltage was set to 2.5 V and increased
to 3 V. L was set as 1 H. Rind was set as 1 or 0.01 Ω. RL was set as 10 Ω. Ron was changed,
with values of 0.01, 0.05, 0.1, and 0.5 Ω. On the other hand, the value of the off-resistance in
the transistor was 10 MΩ. The power efficiency was calculated as Pout/Pin in SPICE. The
simulation and analytical results of ηdn and ηup from (5) and (6) are shown in Tables 1 and 2,
respectively. They were perfectly consistent with each other. For a clear understanding of
the dependence of Ron, the simulation results are shown in Figure 4. The graph shows that
the step-down circuit exhibits better efficiency than the step-up circuit.
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Table 1. Comparison of the step-down circuit efficiency between theory and SPICE simulation.

Ron (Ω) Rind = 1 (Ω) Rind = 0.01 (Ω)

SPICE Theory SPICE Theory

0.01 0.9082 0.9083 0.9979 0.9980

0.05 0.9049 0.9050 0.9939 0.9940

0.1 0.9008 0.9009 0.9890 0.9891

0.5 0.8695 0.8696 0.9514 0.9514

Table 2. Comparison of the step-up circuit efficiency between theory and SPICE simulation.

Ron (Ω) Rind = 1 (Ω) Rind = 0.01 (Ω)

SPICE Theory SPICE Theory

0.01 0.8236 0.8237 0.9970 0.9971

0.05 0.8143 0.8145 0.9911 0.9913

0.1 0.8035 0.8037 0.9838 0.9839

0.5 0.6862 0.6864 0.9187 0.9189
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Figure 4. Power efficiencies of the step-down and step-up circuits as a function of Ron.

The efficiencies increased when the resistance values (Rind and Ron) decreased. When
both Rind and Ron were 0.01 Ω, the efficiency reached almost 100%.

Next, the dependence of RL was investigated. The values of Rind and Ron were set to
0.01 and 0.05 Ω, respectively. Figure 5a shows the efficiency of the step-down circuit as a
function of RL when the power supply voltage of 5 V was reduced to an output voltage of
4 V. The simulation and theoretical results are shown as solid and dashed lines, respectively,
and they were extremely consistent with one another. Figure 5b shows the efficiency of the
step-up circuit when the power supply voltage of 2.5 V was increased to the same output
voltage of 4 V. The simulation and theoretical values are shown as solid and dashed lines,
respectively. They agreed well with one another. When RL =0.8 Ω, the efficiencies of the
step-down and step-up circuits were 93 and 72%, respectively. These efficiencies meant that
the energy loss decreased to 1/4. This result shows that the step-down circuit is superior to
the step-up circuit for producing the same output voltage of 4 V.
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Figure 5. Power efficiency as a function of RL: (a) the step-down circuit; (b) the step-up circuit.

Figure 6 shows the simulation results of the efficiencies of the step-down and step-up
circuits as a function of RL with two output voltages of 3 and 4 V. Regarding the step-down
circuit, the power supply voltage was set to 5 V. The efficiencies from 5 to 3 V and from 5
to 4 V were consistent with one another. This is well understood using (5). Equation (5)
does not include d, which means that ηdn is not dependent on d. In other words, ηdn is not
dependent on the output voltage. Therefore, whether the output voltage was 3 or 4 V, ηdn
had the same value when RL was the same.
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Figure 6. Comparison of power efficiencies between the step-down and step-up circuits as a function
of RL.

Regarding the step-up circuit, the power supply voltage was set to 2.5 V. The simulated
efficiency from 2.5 to 4 V was much lower than that from 2.5 to 3 V. This was due to the
fact that (6) includes d, which means that ηup is dependent on d. When the output voltage
increases, d is decreased via the relationship Vout = VDD/d. Therefore, it is understood
from (6) that the theoretical efficiency becomes smaller when the output voltage increases.
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3. Experimental Results

Next, the experimental efficiency was measured with a breadboard. Regarding the
step-down circuit, a pMOS transistor (2SJ438) and a diode (2GWJ42) were used for S1 and
S2. As an inductor, a toroidal coil of 100 µH was used. The values of RL were 12, 20, and
50 Ω. The power supply voltage was 18 V and decreased to an output voltage of 12 V.

Regarding the step-up circuit, the same diode and an nMOS transistor (2SK2231) were
used for S1 and S2. The same toroidal coil was used as the inductor. As the capacitor, an
aluminum electrolytic capacitor was used, where C was 100 µF. The power supply voltage
was 8 V and was increased to the same output voltage of 12 V.

To turn the MOS transistor on, a pulse width modulation (PWM) signal was used,
which was produced from a microprocessor (PIC16F627A). Using the PIC, the value of d of
the pulse could be changed digitally. Figure 7 shows the experimental step-up circuit with
a breadboard. In the circuit, the diode and the nMOS transistor were used.
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The experimental results are shown as blue lines in Figure 8. When RL decreased
or, in other words, the power consumption increased, the efficiency decreased rapidly.
The efficiency of the step-down circuit was larger than that of the step-up circuit when
RL was the same or, in other words, the output power was the same. This was the same
characteristic as already discussed in Figure 6. This result showed that discharging from
series capacitors with a step-down circuit is superior to discharging from parallel capacitors
with a step-up circuit.

Next, we considered the theoretical efficiency using the experimental physical param-
eters. In (5), Ron was assumed to be constant. However, in the step-down experiment, the
average resistance of the pMOS and the diode Rdn had to be considered. The ratio when
the pMOS or the diode was turned on was d or 1 − d, respectively. Therefore, Rdn was
calculated as:

Rdn = dRpMOS + (1 − d)RD, (7)

where dRpMOS and RD are the on-resistance in the pMOS transistor and the diode resistance,
respectively. When RL was 12, 20, and 50 Ω, iRL was 1.0, 0.6, and 0.24 A, respectively,
due to an output voltage of 12 V. These values were calculated from Vout = RLiRL. The
experimental iRL was well consistent with these values. The values of RpMOS and RD
were calculated with iRL from the equipment datasheets of 2SJ438 and 2GWJ42. Next, we
considered the value of d. When the output voltage was 12 V, d could be estimated from
the experiment. The values of d at RL = 12, 20, and 50 Ω were calculated as 0.80, 0.72, and
0.67, respectively. When RL was comparatively large, such as 50 Ω, it was confirmed that
the output voltage of 12 V was consistent with 0.67 × 18 V or, in other words, dVDD. Using
d, Rdn was calculated as 0.172, 0.297, and 0.827 Ω at RL = 12, 20, and 50 Ω, respectively.
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Similarly, in the step-up experiment, the average resistance of the nMOS and the diode
Rup had to be considered. The ratio when the nMOS or the diode was turned on was 1 − d
or d, respectively. Therefore, Rup was calculated as:

Rup = (1 − d)RnMOS + dRD, (8)

where RnMOS is the on-resistance in the nMOS transistor. When the output voltage was
12 V, d was also derived from the experiment. The values of d at RL = 12, 20, and 50 Ω were
calculated as 0.40, 0.54, and 0.66, respectively. When RL was comparatively large, such as
50 Ω, it was confirmed that the output voltage of 12 V was consistent with 8 V/0.67 or,
in other words, VDD/d. Using the measured power supply current, which was equal to
i, RnMOS and RD were calculated from the equipment datasheet of 2SK2231 and 2GWJ42.
Using these resistance values and d, Rup was calculated as 0.172, 0.297, and 0.827 Ω at
RL = 12, 20, and 50 Ω, respectively. Inserting Rdn and Rup into (5) and (6) instead of Ron, the
theoretical efficiency could be calculated and is shown as the red lines in Figure 8. These
values were almost consistent with the experimental values.

4. Conclusions

In this paper, it is clarified using a theoretical method, circuit simulations, and experi-
ments that discharging series capacitors with a step-down circuit is better than discharging
parallel capacitors with a step-up circuit from the aspect of power efficiency.

This circuit can be applied in various situations. For example, an IoT (Internet of
Things) society is being realized through innovative sensing technologies. A battery-less
energy storage system using supercapacitors is useful for an IoT system. This is because
supercapacitors have long service lives with a large number of charge and discharge cycles,
and they are maintenance-free. The proposed circuit, which can efficiently charge energy
into a supercapacitor and discharge energy from the supercapacitor, will be widely used in
the future.

Other applications of supercapacitors are electric cars. They are already being used in
electric vehicle hybrid systems and will be widely used in the future, not only for passenger
cars and buses, but also for cranes, bulldozers, and excavators.

Capacitors are also useful in overhead wireless trains. Rapid charging systems with
raised pantographs at stops will be widespread in the future.
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A further important application is the storage of renewable energy, such as wind
energy and solar power. Supercapacitors based on carbon elements have an advantage in
that they are easier to recycle than battery cells. This means that the mass production of
supercapacitors will not encounter major problems related to disposal. In a supercapacitor
energy storage system, the highly efficient charge–discharge system based on series–parallel
capacitor conversion proposed in this study would be extremely useful.

A future problem is the circuit design of series–parallel capacitor conversion. Whether
transistors or mechanical relays should be used as switching devices should be considered
in terms of cost, service life, and safety. The number of capacitors for series–parallel
conversion was assumed to be two in this study, but it could also be four or more. The
number of capacitors or capacitor modules is an issue that should be studied in the future
from the perspectives of energy efficiency and circuit design.

By studying these issues, the proposed series–parallel capacitor conversion system is
expected to make a significant contribution to solving problems in a wide range of energy
fields, from the IoT to power sources for cars and trains and renewable energy storage.
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