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Abstract: Thermoelectricity can assist in creating comfortable thermal environments through wearable
solutions and local applications that keep the temperature comfortable around individuals. In the
analysis of an indoor environment, thermal comfort depends on the global characteristics of the indoor
volume and on the local thermal environment where the individuals develop their activity. This paper
addresses the heat transfer mechanisms that refer to individuals, which operate in their working
ambient when wearable thermoelectric solutions are used for enhancing heating or cooling within the
local environment. After recalling the characteristics of the thermoelectric generators and illustrating
the heat transfer mechanisms between the human body and the environment, the interactions between
wearable thermoelectric generators and the human skin are discussed, considering the analytical
representations of the thermal phenomena. The wearable solutions with thermoelectric generators
for personal thermal management are then categorized by considering active and passive thermal
management methods, natural and assisted heat exchange, autonomous and nonautonomous devices,
and direct or indirect contact with the human body.

Keywords: wearable thermoelectric generator; thermal comfort; local thermal environment; convective
heat transfer coefficient; thermal sensation; personal thermal management

1. Introduction

A thermoelectric generator (TEG) is a solid-state device that operates due to the See-
beck phenomenon to harvest electrical energy by converting the temperature difference
∆T determined by human body heat (considered as a heat source) and surrounding con-
ditions into voltage ∆V [1]. The parameter called the Seebeck coefficient or thermopower
is S = −∆V

∆T . The TEG device generates electricity in direct current (DC) as long as there
is a temperature difference between its sides. In this way, the TEG operates due to the
movement of the charge carriers (electrons and holes) within one or more thermoelement
pairs (or thermocouples) connected together. The two thermoelements that form the pair
are made of semiconductor materials (N-type and P-type) connected to each other at one
end through a metallic strip (or copper interconnect or metal electrodes), forming a junction
(as shown in Figure 1). When the junction is subject to a temperature gradient, the heat
carriers (electrons and holes) begin to move through the two thermoelements. In the N-type
thermoelement of a TEG, there is an excess of negative charge carriers, i.e., electrons. These
electrons are set in motion by the temperature gradient and migrate from the hotter side
to the colder side, creating an electrical potential. In the P-type thermoelement, there
is an excess of positive charge carriers, i.e., holes, which also move in response to the
temperature gradient, generating an electrical potential. Both electrons and holes move in
the same direction under the same temperature gradient, and this results in the creation of
a difference of potential at the TEG terminals.

The thermoelements are arranged in a regular matrix inside the TEG and are connected
electrically in series and thermally in parallel. In addition, the thermocouple is placed
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between two ceramic plates or ceramic substrates. The ceramic plates are excellent electrical
insulators and maintain the thermoelements insulated from the electrical point of view. At
the same time, the ceramic plates are good conductors from a thermal point of view. In
addition, the ceramic plates serve as mechanical support upon which the thermoelements
are mounted. The common ceramic plate is made of aluminum oxide (Al2O3). A tem-
perature gradient between the ceramic plates leads to a temperature difference along the
thermoelements. Keeping an appropriate temperature gradient along the thermoelements,
a heat sink is usually attached to the cold side of the TEGs to speed up the heat dissipation.
The higher output voltage and electric power are obtained by rising ∆T between the heat
source and the heat sink.

An electrical load having resistance RL can be connected to the output terminals of
TEG, creating an electric circuit in which there is the circulation of a current.
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Figure 1. Sketch of the traditional TEG device (
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Qh¯the incoming heat flow at the hot side of TEG;
.

Qc¯the outcoming heat flow at the cold side of TEG) [2].

The efficiency of the thermoelectric material is gauged by the dimensionless figure
of merit ZT, which depends on the three transport properties of the material (electrical
conductivity σ, thermal conductivity k, and Seebeck coefficient S), as well as the mean
absolute temperature T, and is given by the following equation:

ZT =
S2·σ·T

k
(1)

The mean absolute temperature T is the arithmetic mean between the temperature Th
at the hot side and the temperature Tc at the cold side.

The product S2σ is the power factor, representing the main parameter to evaluate the
performance of the thermoelectric materials. A thermoelectric material requires high-power
factor (high S and high σ), and low k. The thermal conductivity of a semiconductor depends
on the charge carriers’ thermal conductivity and the lattice’s thermal conductivity:

k = kcharge carrier + klattice (2)
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The charge carrier thermal conductivity depends on the Lorenz constant L, the electrical
conductivity σ and the absolute temperature according to the Wiedemann–Franz law:

kcharge carrier = L·σ·T (3)

The thermal conductivity of the lattice is given by:

klattice = a·cp·ρ (4)

where a is the thermal diffusivity, cp is the specific heat at constant pressure and ρ is
the density.

There is no theoretical limit for the dimensionless figure of merit, but the most efficient
semiconductor materials used today have values around unity at room temperature.

The conversion efficiency of the TEGs depends on the dimensionless figure of merit
and the temperature difference along the thermoelements, ∆T = Th − Tc.

The maximum theoretical conversion efficiency of a TEG is given by:

ηmax =

(
Th − Tc

Th

)
·
√

1 + ZT − 1√
1 + ZT + Tc

Th

= ηC·
√

1 + ZT − 1√
1 + ZT + Tc

Th

(5)

where ηC is the Carnot efficiency, which represents a superior limit on using waste heat for
thermoelectric power generation [3]. The maximum theoretical conversion efficiency of the
TEG is directly influenced by ∆T. Raising ∆T along the thermoelements, the maximum con-
version efficiency of the TEG rises. To regulate ηC, one of the most encouraging approaches
is the analysis of the structural design of the thermoelements with respect to the optimal
ratio of the cross-sectional area of the P-type (SP) and N-type (SN) thermoelements [4]. The
optimal ratio is given by:

SN

SP
=

√
σP·kP

σN·kN
(6)

Structural design classifies TEGs into two categories: flexible TEGs and rigid TEGs.
The rigid TEGs have a sandwich structure, while flexible TEGs feature a thin-film structure
or fabric-based construction. Furthermore, rigid TEGs are used in powering medical
equipment, while flexible TEGs are used for powering wearable equipment [4,5]. In the case
of rigid TEGs, the thermoelements are linked using copper strips and are placed between
ceramic plates such as alumina (with a thermal conductivity of approximately 30 W/(m·K)
or aluminum nitride (with thermal conductivity of approximately 285 W/(m·K)) [6]. For
the flexible TEGs, the rigid substrates are eliminated, and the gap between thermoelements
is filled with filler material (e.g., flexible polymers with very low thermal conductivity,
while the exposed copper strips are into contact with the body’s skin [4]). In flexible TEGs,
a liquid metal interconnect made of a gallium and indium eutectic alloy (EGaIn) has been
used, providing both flexibility and self-healing properties that maintain the TEG module’s
integrity even after enduring significant strains [7]. The two most used flexible substrates
are polydimethylsiloxane (PDMS) and Kapton HN. However, compared to rigid substrates,
flexible substrates can hinder the transfer of heat from the human body to the TEG due
to their higher thermal resistance [8]. The flexible TEG has both a cross-plane structural
design and an in-plane structural design, while rigid TEG has a cross-plane structural
design [1,9]:

# In the cross-plane structural design, the thermoelements are placed perpendicularly
to the substrate. For a curved surface, the cross-plane structural design has a high
flexibility degree, which can bend up to 2 mm in radius for a curved surface. For this
reason, the cross-plane structural design is more adequate for human body energy
applications than the in-plan structural design.
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# In the in-plane structural design, the thermoelements are parallel to the substrate.
Due to the low ∆T between the hot and cold sides in the cross-plane structural design,
this design cannot generate more power.

The TEG device has several benefits considering it is portable, noiseless, and requires
no maintenance [10]. These advantages are also useful for a wearable TEG (w-TEG), which
converts the heat generated by the human body into electricity. The w-TEG is used as a battery
booster or as a single power source in many wearable electronic devices (e.g., multisensory
electronic skin [11], glucose sensors [12], and electrocardiogram sensors [13,14]).

The design and fabrication of TEG devices are limited by the type of material. The
utilization of inorganic materials (e.g., bismuth telluride (Bi2Te3) [15,16] and antimony
telluride (Sb2Te3) [17,18], lead telluride (PbTe), and germanium telluride (GeTe). Even if
these materials have high performance with superior stability at ambient temperature,
they are mechanically rigid and require advanced techniques to manufacture the wanted
thermoelement structure [19]. For this reason, it is difficult enough to integrate inorganic
semiconductors into flexible w-TEGs for harvesting energy from irregular surfaces (e.g.,
the human wrist) [13]. Inorganic semiconductors are toxic, scarce, and expensive, with
relatively poor processability, limiting their large applications. In addition, inorganic semi-
conductors have high thermal conductivity from about 1.2 to 1.6 W/(m·K) [20]. Conversely,
organic materials, recently exploited in power generation applications, are considered good
candidates due to their light weight, flexibility, processibility, low-cost manufacturing,
and abundant raw material. In addition, organic materials have a thermal conductivity of
around 0.5 W/(m·K), being very close to the lower limit of inorganic materials [21,22].

This paper contains a review of the application of w-TEG devices for personal ther-
mal management. Unlike other review papers, which have focused on thermoelectric
technologies and applications with details on specific materials and devices, this paper
takes a different approach. Starting with the heat transfer principles that underlie the
interaction between thermoelectric devices and the human body, this paper discusses the
implications of using w-TEG for local thermal comfort. Specific applications of wearable
thermoelectric devices for monitoring the biophysical parameters [23] or to optimize the
design of thermoelectric devices [24] are outside the scope of this paper.

The next sections of this paper are organized as follows: Section 2 discusses the heat
transfer mechanisms between the human body and the environment, which are important
for understanding how to use the human body as a heat source for w-TEGs. Section 3
addresses the interactions between w-TEG and the human skin, recalling the thermal
analytical representations. Section 4 summarizes the use of w-TEGs for personal thermal
management. The last section contains the conclusions.

2. Basic Principles of Human Body Dry Heat Transfer to the Environment: Harnessing
the Human Body as a Heat Source for Wearable TEGs
2.1. Heat Transfer Mechanisms

Heat transfer from the human body to the surroundings is vital for the human body’s
thermoregulation. The human thermoregulatory system utilizes a range of coordinated
physiological mechanisms. These mechanisms are:

■ Insulation, which slows down the transfer of heat from the body, helping maintain a
comfortable internal temperature.

■ Sweating, which cools the body through the evaporation of water.
■ Shivering, which generates heat via muscle contraction.
■ Vasodilation and vasoconstriction, which regulate blood flow and distribute heat

throughout the body.

When the body’s core temperature rises, mechanisms such as sweating and vasodila-
tion are activated to cool the body. Conversely, when the core temperature falls, the system
initiates mechanisms like shivering and vasoconstriction that warm the body [25]. The
physiological mechanisms serve as the functional tools the body deploys to execute its
thermoregulatory responses.
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The human body continuously produces heat through metabolic processes—the chem-
ical reactions within our cells. This metabolic heat is essential to sustain the body’s core
temperature, which, for optimal function, should remain around 37 ◦C (homeothermy).
Metabolic heat, also known as metabolic rate, is measured in metabolic equivalents (Met).
For example, a sleeping person’s metabolism is roughly 46 W/m2 (0.8 Met), a person
sitting in an office has around 70 W/m2 (1.2 Met), and during intense physical activity, the
metabolic rate can spike up to 550 W/m2 (9.5 Met) [26]. Metabolic heat production in the
human body directly influences the subsequent heat transfer processes, as it determines
the amount of heat that needs to be dissipated to maintain the core temperature. The body
utilizes several processes for heat transfer, including conduction, convection, radiation, and
evaporation. Understanding these mechanisms is crucial, especially in fields like garment
design and safety gear. These insights also influence the design of environmental control
systems, such as heating, ventilation and air conditioning systems, and lighting, ensuring
optimal comfort for the occupants [21].

2.2. Conductive Heat Transfer

Conductive heat transfer takes place when a part of the body comes into contact with
a solid surface in the environment. Conductive heat exchange depends on the surface area
of body parts in direct contact with external surfaces, and it is typically minimal.

In steady-state conditions, the conductive thermal flux density is expressed by the
following equation:

.
qcond = k·(tskin − tsurface) (7)

where k is the thermal conductivity in W/(m·K), which is influenced by the thermal
properties of both the skin and the solid surface and by the contact solid surface area,
tskin is the temperature of the skin body in ◦C, and tsurface is the temperature of the solid
surface in ◦C. In transient conditions, the heat that is exchanged between the skin and the
solid surface depends on the thermal inertia of the material. The Merriam-Webster online
dictionary defines “thermal inertia” as “the degree of slowness with which the temperature
of a body approaches that of its surroundings and which is dependent upon its absorptivity,
its specific heat, its thermal conductivity, its dimensions, and other factors” [27]. In other
words, thermal inertia expresses how quickly a material can absorb or release heat. With
higher thermal inertia, more heat is transferred to the skin or removed from the skin. If there
is only a small surface area of the body in contact with another material (e.g., a person who
is standing), and that material has low thermal inertia, then a small amount of conductive
heat will be transferred. On the other hand, if a higher surface area of the body is in contact
with a material (e.g., a person lying down on a surface) and that material has high thermal
inertia, then a significant amount of conductive heat will be transferred [21,28].

2.3. Convective Heat Transfer

Convective heat transfer refers to the process of carrying heat away from the skin to
the surrounding air. The convective thermal flux density from the skin to the surrounding
air is expressed by the following equation:

.
qconv = hc·

(
tskin − tsurr air

)
(8)

where tsurrair is the temperature of the surrounding air, and hc is the convective heat transfer
coefficient, which, according to (8), is the ratio of the convective thermal flux density to
the temperature difference from the skin to the surrounding air [29]. The greater the
temperature difference between the skin and the surrounding air, the faster the rate of
convective heat loss. This is because a larger temperature difference results in a stronger
convective current, accelerating the heat transfer process.
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For the dressed human body, the convective thermal flux density from the clothes to
the surrounding air is expressed by the following equation:

.
qconv = fclo·hc·

(
tclo − tsurr air

)
(9)

where fclo represents the clothing area factor, which represents the ratio between the clothed
body surface area compared to the unclothed body surface area. The clothing area factor is
estimated as fclo = 1 + 0.3·Iclo, where Iclo is the intrinsic clothing ensemble insulation, in
clo ( fclo = 1 for the unclothed body surface area), and tclo is the mean surface temperature
of the clothed body.

Convective heat transfer from the skin or clothing occurs when moving air perturbs
the insulating boundary layer of air around the body’s surface. The more rapid the airflow
around the body, the narrow the boundary layer on the body’s surface, leading to lower
thermal insulation for the individual [30].

Convection from the human skin or clothing can be divided into the following types:

- Natural convection occurring for the air velocity w < 0.2 m/s;
- Forced convection occurring for the air velocity w > 1.5 m/s;
- Mixed-mode convection, which takes place at air velocity 0.2 < w < 1.5 m/s.

Now, having outlined the three main types of convection, it is important to examine the
phenomenon of natural convection and the dimensionless parameter known as the Grashof
number. The average skin temperature of a naked individual is higher than the surrounding
air temperature. Consequently, the layer of air directly touching the skin surface warms up
and, as a result, becomes lighter. In calm conditions, this warm air ascends due to buoyancy
forces, and colder air from the surrounding environment flows in to take its place [31].
The upward airflow can exhibit either laminar or turbulent characteristics. In the context
of natural convection, a crucial dimensionless parameter that describes this flow is the
Grashof number (Gr) [29,31]. This parameter quantifies the relationship between buoyant
forces and viscous forces and is defined as follows:

Gr =
g·β·(tskin − tsurr air)·↕3

ν2 (10)

where g = 9.81 m/s2 is the gravitational acceleration; β = 1
T is the thermal expansion

coefficient of the air; ↕ is a characteristic length, identified with body height; and ν is the
kinematic viscosity of the air.

The flow is laminar if Gr < 109 [30] and is turbulent for Gr > 1010 [32]. In the
case of a stationary, unclothed individual, with a temperature difference ∆t = tskin −
tsurr air ≈ 8 ÷ 10 ◦C, the flow is laminar up to a height of 1 m and turbulent at 1.5 m [32].
Therefore, different flow regimes occur under natural convection and at various height
levels, permitting different heat loss rates across body segments.

2.3.1. Natural Convection

Under natural convection (w < 0.2 m/s), the convective heat transfer coefficient
hc for the whole human body varies from 3.1 to 5.1 W/(m2·K), according to different
studies [30,33].

Xu et al. [34] analyzed the possible reasons for this variation, including differences in
body geometry, body posture, and airflow patterns in the investigated room.

Under natural convection, for a clothed body, the general equation used by many
researchers is structured as:

hc = an·
(
tclo − tsurr air

)bn (11)

where an and bn are the coefficients determined by the specific analyses carried out by the
researchers, while for the naked human body the equation is structured as:

hc = an·
(
tskin − tsurr air

)bn (12)
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Table 1 shows the values of the coefficients used in the above equations for clothed or
naked human body in various postures.

Table 1. Coefficients for the representations of the convective heat transfer coefficients under natural
convection.

Posture an bn w (m/s) Human Body Reference

Sitting 2.38 0.25 <0.15 clothed [35]

Sitting 0.78 0.59 <0.1 naked [30]

Sitting 1.94 0.23 <0.15 naked [36]

Sitting (exposed to atmosphere) 1.175 0.351 <0.2 naked [37]

Sitting (contact with seat) 1.222 0.299 <0.2 naked [37]

Sitting (cross-legged, floor contact) 1.271 0.355 <0.2 naked [37]

Sitting (legs out, floor contact) 1.002 0.409 <0.2 naked [37]

Standing 2.35 1.25 0.02 < w < 0.1 naked [38]

Standing 1.21 0.43 <0.1 naked [39]

Standing 2.02 0.24 <0.15 naked [36]

Standing 2.38 0.25 <0.15 clothed [35]

Standing (exposed to atmosphere) 1.007 0.406 <0.2 naked [37]

Sitting (floor contact) 1.183 0.347 <0.2 naked [37]

Supine (floor contact) 0.881 0.368 <0.2 naked [37]

Lying 2.48 0.18 <0.15 naked [40]

In other references, only the convective heat transfer coefficientshc of the human body
are indicated. For example, de Dear et al. [30] indicated values in the range from 4 to
6 W

(m2·K)
.

2.3.2. Forced Convection

Under forced convection, numerous efforts have been undertaken throughout the
years to empirically determine the convective heat transfer coefficients suitable for the
entire human body. The Archimedes number (Ar) plays a key role in determining the
relative significance of free and forced convection. Considering the Reynolds number (Re),
defined as:

Re =
w·↕

a
(13)

where ↕ is a characteristic length associated with the body and a is the thermal diffusivity,
Ar is the ratio between the Grashof number to the Reynolds number squared:

Ar =
Gr
Re2 (14)

Sparrow et al. [41] provided a criterion for categorizing various types of convective
flow based on the Archimedes number. In this case, for forced convection 0 < Ar < 0.3, for
mixed convection 0.3 < Ar < 16, while for natural convection Ar > 16.

In forced convection, where air is blown over the surface, the convective heat transfer
coefficient hc increases with air velocity being a function of it.

For vertical airflow, in the case of the mixed convection, when the air velocity is
w > 0.2 m/s the following expression holds:

hc = cf + af·wbf (15)
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where af, bf, and cf are the constants determined by the researchers [42]. For example, Colin
and Houdas [43] obtained the values af = 8.7, bf = 0.67, and cf = 2.7 from the regression for
sitting, for the air velocity, in m/s, in the range 0.15 < w < 1.5.

The convective heat transfer coefficient for downward airflow conditions was greater
than that for upward airflow conditions when the air velocity was below 0.3 m/s. However,
as the air velocity surpassed 0.3 m/s, the convective heat transfer coefficient for upward
airflow conditions significantly surpassed that for downward airflow conditions [42].

For horizontal airflow, when the air velocity is w > 0.2 m/s, the general equation for
the forced convection that outlines the relationship of the whole body on the air velocity w
is given as:

hc = af·wbf (16)

where af and bf are the coefficients determined by the specific analyses carried out by the
researchers.

The studies on the convective heat transfer have been carried out on the human body,
or on manikins that emulate the human body.

For the studies on the human body, as discussed in [44], the relationships between the
air velocity w and the convective heat transfer coefficient hc obtained from experimental
studies of frontal wind on the human body show large discrepancies among the values of
af and bf, which increase with the air velocity [34].

Table 2 reports the coefficients used in the representations found by different authors.

Table 2. Coefficients for the representations of the convective heat transfer coefficients of the human
body under forced convection.

w (m/s) af bf Reference

Downward air currents 12.1 0.5 [45]

(Not indicated) 8.6 0.531 [46]

0.10 < w < 2 6.51 0.391 [47]

0.15 < w < 1.5 14.8 0.69 [48]

(Not indicated) 8.3 0.5 [49]

> 1 8.7 0.6 [50]

(Not indicated) 8.3 0.6 [51]

Still air 8.6 0.5 [46]

Both theoretical and experimental methods have been applied to heated thermal
manikins with varied body shapes, sizes, and postures. A thermal manikin is a device used
for evaluating human thermal environments because it accurately replicates human heat
production, heat dissipation, and body shape [52]. The measurements of the heat transfer
coefficients for every part of the body are impacted by the ambient factors, specifically, the
temperature difference between the human body and its surroundings, the wind velocity,
and the body’s position and walking speed [53].

A literature review reveals that, in the context of thermal manikin experiments involv-
ing forced convection, researchers typically disregarded the influence of free convection,
due to the condition Ar << 1 [54]. However, when a variable temperature gradient is
present, there can be situations where the effects of natural and forced convection are com-
parable. In such cases, it is inappropriate to neglect either of these processes. In combined
natural and forced convection scenarios, both natural and forced convection mechanisms
play a role in heat transfer [54].

Over time, many studies have tried to create a useful database for predicting the
convective heat transfer coefficient for the human body. A general form of the empirical
formulas where the convective heat transfer coefficient is influenced by the air velocity, as
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seen in Equation (16). Table 3 shows the coefficients determined by different studies with
the use of manikins.

Table 3. Coefficients for the representations of the convective heat transfer coefficients under forced
convection by using manikins.

w (m/s) Position Note af bf Reference

1.08 < w < 12.67 Sitting 16.731 0.573 [55]

0.15 < w < 0.2 Standing 15.4 0.63 [56]

0.2 < w < 5.5, upstream flow Sitting or standing Nude 9.31 0.60 [57]

0.2 < w < 5.5, downstream flow Sitting or standing Nude 9.41 0.61 [57]

0.2 < w < 5.5, upstream flow Sitting or standing Clothed 13.36 0.60 [57]

0.2 < w < 5.5, downstream flow Sitting or standing Clothed 12.38 0.65 [57]

0.2 < w < 0.8 Sitting 10.1 0.61 [30]

0.2 < w < 0.8 Standing 10.4 0.56 [30]

0.2 < w < 0.8 Sitting or standing 10.3 0.6 [30]

w < 6 Walking 8.17 0.43 [58]

w < 6 Standing 7.34 0.49 [58]

There are some discrepancies in the values shown in Table 3, which can be partially
explained by body geometry and body posture, as the difference for standing and sitting
postures using the same manikin. Moreover, some discrepancies could be explained by the
fact that many studies neglect the turbulence intensity.

When turbulence intensity is taken into account, the formulation of the convective
heat transfer coefficient becomes more articulate than the structure of Equation (16). Ono
et al. [59] determined the convective heat transfer coefficient for the human body in an
outdoor environment using a combination of wind tunnel testing and computational fluid
dynamics analysis. They proposed a new formula for the mean convective heat transfer
coefficient for the human body in standing position at ambient temperature of 30 ◦C, as a
function dependent on wind velocity w and turbulence intensity TI:

hc = 4·w + 0.035·w·TI − 8·10−4·(w·TI)
3 + 3.5 (17)

The prediction of the heat transfer coefficient considering both turbulence and wind
intensity on the human body can be performed in outdoor conditions where the wind veloc-
ity is high. This formula is useful for assessing thermal comfort in an outdoor environment
where there is big turbulence. Nevertheless, their proposed formula does not provide a
transparent explanation of the underlying principle, and the turbulence intensities studied
are lower than those commonly observed in typical pedestrian-level urban microclimates,
which typically reach around 30% [60].

Yu et al. [44] measured the heat loss from the human body’s surface on a thermal
manikin in a simulated outdoor urban wind environment with realistic ranges of wind
velocity from 0.7 m/s to 6.7 m/s and turbulence intensity from 13% to 36%. The ambient
temperature is 19 ◦C. The regression equation for estimating convective heat transfer
between the body surface and outdoor urban surroundings is expressed as:

hc = a·wn·
(

1 + b·TI·w0.5
)

(18)

where a and n depend on the shape of the segments, and b is less affected. When TI is set to
4%, the regression formula, Equation (18) yields results that closely align with the findings
of [39], which report turbulence intensity (TI) values ranging from 4% to 8%. However,
when compared to the study in [59], the discrepancies become more pronounced with
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increasing wind velocity, exceeding 20% when the velocity is higher than 3 m/s. This
divergence can be attributed to the fact that their experiments were conducted at wind
velocities below 2 m/s.

The indications provided above refer to the whole body. However, many studies have
presented results for individual body segments. De Dear et al. [30] conducted a study on
an unclothed thermal manikin consisting of 16 body segments (head, chest, back, upper
arms, forearms, hands, pelvis, upper legs, lower legs, and feet) generating convective and
radiative heat transfer coefficients under various microclimatic conditions, both indoor and
outdoor, using a climate chamber and wind tunnel. The study focused on wind speeds from
calm air conditions up to 5 m/s, and eight wind directions. In addition, the thermal manikin
(both seated and standing postures) remained stationary throughout the experiments. The
study estimated that the radiative heat transfer coefficient was 4.7 W/(m2·K) and the
convective heat transfer coefficient ranged from 3.3 to 3.4 W/(m2·K) when the air velocity
was below 1 m/s and the temperature difference between the skin and the surrounding
air was 12 K. The conclusions of their study were that limbs, especially hands and feet,
had higher convective heat transfer coefficients than the torso. The head and neck had the
lowest coefficients due to the insulative shoulder-length hair on the manikin. Seated and
standing postures had similar heat losses in still air but seated showed slightly more loss in
moving air. The conclusion drawn in [39] is that, under controlled airflow conditions, the
convective heat transfer coefficients for the clothed manikin significantly exceeded those of
the nude manikin, with disparities ranging from 100% to 200% for individual body parts
and 30% to 50% for the entire body.

Luo et al. [61] investigated how movement speed, direction angle, and temperature
difference between the human body and its environment affect convective heat transfer
coefficients. Experiments with a thermal manikin in a cabin demonstrated that movement
speed has a stronger impact on upper limbs than trunk parts. Convective heat transfer
coefficients are influenced by the movement direction, with higher losses observed when
moving against the wind. Additionally, coefficients increase with higher movement speeds
and temperature differences.

Fojtlín et al. [62] carried out a study that aimed to experimentally determine heat
transfer coefficients using a thermal manikin, with a focus on repeated coefficient measure-
ments and statistical analysis. The manikin imitated the human metabolic heat production,
measuring combined dry heat flux and surface temperature while reducing radiative heat
flux with a low-emissivity coating. Tests were conducted across 34 body zones in both
standing and seated postures, maintaining constant air temperature (24 ◦C) and wind speed
(0.05 m/s). Their conclusion was that sitting manikins had slightly higher convective heat
transfer coefficients compared to standing, while the opposite was observed for radiative
heat transfer coefficients, consistent with other studies. Mean heat transfer coefficient
values closely aligned with the existing literature, with minor variations in specific body
segments. Overall, reproducibility of the measurements was achieved.

Yang and Zhang [63] analyzed how the convective heat transfer coefficient of the
human body changes at different body angles (0–180◦) and air velocities (0.2 to 20 m/s).
The convective heat transfer coefficient values for both the entire body and specific body
parts increase following a power exponent function as air velocity rises. Generally, higher
air velocity led to increased heat transfer convective coefficients, with hands, feet, and
limbs having higher values than the trunk except at a 90◦ body angle. The impact of body
angle on heat transfer coefficient varied by body segment and air velocity. The following
regression equation was developed in this study to express the convective heat transfer
coefficient as a function of velocity and human body angle for both the entire body and
individual body segments:

hc = h0·
(

z0 + a·
(

Ha

180◦

)
+ b·w + c·

(
Ha

180◦

)2
+ d·w2

)
(19)
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where h0 is the convective heat transfer coefficient at a human body angle of 0◦ and the air
velocity of 0.2 m/s, Ha represents the human body angle, a, b, c, and d are dimensionless
regression coefficients, and z0 is a constant term. Equation (12) derived in the study
demonstrates strong predictive accuracy for heat transfer convective coefficient at air
velocities of 0.5 m/s and 4.9 m/s, but it exhibits a maximum relative error exceeding 10%
at air velocities of 2 m/s and 2.8 m/s.

2.4. Radiative Heat Transfer

Radiative heat transfer of the human body refers to the process by which heat is emitted
from the surface of a person’s skin in the form of electromagnetic radiation, primarily in
the infrared portion of the electromagnetic spectrum. This type of heat transfer occurs
due to the temperature difference between the human body and its surroundings. When a
person’s skin is warmer than the objects or air around them, their body emits heat in the
form of infrared radiation. This radiation carries energy away from the body and into the
environment, helping to regulate the body’s temperature and maintain thermal comfort.

The radiative thermal flux density from the clothes to the surrounding air is expressed
by the following equation [30,64]:

.
qrad = fclo·hr·

(
tclo − tr

)
(20)

where hr is the radiative heat transfer coefficient and tr is the mean radiant temperature
perceived by the body.

The radiative heat transfer coefficient is computed as:

hr = 4·ε·σ·
(

Ar

AD

)
·
[

273.2 +
tcl + tr

2

]3

(21)

where ε is the average body surface emissivity, σ = 5.67·10−8 W/
(
m2·K

)
is the Stefan-

Boltzmann constant, Ar is the effective radiation area of the human body, AD is the DuBois
body surface area [65], and tr is the mean radiant temperature for each segment.

The emissivity of the body can be assumed as 0.95, as already adopted by other
manikin owners ([30,36]), and the effective radiation area factor Arad/ADuBois for the
standing posture is generally accepted as 0.73 while for a sitting person was estimated to be
0.70 [65]. The value of radiative heat transfer coefficient is hr = 4.7 W

m2·K and is suitable for
general applications within standard indoor temperature conditions. The estimation of hr
values for individual body segments produced important findings, which were presented
in [30,37].

2.5. Combined Convective and Radiative Heat Transfer

When investigating the exchange of heat between the human body and its surround-
ings, it is essential to consider the total sensible heat released through conduction, convec-
tion, and radiation. Conductive heat exchange depends on the surface area of body parts in
direct contact with external surfaces, and it is neglected when there is a minor contact with
solid objects [31,62]. In this case, the total sensible heat released is the sum between the
convective heat exchange and radiative heat exchange, which can be calculated for clothed
body and for naked body. In the case of the clothed human body, the overall sensible heat
released through convection and radiation is calculated using the following equation [64]:

.
qs = hc· fclo·

(
tclo − tsurr air

)
+ hr· fclo·

(
tclo − tr

)
(22)

In the case of the naked human body, the overall sensible heat released through
convection and radiation is written as [64]:

.
qs = hc·

(
tskin − tsurr air

)
+ hr·

(
tskin − tr

)
(23)
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Kurazumi et al. [66] experimentally obtained the total sensible heat transfer coefficient
(convective and radiative) using a thermal manikin in a thermal environment in which each
surrounding wall temperature and air temperature were considered equal. They obtained
the empirical formulas for calculating the convective heat transfer coefficient of the entire
body in the case of nude seated position downdraft at the temperature of 20 ◦C and 26 ◦C:

hc = 4.088 + 6.592·w1.715 at 0.01
m
s

≤ w ≤ 0.73
m
s

and t = 20 °C (24)

hc = 2.874 + 7.427·w1.345 at 0.005
m
s

≤ w ≤ 0.71
m
s

and t = 26 °C (25)

2.6. Heat Loss through Evaporation at the Skin Surface

Evaporation relies on the process of mass transfer, during which latent heat is con-
sumed. Heat loss through evaporation at the skin surface is a complex process that depends
on a number of factors, including the evaporative heat transfer coefficient, the water vapor
pressure difference between the skin and the ambient air, skin wettness, and the amount of
sweat secretion.

The amount of heat lost to the environment through evaporation can be calculated
using the following equation:

.
qe = he·wskin·(pskin − pair) (26)

where
.
qe is the evaporative heat loss in W/m2, he is the evaporative heat transfer coefficient

in W/
(
m2·kPa

)
, wskin is skin wettedness (dimensionless), pskin is the water vapor pressure

at the skin surface, assumed to be the pressure of saturated air at the skin temperature
(kPa), and pair is water vapor pressure of the ambient air in kPa.

The evaporative heat transfer coefficient is estimated from the convective heat transfer
coefficient using the Lewis ratio (LR), which is about 16.5 K/kPa for indoor conditions [67]:

LR =
he

hc
(27)

Skin wettedness (wskin) is a measure of how much of the skin is covered in sweat, which
is affected by factors such as sweating and diffusion through the skin. Skin wettedness
ranges from approximately 0.02 to 0.06 for normal conditions, but it increases when the
human body sweats more. This is because sweat is a liquid that evaporates easily, and when
it evaporates, it takes heat with it. As a result, wskin is also related to warm discomfort,
with values wskin > 0.2 that is perceived as uncomfortable. This is because when the
skin is too wet, the sweat cannot evaporate quickly enough, and the body cannot cool
down effectively [67]. In theory, wskin can attain a value of 1.0 while the body maintains
thermoregulatory control. However, in practice, it is difficult to exceed 0.8 [68].

2.7. Skin Temperature Regulation

After investigating the heat transfer mechanisms of conduction, convection, radiation
and evaporation, the thermal conditions experienced by the human body are significantly
impacted. In a neutral environmental condition where no thermoregulatory effort is needed
to keep thermal equilibrium, the skin temperature usually ranges from 30 to 34 ◦C. The
human body can be likened to a thermostat set at approximately 37 ◦C. This internal
thermostat generally maintains a temperature regulation accuracy of around ±0.5 ◦C,
although the temperature of the body’s outer surface (the skin) can fluctuate [69].

Different factors, such as environmental conditions like temperature, airflow rate, air
pressure, and humidity, as well as clothing insulation, can impact the skin’s temperature and
how it is distributed across the human body [21]. The research developed in [70] highlights
the dynamic nature of skin temperature regulation and the role of the neck as a prominent
heat loss area in cold conditions. In their research, skin temperature distribution was studied
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under neutral, warm, and cold conditions. From the experiments carried out in neutral
conditions, the mean skin temperature remained stable during an exposure of two hours,
with fluctuations limited within 0.1 ◦C. In a warm environment (31.5 ◦C), and increased by
0.6 ◦C due to vasodilation, with a 2.7 ◦C difference between neck and calf. After 2 h in a cold
environment (15.6 ◦C), the mean skin temperature decreased by 1 ◦C due to vasoconstriction,
with the neck being the warmest region and a key heat loss area in cold conditions.

The skin temperature also changes during physical activity to regulate the body
temperature. Infrared thermography reveals that these changes are dynamic, with initial
decreases in mean skin temperature due to vasoconstriction. This reduction persists
throughout exercise, especially during high-intensity activities. However, during constant-
load exercises, skin temperature may increase slightly, reflecting the interaction between
vasoconstriction and vasodilation as body temperature rises. Different body regions exhibit
varied temperature changes, with the upper limbs experiencing more pronounced decreases
(2.5 to 3.75 ◦C after 30 min of running) than areas near working muscles, such as the calves
(approximately 1.5 ◦C decrease) [21,71].

While the core temperature plays a significantly more substantial role in body’s
thermoregulation than the skin temperature (e.g., approximately 10:1 for sweating and
4:1 for shivering), both skin and core temperatures are equally important when assessing
subjective thermal sensation [72]. When the skin temperature is within a narrow range near
the point of thermal neutrality (where neither hot nor cold is felt), people’s perception of
temperature remains unchanged [68,73,74].

The regulation of the skin temperature is closely linked to the development and appli-
cation of w-TEGs for human body energy harvesting. Our body’s ability to maintain skin
temperature within a comfortable range is a fundamental aspect of thermoregulation. A
w-TEG utilizes the temperature gradient between the skin and the surrounding environ-
ment to generate electricity. By continuously monitoring and managing skin temperature,
these devices can optimize their energy harvesting efficiency without compromising the
wearer’s thermal comfort. This relationship between skin temperature regulation and
w-TEGs highlights the potential for sustainable power sources for wearable technology,
offering extended battery life while ensuring that the body remains thermally comfortable
and well regulated, especially in various environmental conditions.

3. Analytical Heat Transfer Equations Related to the Interaction between Human Skin
and Wearable Thermoelectric Generators
3.1. Analytical Heat Transfer Equations Related to the Human Skin

In the development of analytical heat transfer equations related to the interaction
between human skin and w-TEG, the human skin is considered a quasi-homogeneous
structure with three layers, in which each layer has its own thermal conductivity (as shown
in Figure 2). The deepest layer is fat, followed by the dermis, and finally, the outer layer is
the epidermis [75].
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interface. The blue arrow represents the direction of the heat flux that is released through the
encapsulating layer including the spreader at the heat sink).

The general differential heat conduction equation used to describe the temperature
distribution within biological tissues, including the human skin, when subject to heat
sources is given by the Pennes bioheat equation [76] having the basic form as described in
Equation (28):

∇2T +
1
k
·
( .
qmet +

.
qblood

)
=

1
a
·∂T
∂τ

(28)

where ∇2T is the Laplacian of temperature, k is the thermal conductivity of the tissue,
.
qmet

is heat generation due to metabolic activity, such as cellular metabolism,
.
qblood is convective

heat transfer due to blood perfusion (it considers the convective heat transfer between
blood vessels and surrounding tissue), a = k

ρ·cp
is the thermal diffusivity and quantifies

how quickly heat is conducted through a material compared to how quickly it is stored or
accumulated within the material, ρ is the tissue density, cp is the specific heat capacity of
the tissue at constant pressure, T is the tissue temperature, and τ is the time.

The general differential heat conduction equation for the steady-state conditions within
a multilayer structure with three layers, for one-dimensional geometry, is reduced to:

d2Ti

dx2 +
1
ki
·
( .
qmet +

.
qblood

)
= 0 (29)

where d2Ti
dx2 represents the second spatial derivative of temperature Ti with respect to the

spatial coordinate Ti within of the specific layer i (such as fat, dermis and epidermis), ki
is the thermal conductivity of the specific layer i,

.
qblood = ρb·cpb·ωb·(Tcore − Ti), ρb is

the blood density, cpb is the specific heat capacity of the blood at constant pressure, and

ωb =
.
vb

vb·∆τ is the blood perfusion rate that quantifies the rate at which blood circulates
through a particular region of tissue (the blood perfusion rate can vary considerably and
plays a crucial role in regulating the body’s temperature),

.
vb is the rate of blood flow

through a particular region of tissue, vb is the volume of the tissue through which the blood
is flowing, ∆τ is the time duration over which the blood flow is being considered. When
the blood flow through the skin increases, it is called vasodilation, and when it decreases
it, is referred to as vasoconstriction [77]). Moreover,

.
vb is the tissue volume within the

considered region,
.
vb is the volume flow rate of blood, ∆τ is the time interval over which

the blood flow is measured, Tcore is the body core temperature, and Ti is the temperature of
the skin.

In the thermal analysis of fat and epidermis layers, the influence of blood perfusion is
not considered, resulting in

.
qblood = 0. In this case, the influence of the blood perfusion is

found only in dermis (second layer), and Equation (23) becomes [75]:

d2Ti

dx2 = −
.
qmet

ki
(30)

To solve the second-order derivative Equation (30) with respect to the variable x, this
equation is integrated twice, taking into account the integration constants C1 and C2 that
arise in the integration process.

For fat and epidermis, the solutions of the temperature field in each skin tissue take
the form of quadratic equations:

Ti(x) = −
.
qmet
2ki

·x2 + C1i·x + C2i (31)
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For dermis, the solution of the temperature field is more complex and involves expo-
nential terms:

Td(x) = Tcore −
(

ρb·cpb·ωb

)−1
· .
qmet + C1d·em·x + C2d·e−m·x (32)

where m =
(

ρb·cpb·ωb·kd
−1
)0.5

.
The coefficients C1 and C2 for fat and epidermis as well as C1d and C2d for dermis are

determined by applying the boundary conditions and are shown in Tables 4 and 5.

Table 4. Integration constants for fat and epidermis of the quasi-homogeneous structure.

Integration
Constants

Fat
i = fat

Epidermis
i = epidermis

C1 C1f =
.
qmet

2 · δf
kf
− δf

−1·(Tcore − Tf) C1e =
.
qmet
ke

·
(

δe
2 + δf + δd

)
− δe

−1·(Td − Te)

C2 C2f = Tf C2e = −
.
qmet
2ke

·(δe + δf + δd)·(δf + δd) +
Td
2 ·
(

1 + δf+δd
δe

)
− Te· δf+δd

δe

Table 5. Integration constants for dermis of the quasi-homogeneous structure.

Integration Constants Dermis

C1 C1d =
Td−Tf·e−m·δd−

[
Tcore+

.
qmet·(ρb·cpb·ωb)

−1
]
·(1−e−m·δd )

(em·δd−e−m·δd )·em·δf

C2 C2d =
Td−Tf·em·δd−

[
Tcore+

.
qmet·(ρb·cpb·ωb)

−1
]
·(1−em·δd )

(em·δd−e−m·δd )·e−m·δf

3.2. Wearable TEG as a Thermal Load

In a w-TEG, the extrinsic temperature gradient between the body core Tcore and the
ambient air Tair, ∆Te = Tcore − Tair results in a constant heat flux through the w-TEG. This
heat flux leads to an intrinsic temperature gradient ∆Ti = Thot TEG − Tcold TEG across the
hot and cold sides of the w-TEG legs, which in turn produces an output voltage due to the
Seebeck effect [78].

The intrinsic temperature gradient is expressed as [70]:

∆Ti = Thot TEG − Tcold TEG = (Tcore − Tair)·Rt TEG·(Rskin + Rt TEG + Rair)
−1 (33)

where Rt TEG is the thermal resistance of the w-TEG, Rskin is the thermal contact resistance
between the skin body and the w-TEG, and Rair is the convective thermal resistance of the
surrounding air. All resistances are in K/W.

The thermal resistance of the w-TEG is given by [79]:

Rt TEG =
1

FF
· L
k·STEG

(34)

where k is the thermal conductivity of the thermoelectric legs and FF = SN+SP
Sw−TEG

is the fill
factor (the ratio between the area of the thermoelectric legs to the total surface area of the
w-TEG).

Effectively extracting heat from the human body depends on maximizing intrinsic
temperature difference. This proves to be a challenging task because other parasitic thermal
resistances make it hard for the heat to flow, namely: (i) the thermal resistance between
the body core and w-TEG, due to the body skin, known as a thermal insulator; (ii) the
contact thermal resistance between the skin interface and w-TEG due to the skin roughness;
and (iii) the convective thermal resistance at the interface between the w-TEG and the
surrounding air. The convective thermal resistance at the interface between the w-TEG and
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surrounding air is the dominant thermal resistance if no heat sink is used at the cold side of
the w-TEG [19]. However, if the w-TEG is to be used on the human body, it is favorable
not to use a bulky heat sink or to use a heat sink with a small design while achieving
an acceptable heatsink resistance at this interface. In this case, the heat sink must be
compact, not too large or bulky, to be suitable for use on the human body without causing
discomfort [78]. Enhancing the overall performance of a w-TEG is achievable through the
incorporation of heat spreaders. A heat spreader offers the advantage of reduced weight
and increased flexibility compared to a finned heat sink, which is particularly beneficial for
wearable applications. The utilization of high thermal conductivity heat spreaders on both
the cold and hot sides of a w-TEG can effectively boost the power output [19].

When a w-TEG is in contact with the skin, on the one hand the w-TEG limits the
heat transfer from the body to the surrounding air, acting as a thermal barrier. On the
other hand, at the same time the w-TEG absorbs heat from the skin to generate electricity,
acting as a thermal load. Figure 3 shows the thermal circuit, with indicative values of the
temperatures for air, skin, and core.
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The simplified model of the thermal circuit is presented [70,80]. The optimal thermal
resistance of the thermal circuit is defined as follows:

Roptimal TEG =
1

2·Rfab sub
−1 +

(
Rbody + Rair

)−1 (35)

where Rfab sub is the parasitic thermal resistance due to the fabric material, which is in paral-
lel with the total thermal resistance of the w-TEG with n thermoelements; Rbody = Rcore +
Rskin is the thermal resistance between the body core and the skin surface; and Rair is the
thermal resistance of the surrounding air.

Nevertheless, the thermal resistance of the thermoelectric components is variable as
a result of the Peltier effect during w-TEG operation. For this reason, it is proposed to
consider an effective thermal conductivity concept when calculating the thermal resistance
of the w-TEG, as provided in the following equation [81]:

Rt TEG =
k·S
L

·
(

1 +
ZT

1 +
√

ZT

)
(36)

where k is the thermal conductivity, L is the thermoelement leg length, and S is the ther-
moelement area.

The thermal contact resistance Rtc at the interface where the w-TEG contacts the human
skin has a big impact on how well the w-TEG operates. High thermal contact resistance



Energies 2024, 17, 285 17 of 29

can impede the heat flow from the skin to the w-TEG. This means that less heat is utilized
for electricity generation, reducing the w-TEG conversion efficiency. Reducing thermal
contact resistance through improved materials or TEG design can enhance the module
performance by allowing for more efficient heat transfer, thus increasing the amount of
electricity generated from the human body heat. The w-TEGs must possess flexibility to
ensure they establish conformal contact and minimize thermal resistance at the skin/w-TEG
interface when integrated into a self-powered wearable electronic system [75].

The resistance at the point of contact should be measured between the skin and the
w-TEG surface being explored. The thermal contact resistance model utilized by Benali-
Khoudja and colleagues [82] in the development of their thermal display is derived from
the model originally proposed in [83]. This model considered various factors including
mechanical, thermophysical, and surface properties. In the absence of any fluid in the
interfacial gap, the thermal contact conductance Ktc at the skin and w-TEG interface can be
expressed as follows [84,85]:

Ktc =
1

Rtc
=

[
1.25·ktc·

∆stc

rtc
·
(

ptc

δtc

)0.95
]

︸ ︷︷ ︸
htc

·Sskin tiss (37)

where Rtc is the thermal contact resistance, htc is the heat transfer coefficient; ks is the harmonic
mean thermal conductivity for solid 1 (epidermis) and solid 2 (flexible substrate of w-TEG) with

ktc = 2· kepidermis·kflexible substrate of w-TEG
kepidermis+kflexible substrate of w-TEG

; rtc is the effective root mean square roughness, with the

relation rtc =
(

r2
epidermis + r2

flexible substrate of w-TEG

)0.5
; ∆stc is effective absolute average surface

asperity slope with ∆stc =
(

∆sepidermis
2 + ∆sflexible substrate of w-TEG

2
)0.5

; ptc is the contact pres-
sure; δtc is the microhardness of the softer material (epidermis); and Sskin tiss is the cross-section
area of skin tissues [75].

3.3. Analytical Heat Transfer Equations Related to Wearable TEG

In order to streamline the analysis, it is assumed that both P-type and N-type legs
possess symmetric material properties and dimensions. Consequently, the subsequent
theoretical analysis focuses solely on the P-type thermoelement [75]. The temperature
distribution in the thermoelements for the steady state is expressed as follows:

d2TP

dx2 +
I2·RP

KP·δ2
TEG+fill mat

= 0 (38)

where I is the electric current that flows in the w-TEG, and RP =
δTEG+fill mat

σP eff·SP
, KP = kP·SP

δTEG+fill mat
,

KP = R−1
tP are the electric resistance, thermal conductance, and thermal resistance of the P-type

thermoelectric leg, respectively.
It is important to highlight that, in contrast to thermoelectric legs, the Joule heat

generation in metallic electrodes is negligible, as presented in [75].
The electric current does not flow through the flexible layers and in this case, its value

is I = 0. In this condition, Equation (41) becomes:

d2Tn

dx2 = 0 (39)

where “n” represents three combinations: n = f for the flexible substrate and the skin/w-
TEG interface, n = N for the N-type and P-type thermoelectric legs and the fill material,
and n = ES for the encapsulating layer and the spreader at the heat sink (Figure 4).
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As the thermal resistances of the thermoelectric legs and fill material are connected in
parallel, the effective thermal conductivity is calculated as follows:

kef = kN·FF + kfill mat·(1 − FF) (40)

where kP is the thermal conductivity of the P-type thermoelement, kfill mat is the thermal
conductivity of the fill material, and FF is the fill factor.

The temperature field distribution in the w-TEG and fill material satisfies the following
equation:

TP (x) = − I2·R
(KN + KP + Kfill mat)·δ2

TEG+fill mat
·x2 + AP·x + BP (41)

where the constants AP and BP are:

AP =
Tc − Th

δTEG+fill mat
+

I2·R
(KN + KP + Kfill mat)·δ2

TEG+fill mat
·(δb + δcontact + 0.5·δTEG+fill mat ) (42)

BP = Th·
(

δb+δcontact
δTEG+fill mat

+ 1
)
− Tc· (δb+δcontact)

δTEG+fill mat
− I2·R

(KN+KP+Kfill mat)·δ2
TEG+fill mat

·(δb + δcontact)

·(δb + δcontact + δTEG+fill mat)
(43)

where KN = kN·SN
δTEG+fill mat

is thermal conductance of the N-type thermoelectric leg, KP = kP·SP
δTEG+fill mat

is thermal conductance of the P-type thermoelectric leg, Kfill mat =
kfill mat

δTEG+fill mat
·S·(1− FF) is the

thermal conductance of the fill material, R = RN + RP = δP
σP·SP

+ δP
σN·SN

is the electrical resistance
of the TEG thermoelements.

The heat flux that is absorbed at the skin–w-TEG interface including the flexible
substrate is: .

Qh = Kequiv 1·(Tskin − Tflex sub) (44)

where Kequiv 1 = Ktc ·Kcontact
Ktc+Kcontact

is the equivalent thermal conductance between the thermal
contact conductance, at the skin and w-TEG interface Ktc (as expressed in Equation (37)),
and the thermal conductance of the flexible substrate Kcontact.
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The heat flux that is released through the encapsulating layer including the spreader
at the heat sink is: .

Qc = Kequiv2·
(
Tencap − Tair

)
(45)

where Kequiv2 =
Kencaps ·Kspreader
Kencaps+Kspreader

is the equivalent thermal conductance between the en-

capsulating layer Kencaps =
kencaps·Sencaps

δcontact
and the thermal conductance of the spreader

Kspreader = hair·Sspreader at the heat sink, kencaps is the thermal conductivity of the encap-
sulating layer, hair is the convective coefficient of the air, and Sencaps and Sspreader are the
cross-sectional area for the encapsulating layer and for the spreader, respectively.

According to the steady-state energy conservation law, heat flow rates must remain
continuous at the interfaces between various components, including fat, dermis, epidermis,
substrate, thermoelectric legs (including fill material), and the encapsulating layer [75,86]. In
this case:

.
Qf(δf) =

.
Qd(δf);

.
Qd(δf + δd) =

.
Qe(δf + δd);

.
Qe(δb) =

.
Qsubstr++skin−w−TEG(δb);.

Qsubstr++skin−w−TEG(δb + δcontact) =
.

Qw−TEG+fill mat(δb + δcontact);
.

Qw−TEG+fill mat

(δb + δcontact + δTEG+fill mat) =
.

Qencaps+spreader(δb + δcontact + δTEG+fill mat). These condi-
tions are necessary to obtain the expressions of the temperatures for the hot and cold sides
of the w-TEG, Th and Tc, as well as the temperatures Te, Td, and Tf at the interfaces of the
skin tissues, as shown in Table 6 [75].
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Table 6. The temperature expressions for w-TEG hot and cold sides, as well as the skin tissue interfaces.

Temperature Temperature Expressions Relationships Involved in Temperature Expressions

Temperature at the hot
side of the w-TEG Th =

E0·(α·I − KTEG+fill mat − Kequiv 2) − KTEG+fill mat·
(

Kequiv 2·Tair +
I2 ·R

2

)
K2

TEG+fill mat+E1·(α·I − KTEG+fill mat − Kequiv 2)
E0 = D0 +

I2·R
2

E1 = D1 + α·I + Kequiv 1 + KTEG+fill mat

D0 = −
[
Kequiv 1·δe·

.
Qmet·

(
De·Df − D2

d
)

+Kequiv 1·Ke·Kd·Dd·Tsubstr + Kequiv 1·Ke·
.

Qmet·
(δe·Df + δf·Dd)− Kequiv 1·Ke·Dd·R·(Dd + Df)

]
·

1
[K2

e ·Df − (Kequiv 1 + Ke)(De·Df − D2
d)]

D1 =
K2

h·(De·Df − D2
d)

[K2
e ·Df − (Kequiv 1 + Ke)(De·Df − D2

d)]

Temperature at the cold
side of the w-TEG

Tc = −
E0·KTEG+fill mat + E1·

(
Kequiv 2·Tair +

I2 ·R
2

)
K2

TEG+fill mat + E1·(α·I − KTEG+fill mat − Kequiv 2)

Temperature on the top
surface of epidermis

Te =

−
(

Kequiv 1·Th + δe·
.

Qmet

)
·(De·Df − D2

d) + Ke·Kf·Dd·Tsubstr + Ke·
.

Qmet·(δe·Df + δf·Dd) − Ke·Dd·P·(Dd + Df)

K2
e ·Df − (Kequiv 1 + Ke)·(De·Df − D2

d)

Dd = Kd·m·δd
sinh(m·δd)

De = Ke + Dd·cosh(m·δd)
Df = Kf + Dd·cosh(m·δd)

P =
(

Tsubstr +
.
qmet

ρb·cpb·ωb

)
·[1 − cosh(m·δd)]

m =
(

ρb·cpb·ωb·kd
−1
)0.5

from Equation (29)

Temperature on the top
surface of dermis Td =

Ke·Df·Te + Kf·Df·Tsubstr +
.

Qmet·(δe·Df + δf·Dd) − Dd·P·(Dd + Df)
De·Df−D2

d

Temperature on the top
surface of fat Tf =

Kequiv2·Tsubstr +
.

Qmet·δf + Dd·(Ts − P)
Df
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3.4. Evaluation of the w-TEG Performance

The performance analysis of w-TEG involves a detailed examination of the power
output generated using the temperature differential between the heat source and heat
sink [75,86,87]. The power output is calculated due to the principle of energy conservation
and is evaluated as:

Pout =
.

Q|x=δb+δcontact
−

.
Q|x=δb+δcontact+δTEG+fill mat

= α·I·(Th − Tc)−
R·I2

2
(46)

where α is the Seebeck coefficient.
When an external load resistance RL is introduced, the power output can be written as

follows:
Pout = RL·I2 (47)

The expression for the electric current is obtained by setting Equation (46) equal to
Equation (47):

α·I·(Th − Tc)−
R·I2

2
= RL·I2 ⇒ I =

α·(Th − Tc)

R + RL
(48)

The substitution of the expressions of the temperatures Th and Tc indicated in Table 6 in
Equation (48) results in a third-degree equation with the electric current as the unknown [75,86,87]:

a3·I3 + a2·I2 + a1·I + a0 = 0 (49)

where the parameters a3, a2, a1, and a0 are known and have the following expressions [75]:

a0 = α·Kequiv2·
[
D0 −

(
Kequiv1 + D1

)
·Tair

]
(50)

a1 = −
[(

KTEG+fill mat + Kequiv2
)
·
(
Kequiv1 + D1

)
+ KTEG+fill mat·Kequiv2

]
·(R + RL)− α2·

(
D0 + Kequiv2·Tair

)
(51)

a2 = α·
(
Kequiv 1 − Kequiv 2 + D1

)
·
[

RL +
R
2

]
(52)

a3 = α2·RL (53)

The solution of Equations (49) and (52) has the following form:

I = −1
3
·a2·a−1

3 + ξ2· 3

√√√√−ψ

2
+

2

√(
ψ

2

)2
+
(χ

3

)3
+ ξ· 3

√√√√−ψ

2
− 2

√(
ψ

2

)2
+
(χ

3

)3
(54)

with ξ = − 1
2 + i·

√
3

2 , ψ = a0
a3
+ 2

27 ·
(

a2
a3

)3
− a1·a2

3·a2
3

, and χ = a1
a3
− 1

3 ·
(

a2
a3

)2
.

The power output is calculated by replacing Equation (54) into Equation (47). In
addition, the power density PD of the w-TEG refers to the amount of electrical power
produced by the w-TEG per unit area. The power density is the ratio between the power
output Pout generated by the w-TEG to the surface area S over which the TEG is distributed
or attached:

PD =
Pout

S
(55)

The performance of a w-TEG is influenced by various parameters, including external
load resistance RL, human body skin, thermoelectric couple height, and fill factor FF. Zhang
et al. [87] investigated the influence of these parameters on the performance of w-TEG. The
research conducted in [87] highlights the significance of these parameters in optimizing the
performance of w-TEG devices. Understanding how factors such as the thermophysical
properties of the filler material, human body skin, fill factor, thermal convective boundary
conditions, and the figure of merit of thermoelectric legs (ZT) influence the external load
resistance can lead to the development of more efficient and practical w-TEG systems,
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with potential benefits in energy harvesting, waste heat recovery, and sustainable power
generation. The metabolic heat generated has very little effect on the power density of
the skin-w-TEG system, even when the metabolic heat generation increases significantly.
Conversely, the blood perfusion rate within the skin tissue plays a key role in enhancing
the w-TEG performance, with power density increasing significantly as the blood perfusion
rate rises. Therefore, effective management and optimization of the w-TEG should consider
blood perfusion as a crucial factor. The influence of convective heat transfer between the w-
TEG’s lateral surfaces and the ambient surroundings significantly impacts the temperature
drop (∆T) and power density of the w-TEG. The influence of convective heat transfer on
a w-TEG’s lateral surfaces is essential because it determines how effectively the w-TEG
can maintain the necessary temperature gradient for efficient electricity generation. If
convective heat transfer is not considered or optimized, it can lead to reduced performance
and power output of the w-TEG. Also, the influence of convective heat transfer at the heat
sink and contact pressure between human skin and w-TEG significantly affects temperature
drop and power density. Increasing contact pressure causes the human body’s skin to
deform. Since the human body’s skin is generally softer than the flexible substrate of the
w-TEG, this deformation can effectively increase the actual contact area with the substrate.
This, in turn, reduces the contact thermal resistance, leading to more effective heat transfer.
Concerning the influence of the height of the thermoelectric couples and the convective
heat transfer coefficient, these significantly affect the temperature drop and power density
of the w-TEG. Increasing the thermoelectric couple height improves the temperature drop
but also raises the internal electric resistance, leading to an optimal height for maximum
power density. Additionally, heat convection at lateral surfaces becomes more significant
with higher thermoelectric couple heights.

In summary, the performance analysis of w-TEG involves evaluating the power output
based on temperature gradients. Various factors, including external load resistance, human
body skin, thermoelectric couple height, and fill factor, significantly impact the w-TEG
performance. Understanding these parameters is crucial for optimizing w-TEG systems.
Additionally, the influence of metabolic heat generation and blood perfusion within the
skin tissue should be considered. Convective heat transfer between w-TEG lateral surfaces
and the surroundings also affects temperature and power density. Optimizing contact
pressure and managing thermocouple height are key factors for maximizing power density.
These insights are essential for enhancing w-TEG design and applications.

4. Wearable Thermoelectric Devices for Personal Thermal Management

Personal thermal management refers to the establishment of a satisfactory thermal
environment around the human body, in which the individuals live and operate under
acceptable thermal comfort conditions. The solutions for personal thermal management
can be used to reduce the energy needed to heat or cool the internal environments in the
buildings, concentrating the means for reaching satisfactory temperatures to the space close
to the activity of the individuals [88].

There are various possibilities for impacting on the local thermal environment. The
first category includes non-wearable solutions, which act on the forms of heat transfer that
have an impact on the human body. These solutions (whose detailed analysis is outside the
scope of this article) include, for example:

■ Thermally controlled chairs: thermoelectric devices are used in thermoelectrically
heated and cooled chairs to have an influence on thermal sensation and comfort, as
shown, for example, from the experiments presented in [89,90]. The thermal sensation
can be improved when the temperature is outside the acceptable range, even though
the effects of chair heating can be limited by the fact that the thermal sensation of the
extremities cannot be improved to a significant extent [91].

■ Systems for local heating, ventilation, and air conditioning: portable solutions have
been developed for heating or cooling the local environment and interact with the
thermoregulation of the human body [92]. For example, a thermoelectric air condi-
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tioning undergarment solution that provides personal heating or personal cooling
depending on the control mode with air volume control is illustrated in [93]. The
system contains a power-supplied micro-blower that heats up or cools down the air in
the local ambient and uses a system with small tubes to send the air to various parts
of the human body.

The other category, which is of interest for this section, is the one of wearable solu-
tions, consisting of thermoregulated clothing of different types. Traditional thermoelectric
devices are generally based on inorganic thermoelectric devices—which are rigid, have
poor mechanical properties, and are expensive—so that they can be applied to localized
solutions (e.g., sensors) more than for clothing purposes [94]. For the diffusion of wearable
thermoelectric solutions for clothing, the main aspect is the development of flexible devices,
which can adapt to the movements of the human body [95] or can be easily stretched [96]
and are composed of sections that are simply reconfigurable [97]. In particular, flexible
thermoelectric devices based on organic composites, such as polymer materials [94], are
interesting because of their specific properties of flexibility, low toxicity, low cost, and
stability at relatively high temperatures, even though their efficiency is lower than the that
obtained with inorganic materials [98]. The development of organic–inorganic composite
thermoelectric devices and other hybrid solutions [99] is promising, with the possibility of
benefitting from the best properties of the different materials and providing cost-effective
applications [100]. In the evolution in progress on the materials side, promising solutions
are expected from film-based thermoelectric modules, because of significant performance,
high scalability, and opportunities for largescale production [101].

For the development of wearable solutions, the expressions indicated in the previous
sections illustrate the basic heat transfer principles referring to the interactions between
the human body and the wearable TEG. In particular, the skin thermal resistance is higher
than the TEG resistance and plays a considerable role in wearable applications. Further
practical aspects depend on body comfort. Generally, wearable solutions are acceptable
if their size and weight are limited. For this purpose, the preferred solutions have lower
thermal conductivity of the material that forms the thermoelectric legs, in such a way that
a thinner TEG can be constructed by maintaining a relatively large temperature difference.

Moreover, in some practical applications, the use of a heat sink is avoided because
of esthetic or space reasons. However, without a heat sink, the power density that can
be obtained from a wearable TEG is generally limited with respect to the power density
obtained from a wearable TEG with heat sink. For wearable TEG applications, solutions
that use a flat thermal spreader to replace the heat sink can be more adaptable. Even though
in general the thermal spreader could be less efficient than a heat sink for dissipating heat,
the w-TEG presented in [8] with a flat thermal spreader reached a 30% power density
increase with respect to the best reported TEG with heat sinks.

Active and passive thermal management methods have been categorized [102] for
wearable solutions referring to heating or cooling modes, as follows:

■ Active methods: in general, thermoelectric devices can be used for cooling and heating,
as well as electro- and magnetocaloric cooling and heating. For active heating, the
typical source is Joule heating, and for active cooling the active microfluidic cooling is
adopted. Regarding active heating, thermoelectric textiles based on the Peltier effect,
in which flexible thermoelectric devices are integrated into the textiles to provide
power generation, can be more efficient than Joule heating textiles [103]. For active
cooling with thermoelectric devices, typically, the circulation of water in a copper tube
is added for improving the heat exchange; the cooling output that can be provided
is relatively low, due to the low coefficient of performance, and could be enhanced
with the use of multistage thermoelectric modules [104]. An effective solution for a
wearable solution with a thermoelectric device that does not use a water heat sink
and can produce a cooling effect of more than 10 ◦C by maintaining a relatively high
coefficient of performance is presented in [105].
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■ Passive methods: in general, heat storage from the external environment is obtained
with materials having high latent heat or high heat capacity to store and release heat
as needed. Further methods include thermal insulation to minimize the heat transfer
with respect to the human skin. For passive heating purposes, thermally conductive
materials are used to enhance the heat exchange with the air, or photothermal mate-
rials are used to absorb solar energy to warm the human skin. For passive cooling
purposes, radiative cooling materials are used to refrigerate the human skin, and
evaporative cooling materials facilitate the transition from liquid to vapor. Passive
methods are not based on thermoelectric devices.

The wearable solutions can be partitioned, for example, into:

■ Natural heat exchange: these solutions focus on natural heat exchange and energy
harvesting and aim to harness the body’s natural heat production and the surrounding
environment to maintain thermal comfort.

■ Assisted heat exchange: these solutions adopt clothing enhancements and include
additional parts with fans for better air circulation, or in other cases water circulation
systems for making the temperatures in the different parts of the clothing more uni-
form. The effectiveness of these solutions could depend on the type of activity carried
out by the individual in the living environment. For example, the extra devices that
allow for assisted heat exchange could add weight or size to the clothing, potentially
reducing the mobility of the individuals when carrying out certain activities.

From another point of view, the devices used in the wearable solutions can be catego-
rized into:

■ Autonomous devices: self-powered solutions in which there is no energy input
from external sources. These solutions rely on internal energy sources to regulate
temperature and maintain thermal comfort.

■ Non-autonomous devices: solutions for which an energy input is needed from external
sources. These solutions require a continuous supply of energy to function and
regulate temperature effectively.

■ Hybrid devices: These combine nonautonomous and autonomous devices in different
parts of the wearable solutions. Some parts of the clothing may operate autonomously
while others rely on external energy sources. This hybrid approach offers flexibility in
managing thermal comfort. The review presented in [106] addresses many cases of
personal comfort devices and indicates an energy efficient solution with combined use
of air-cooling units and a thermoelectric cooling unit with limited surface coverage.

A further distinction refers to the type of contact of the thermoelectric devices with
the human body, which is an important aspect that also affects the choice of the materials
and of the modes for connecting the devices to the human body:

■ For direct contact with the human body, the main solutions include cooling vests
with the thermoelectric device in contact with human skin [105]. A key aspect is to
avoid the contact of the human body with rare or toxic elements that can be found
in some thermoelectric devices (e.g., bismuth, lead, or tellurium) [107]. Biobased
thermoelectric materials (such as cotton, cellulose, or lignin), which have less impact
on the human body, can be used as a substrate for constructing wearable devices.

■ Without direct contact with the human body (i.e., with indirect contact), the heat
transfer modes have to be studied by considering the materials used for clothing.
The use of flexible and long thermoelectric fibers is an effective solution for covering
the various possible curvatures of the surfaces, enhancing thermal management and
comfort [108].

In summary, personal thermal management is a multifaceted field with a wide range
of solutions for enhancing thermal comfort and energy efficiency. These solutions can
range from nonwearable solutions that affect heat transfer around the human body to
wearable solutions, including thermoregulated clothing. The advancement in materials and
technology has enabled the development of flexible and efficient thermoelectric devices that
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can be integrated into clothing, offering active and passive thermal management methods.
Furthermore, the choice between autonomous, nonautonomous, or hybrid devices, as well
as the consideration of direct or indirect contact with the human body, provides a wide
array of options for tailoring personal thermal management solutions to individual needs
and preferences. The exploration of these possibilities holds promise for improving comfort
and wellbeing of individuals, while reducing energy consumption in various environments.

5. Conclusions

Technological development in the thermoelectric generation area is providing inter-
esting solutions to create better local thermal environments for individuals who carry out
activities in indoor environments. This paper addressed wearable thermoelectric generators
that interact with the human body to improve local thermal comfort and increase energy
efficiency by reducing, to a certain extent, the need for heating or cooling the ambient. The
analysis of the heat transfer mechanisms that appear in the interaction between thermoelec-
tric devices and the human body was discussed as a crucial step for understanding how the
human thermoregulatory system can respond in the presence of wearable thermoelectric
generators that consider the body as a heat source. Moreover, the review presented in this
paper summarized how conductive, convective, and radiative heat transfer, together with
evaporation at the skin surface, impact on the temperature regulation of the skin, which is
the surface of contact between the human body and thermoelectric devices. Furthermore,
the materials, flexibility, and efficiency of wearable thermoregulated clothing that can be
used to create a comfortable thermal environment around the human body were considered,
also categorizing their active and passive modes of operation.

Wearable thermoelectric generators are versatile and adaptable solutions to address
individual thermal needs in local environments. The main directions for the future are
the development of thermoelectric materials with enhanced thermal performance and the
design of structurally flexible, lightweight, and cost-effective solutions able to enhance the
interaction with the human body considering situations with parts of the body in movement.
On the materials side, biobased materials and organic composites are of interest because of
their low environmental impact. Thermal performance refers to the efficiency of the energy
conversion, for which the use of multistage thermoelectric modules and the exploitation of
smart sensors and control systems can provide more adaptive thermal regulation.

The evolution of wearable thermoelectric generation technologies and application
requires multidisciplinary collaborations between experts of different domains, such as
materials science, thermal engineering, environmental engineering, physiology, psychology,
up to clothes design, for merging their competences in the direction of providing more
comfortable, energy efficient, cost-effective, and practically appealing solutions.
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