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Abstract: A DC microgrid is an efficient way to combine diverse sources; conventional droop control is
unable to achieve both accurate current sharing and required voltage regulation. This paper provides
a new adaptive control approach for DC microgrid applications that satisfies both accurate current
sharing and appropriate voltage regulation depending on the loading state. As the load increases in
parallel, so do the output currents of the distributed generating units, and correct current sharing
is necessary under severe load conditions. The suggested control approach raises the equivalent
droop gains as the load level increases in parallel and provides accurate current sharing. The droop
parameters were checked online and changed using the principal current sharing loops to reduce the
variation in load current sharing, and the second loop also transferred the droop lines to eliminate DC
microgrid bus voltage fluctuation in the adaptive droop controller, which is different and inventive.
The proposed algorithm is tested using a variety of input voltages and load resistances. This work
assesses the performance and stability of the suggested method using a linearized model and verifies
the results using an acceptable model created in MATLAB/SIMULINK Software Version 9.3 and
using Real-Time Simulation Fundamentals and hardware-based experimentation.

Keywords: distribution systems; DC microgrid; droop control; adaptive droop control; distributed
energy; low voltage

1. Introduction

DC microgrids are gaining popularity in many power DS due to significant advantages
such as improved efficiency, dependability, and stability as compared to AC microgrids.
DC-based energy sources, such as photovoltaics and storage units, require considerable
usage of power electronics-based interface devices to be integrated. power conversion steps,
increasing overall efficiency and reliability. Other key considerations driving the future rise
of DC microgrids are a lack of reactive power, lower transmission loss, and lower costs due
to the elimination of power conversion steps. Aside from harmonic difficulties caused by
the high penetration of nonlinear loads in a power distribution network, DC microgrids
are regarded as a superior alternative to AC microgrids. DC microgrids, on the other hand,
are easier to build and have greater power control. The expansion of DERs, coupled with
electronic loads, electric vehicles, and energy storage systems in the microgrid system, has
pushed the widespread use of the DC-based distribution system. The growing popularity of
a DC microgrid system is due to its contribution to loss reduction, cost reduction, increased
power transmission capability, system safety improvement, power quality improvement,
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devaluation of electromagnetic interference, and easy integration of modern electronics
loads [1]. The DC microgrid can be operated in grid-connected mode, where the grid is
linked to the DC bus to deliver power deficits or absorb surplus power, or in islanded
mode, where the DC microgrid works independently and autonomously without grid
synchronization [2]. Many of the new loads are electronic direct current (DC). A microgrid
is made up of many parallel-connected converters that transmit current across various
distributed resources over a single DC bus, as demonstrated in Figure 1. DC microgrids are
free from frequency concerns; hence, control loop analysis and design may be simpler [3].
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Achieving efficient and reasonable output voltage regulation for the current shared
across the converters. The primary purpose of current sharing control of multi-converters
in a DC microgrid [4]. The main challenges in microgrid control stem from uncertainties
in renewable power sources, such as wind and solar energy, due to intermittent power
generation, uncertainties in load demands and schedules, and uncertainties in the dis-
tributed topology of power sources that are spatially scattered due to location and size
constraints. Given these limitations, a robust and distributed control solution is required
for the reliable functioning of smart microgrids. It is challenging to satisfy the robustness
and performance objectives in the traditional proportional-integral differential equation in
the multiple-input multiple-output environment dictated by the need to govern various
generation sources [5,6].

Due to line resistances and non-identical converters, droop management is a compro-
mise between output voltage regulation and current sharing between converters. When
the variances in output currents are small, a high amount of Droop Gain will degrade
voltage regulation. Low droop gain enables good regulation, but the output current sharing
variations are significant. As a result, primary control focuses on equal current sharing
while maintaining a high droop gain. An extra secondary controller then improves the
voltage regulation [7]. Droop can only function if the droop parameters are sufficiently
large concerning the line resistances. However, large droop parameter values result in
unacceptable low voltage levels. As a result of this, there is a compromise between these
objectives [8,9]. Many papers have presented control approaches to improve load sharing
through droop management. One of them is the Gain Scheduling Droop. The connection
between droop gain and load power is linear. Droop gain is altered dynamically as the load
power changes in this technology [10]. The adaptive droop approach is used to build the
principal control for each unit solely by utilizing local electrical parameters, which may re-
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duce both the control structure complexity and communication reliance in a practical power
system. Because droop controllers do not need a communication system and can prevent
single points of failure, they are the primary control strategy used to maintain appropriate
parameters for the microgrid, ensuring the system operates steadily and dependably [11].

Control systems based on communication, such as centralized, master–slave, circular
chain, distributed, and hierarchical, give optimal power sharing and voltage regulation
performances [12]. They do, however, necessitate costly communication networks that are
prone to failure and reduce system reliability, flexibility, modularity, and expandability. As
a result, communication-based control techniques are more suited for use in DC microgrids
with fixed and compact structures [13].

Power sharing among DERs is enabled by non-communication-based control tech-
niques that use locally monitored bus voltages [14]. They have several advantages, in-
cluding ease of installation, low cost, great modularity, flexibility, expandability, and
reliability [15]. Control solutions that do not rely on communication systems are therefore
better suited for use in some of the upcoming DC microgrids with numerous geographically
distributed DERs. Conventional droop control, enhanced droop control, DC bus signals,
and mode-adaptive droop control schemes are all examples of non-communication-based
droop control strategies [16].

The basic purpose of DC microgrid control is to provide effective and acceptable
output voltage regulation values for the current shared across the converters [17]. Line
impedance has a significant impact on the performance of conventional droop. The droop
control method can be used in both a linear and non-linear mode [18]. The non-linear droop
mechanism was chosen due to the negative effect of line impedance on the linear droop
mechanism. The non-linear properties of droop control have been seen to delay the trade-off
between voltage regulation and current sharing [19]. Because of improved communication
and faster data transmission among converters, the distributed control technique can
conduct adaptive droop control at the secondary and primary control levels [20]. The
adaptive droop gain approach allows for the soft adjustment of the droop coefficient under
various loading conditions. The voltage and current regulators are implemented at the
secondary level to offer voltage and impedance correction terms [21,22]. To reduce the
variation in the load current sharing, the droop parameters were checked online and
changed utilizing the principal current sharing loops [23,24].

The second loop additionally shifted the droop lines to eliminate the DC microgrids’
bus voltage fluctuation [25]. The main loop is used to continually update the value of
the virtual resistances in the preceding section, ensuring that all converters in DC micro-
grids share load correctly [26,27]. This study presents a novel adaptive control strategy
that, depending on the loading state, meets accurate current sharing and suitable voltage
regulation for DC microgrid applications. The accuracy of the current sharing process
is unimportant when there is little to no load and the dispersed generator units’ output
currents are much below the upper limits. Under heavy load conditions, proper current
sharing is necessary because the output currents of the dispersed generating units grow as
the load does. The suggested control approach raises the equivalent droop gains as the load
level increases and provides accurate current sharing. The adaptive droop controller, which
is original and inventive, to do this, the droop parameters have been checked online and
changed using the principal current sharing loops to reduce the variation in load current
sharing and the second loop also transferred the droop lines to eliminate DC microgrid
bus voltage fluctuation. The proposed algorithm is tested using a variety of input voltages
and load resistances. The model is stepped by MATLAB/SIMULINK using a computed
time vector and a step change in the input voltage and load, from 10 to 5 and 3.33. having
a relationship, The OPAL-RT OP4510 Real-Time Simulation workflow commences with
instantaneous simulation and testing, followed by a link to the DSOX3034A Oscilloscope
serial trigger and analysis, segmented memory, and mask testing at any given time. A
range of input voltages and load resistances are used to test the suggested method. to
show how well the proposed method performs in comparison to the primary droop control.
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To verify the precision and efficacy of the recommended control strategy, the pertinent
model is built in MATLAB/SIMULINK and utilized in hardware-based experiments and
Real-Time Simulation Fundamentals.

The basic goals of this research project can be summarized as follows:

• Investigating the primary challenges with the parallel DC-DC converters of classic
droop control in DC microgrids;

• Parallel DC-DC converter design and management for stand-alone application;
• A simple and adaptive droop control solution is proposed to eliminate bus voltage

variation and circulating current between converters with equal load current sharing.

The primary goals of this research project are to eliminate bus voltage variation and
circulate current across converters while sharing equal load current [28].

The technique and results further show that the proposed enhanced adaptive droop
control strategy:

• Effectively maintains power balance in the microgrid under major disturbances;
• Accurately regulates DC bus voltages under diverse operational situations and in-

creases electricity sharing;
• Increases the stability of the DC microgrid and its dynamic response to disturbances;
• Improves DC microgrid dependability, flexibility, modularity, and scalability.

2. Materials and Methods
2.1. Buck DC-DC Converter Configuration System in a DC Microgrid

This section analyses variable load sharing in DC microgrids as well as recently dis-
cussed challenges. Figure 2 illustrates a DC microgrid in a parallel arrangement composed
of DC-DC converters, a shared changeable load, and variable input voltages vs. As an
interface converter, a DC-DC buck converter is employed between the source and the
low-voltage DC bus.
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2.2. Formatting of Mathematical Components

The output current of the converter may be calculated by Equations (1) and (2):

I1 =
R2Vi1

RL(R1 + R2)
+

Vi1 − Vi2

(R1 + R2)
(1)

I2 =
R1Vi2

RL(R1 + R2)
+

Vi2 − Vi1

(R1 + R2)
(2)

The relationship between nominal voltage and circulating current is described by the
equations below [29]:
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IC12 = −IC21, IC12 =
Vi1 − Vi2

(R1 + R2)
(3)

The circulating current is described by the equations below:

IC12 = −IC21 =
Vi1 − Vi2(

R1 + Rdroop1 + R2 + Rdroop2

) (4)

However, in performing, this is not feasible. To achieve the necessary load sharing,
the reference voltage of each converter can be modified. R Droop, a fictional resistance, is
employed to modify the reference voltage of each converter to do this. The corresponding
equations can be written as

VDCnew = V1ref = I1

(
R1 + Rdroop1

)
+ RLIL (5)

It can be shown that the reference voltage can be changed by varying the R Droop
value using Equations (5) and (6):

VDCnew = V2ref = I2

(
R2 + Rdroop2

)
+ RLIL (6)

This demonstrates that the necessary current sharing may be achieved by varying the
value of the droop resistance by Equation (7):

I =
Vref − VBus

Rd + r
(7)

The revised voltage reference for the converter in droop control is as follows, based on (8):

V∗ = Vref − Rd ∗ I (8)

The following is a discussion of how two converters share the current load resistance
by Equation (9):

∆I12 =
(Rd2 + r1)(Vref − VBus)− (Rd1 + r1)(Vref − VBus)

(Rd1 + r1)(Rd2 + r2)
(9)

The droop settings must be fine-tuned to regulate the source converters and raise the
bus voltage such that the output voltage of each converter is the same by Equation (10):

V* = Vref − (R d ± ∆R
)
∗ I (10)

At Vdifference = (Vdc1 − Vdc2) is a positive value, VO1 > VO2 > Rd2 > Rd1, IO,2 < IO,1,
then the following value for Rd droop is provided by Equation (11):

Rd1,new = (Rd1,old ± ∆R) (11)

At Vdifference = (Vdc1 − Vdc2) is a negative value, VO1 < VO2 > Rd1 > Rd2, IO,1 < IO,2,
then the following value for Rd droop is provided by Equation (12):

Rd1,new = (Rd1,old ∓ ∆R) (12)

At Vdifference = (Vdc1 − Vdc2) is provided by Equation (13):

Rd1,new = (Rdi,old) (13)

Figure 3A shows the equivalent circuit of parallel DC-DC buck converters powering a
resistive load, and Figure 3B shows a similar circuit with variable droop control.
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The voltage level, which uses 48 V and is the best option for the output low voltage
DC transmission system, is an important aspect in determining system efficiency. Table 1
shows the parameters of DC-DC buck converters when examining the converters supplied
with two different source voltages, Vi1 and Vi2, as well as source currents, I1 and I2.

Table 1. Parameters of DC-DC buck converters.

Parameters Symbol Values

Ideal voltage DC bus VDC 48 V
Current rating for source I rated 20 A

Resistance of line-1 R1 0.1 Ω
Resistance of line-2 R2 0.2 Ω

Inductance of cable line-1 L1 0.2 mH
Inductance of cable line-2 L2 0.4 mH
Resistance of capacitor 1 rc1 0.03 Ω
Resistance of capacitor 2 rc2 0.03 Ω

The main source of current flowing between DC sources is the converter’s output
voltage fluctuation. Figure 3A demonstrates the parallel equivalent circuit; the cable resistor
product can be ignored in comparison to the high load resistance RL. As a result, the output
current of the converter may be calculated [29–32].

Because of the difference in current sharing caused by circulating current, the convert-
ers get overloaded. These two implications will reduce the system’s effectiveness. The DC
grid voltage level is expected to be 48 V in this work. The optimal low-voltage LV DC distribu-
tion system voltage is 48 V, which is commonly utilized in the telecommunications industry.

It should be remembered that Rd is a virtual value that can be adjusted to affect the
current flow from the dispersed resources. This demonstrates that the necessary current
sharing may be achieved by varying the value of the droop resistance.

2.3. Conventional Droop Control

In this design, as illustrated in Figure 4, r and L represent the equivalent line resistance
and inductance from the distributed resources to the load bus, respectively, Vref represents
the voltage source reference, and Rd represents the droop resistance.
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Where I1 and I2 are the load currents, r1 and r2 are the equivalent line resistances
connecting each power converter to the load, and Rd1 and Rd2 are the droop resistances,
as seen in Figure 5.
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2.4. Adaptive Droop Control in DC Microgrid Strategy

The proposed adaptive control system for DC microgrids block diagram is displayed in
Figure 6. The current-sharing accuracy is maximized by matching the converter’s nominal
voltage. To achieve the exact current sharing error, the nominal voltage of each converter
is modified using local control. Converters with lower nominal and maximum voltage
deviations distribute current values more evenly. Because of the bus voltage variance and
current load sharing, the controller is programmed to raise the nominal DC voltage [33–36].
The reference voltage for each converter is then modified to achieve this using virtual
resistance. R Droop, the reference voltage, and power sharing of any converter can all be
adjusted by modifying R Droop, as shown by Equations (5) and (6). If the voltage deviation
is small, the converter’s nominal voltage will be high. In addition to lowering the current
sharing error, the low voltage converter will raise its nominal voltage in comparison to the
second. The secondary loop is also used to reduce voltage variation. Each control loop is
explained in detail below.
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Figure 6. Parallel buck converter control schematic with adaptive droop control.

Thus, Real-Time Simulation OPAL-RT OP4510 (Europe–North America–Japan) has
a significant benefit during the development and evaluation of the proposed adaptive
controller for its performance when the proposed algorithm is evaluated using a variety
of input voltages and load resistances, developing confidence in the power grid operator.
Display of voltage and current waveforms and presentation of real results to confirm the
functioning extent of the proposed control system as shown in Figure 7. A computed time
vector is used by MATLAB/SIMULINK to step the model when the load is changed in
steps from 10 to 5 and 3.33 ohm when the input voltage is changed. Simulink instantly
computes the outputs for the next time value after calculating the previous time value,
and this process continues until the stop time is reached. With reference Instantaneous
Simulation Real-time simulation and testing, as well as connection with the DSOX3034A
Oscilloscope serial trigger and analysis, segmented memory testing at any time, are the
first steps in the OPAL-RT OP4510 workflow.

2.5. Primary Control Loop System

The primary loop’s purpose for all converters in DC microgrids is to ensure proper
load sharing. The proposed adaptive droop concept is discussed using the droop diagram
in Figure 5. Where Rd1 and Rd2 are the initial droop characteristic lines, with non-desired
current sharing I1 and I2, and VMG is the bus voltage deviation. Adaptive control is used
to relocate the droop characteristic lines to a point that meets the DC microgrid control
criterion. Each movement in this work can be presented separately using two distinct
stages. The initial phase is control of the adaptive current sharing. ±∆R is added to the
traditional droop Equation (8) to update the value of the virtual resistance and improve
power sharing, Figure 8 illustrates a flowchart of the suggested strategy’s steps.
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2.6. Secondary Control Loop System

The primary loop is used to continuously update the virtual resistance value from
the previous section, ensuring proper load sharing among all converters in DC microgrids.
The bus voltage’s deviation is affected by the load as well as any faults in the current or
voltage feedback. Figure 9 shows how a second loop is used to compensate for the bus
voltage variation caused by the DC microgrids. To restore the bus voltage to the desired
value, each converter is shifted by the voltage deviation value ∆VMG.
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3. Results

This paper provides a physical testing device for validating the suggested control algo-
rithm. Simulations and analysis test procedures were performed using MATLAB/SIMULINK
and Real-Time Simulation OPAL-RT OP4510 for typical cases including adaptive control
activations and load changes for a 48 Vdc microgrid in islanded mode to validate the effec-
tiveness of the proposed control algorithm. Figure 10 shows the change in the input voltage
of two buck converters. Case studies were performed under varied load circumstances. The
results show that the system’s objectives of current sharing between two converters and
bus voltage stability have been achieved and that the system’s stability and resilience are
ensured by the suggested control algorithm. The resulting modelling and practical results
show that the presented technique outperforms the droop gain with primary control.
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The initial phase is control of the adaptive current sharing. ±R Droop is added to
the traditional droop as shown Figure 11. Droop Voltage gain at (a) Droop Voltage with
primary control, (b) Droop Voltage with secondary control during load changes of 10 to 5
and 3.33 and input voltage changes.

Figure 11. Comparison between Droop Voltage at (a) Droop Voltage with primary control, (b) Droop
Voltage with secondary control during load changes of 10 to 5 and 3.33 and input voltage changes.

Figure 12 illustrates the response for droop gain with primary control with a step
load change from 10 to 5 and 3.33 ohm and a step change in the input voltage MAT-
LAB/SIMULINK. Even though the current sharing mistake is substantially lower, the
voltage variation under various operating conditions and Figure 13 illustrates the results
of the Adaptive droop gain with secondary control MATLAB/SIMULINK. Although they
eliminate bus voltage variation and circulate current across converters while sharing equal
load current, Figures 14 and 15 Compare between output voltage and Figures 16 and 17
output current of two converters at droop gain with primary control, Adaptive droop gain
with secondary control during load variations of 10 to 5 and 3.33 and input voltage changes.
The transient response of the suggested algorithm with a load changing from 10 Ω, to 5 Ω,
to 3.33 Ω.

Comparison of Two Strategies

Tables 2–4 give the simulation results for the load sharing error and circulation current
for various cable resistance conditions, varying loads and cable resistances, and varying
source voltages and loads. Figures 18 and 19 Comparison between bus voltage, and
Figure 20 bus current at (A) Droop gain with primary control, (B) Adaptive droop gain
with secondary control during load changes of 10 to 5 and 3.33 and input voltage changes.
Table 5 shows case studies of parallel DC-DC converter phenomenon.



Energies 2024, 17, 284 12 of 19

Energies 2024, 17, x FOR PEER REVIEW 12 of 20 
 

 

Figure 11. Comparison between Droop Voltage at (a) Droop Voltage with primary control, (b) 
Droop Voltage with secondary control during load changes of 10 to 5 and 3.33 and input voltage 
changes. 

Figure 12 illustrates the response for droop gain with primary control with a step 
load change from 10 to 5 and 3.33 ohm and a step change in the input voltage 
MATLAB/SIMULINK. Even though the current sharing mistake is substantially lower, 
the voltage variation under various operating conditions and Figure 13 illustrates the 
results of the Adaptive droop gain with secondary control MATLAB/SIMULINK. 
Although they eliminate bus voltage variation and circulate current across converters 
while sharing equal load current, Figures 14 and 15 Compare between output voltage 
and Figures 16 and 17 output current of two converters at droop gain with primary 
control, Adaptive droop gain with secondary control during load variations of 10 to 5 and 
3.33 and input voltage changes. The transient response of the suggested algorithm with a 
load changing from 10 Ω, to 5 Ω, to 3.33 Ω.  

Output Current 
Converter 2

Case 1

Case 2

Case 3

RL= 10 Ω 

RL= 5 Ω 

RL= 3.33 Ω 

Output Current 
Converter 1

Output Voltage 
Converter 2 Output Voltage 

Converter 1

Output Current DC Bus

DC Bus Voltage

Referance voltage

 
Figure 12. The transient response for Droop gain with primary control MATLAB/SIMULINK with 
a step load change from 10 Ω to 5 Ω and 3.33 Ω and step change in the input voltage. 

Figure 12. The transient response for Droop gain with primary control MATLAB/SIMULINK with a
step load change from 10 Ω to 5 Ω and 3.33 Ω and step change in the input voltage.

Energies 2024, 17, x FOR PEER REVIEW 13 of 20 
 

 

Output Current 
Converter 2

Case 1

Case 2

Case 3

RL= 10 Ω 

RL= 5 Ω 

RL= 3.33 Ω 

Output Current 
Converter 1

Output Voltage 
Converter 2 Output Voltage 

Converter 1

Output Current DC Bus

DC Bus Voltage

Referance voltage

 
Figure 13. The transient response Adaptive droop gain with secondary control 
MATLAB/SIMULINK with a step load change from 10 Ω to 5 Ω and 3.33 Ω and step change in the 
input voltage. 

 
Figure 14. Output voltage of droop gain with primary control, during load changes of 10 to 5 and 
3.33 and input voltage changes. 

Figure 13. The transient response Adaptive droop gain with secondary control MATLAB/SIMULINK
with a step load change from 10 Ω to 5 Ω and 3.33 Ω and step change in the input voltage.



Energies 2024, 17, 284 13 of 19

Figure 14. Output voltage of droop gain with primary control, during load changes of 10 to 5 and
3.33 and input voltage changes.

Figure 15. The output voltage of adaptive droop gain with secondary control during load changes of
10 to 5 and 3.33 and input voltage changes.
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Table 2. Comparing between two strategies with a step change in load resistance 10 Ω.

Method V Bus (V) I Bus (I1, I2) (A) ∆ I Circulate % ∆ V Bus %

Droop gain with
primary control 46.73 4.674

(2.55, 2.124) 9.11 2.65

Adaptive droop gain
with secondary control 47.77 4.777

(2.511, 2.266) 5.13 0.48

Table 3. Comparing between two strategies with a step change in load resistance 5 Ω.

Method V Bus (V) I Bus (I1, I2) (A) ∆ I Circulate % ∆ V Bus %

Droop gain with
primary control 45.56 9.108

(4.975, 4.132) 9.25 5.08

Adaptive droop gain
with secondary control 47.55 9.509

(4.851, 4.657) 2.04 0.94

Table 4. Comparing between two strategies with a step change in load resistance 3.33 Ω.

Method V Bus (V) I Bus (I1, I2) (A) ∆ I Circulate % ∆ V Bus %

Droop gain with
primary control 44.45 13.33

(7.282, 6.044) 9.29 7.4

Adaptive droop gain
with secondary control 47.38 14.21

(7.157, 7.055) 0.72 1.29

Figure 18. Bus voltage at droop gain with primary control, during load changes of 10 to 5 and 3.33
and input voltage changes.
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Figure 19. Bus voltage at adaptive droop gain with secondary control during load changes of 10 to 5
and 3.33 and input voltage changes.

Figure 20. Comparison between current DC bus at (a) Droop gain with primary control, (b) Adaptive
droop gain with secondary control during load changes of 10 to 5 and 3.33 and input voltage changes.
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Table 5. Case studies of parallel DC-DC converter phenomenon.

Case Input Voltages
Vi1–Vi2

Cable Resistances
R1–R2

Output Voltages
V1–V2

Output Currents
I1–I2

1 Equal Equal Equal Equal
2 Equal Unequal Equal Unequal
3 Unequal Equal Unequal Unequal
4 Unequal Unequal Unequal Unequal

4. Discussion

The difference in current sharing between source converters, in this case, the value of
current sharing varies. When loading is low, medium, or heavy, the highest current sharing
error for the droop control with primary control is 9.11%, 9.25%, and 9.29%, compared to
5.13%, 2.04%, and 0.72% for the suggested adaptive droop with secondary control. Under
different loading conditions, the results show that the current sharing error is relatively low.
In addition, the proposed technique allows for the voltage deviation for the droop control
with primary control is 2.65%, 5.08%, and 7.4%, compared to 0.48%, 0.94%, and 1.29% for the
suggested adaptive droop with secondary control. to remain within acceptable bounds even
under a variety of operating scenarios with low, medium, and high loading circumstances.

5. Conclusions

The classical droop control has been improved in this study utilize by selecting the
droop coefficients on-line. Reduce bus voltage variation and improve current sharing
precision in droop-controlled DC microgrids. The on-line adaptation approach is designed
to change the droop control resistance in response to voltage and current variations. The
proposed control is simple and does not require any additional measurements or inter-
source converter communication. The simulation test procedures were performed, and
this work assesses the performance using MATLAB/SIMULINK and Real-Time Simulation
OPAL-RT OP4510, and the proposed control approach was evaluated, appraised, and
compared to droop control under various operating conditions. There are drawbacks to
using fixed droop settings in DC microgrids. This scenario illustrates an adaptive control
technique for removing bus voltage variation and circulating current across converters with
proper load current sharing. The results demonstrate how the proposed approach improves
load current sharing between the converters and reduces output voltage variance. Future
work will include the development of a control system with optimization for buck-boost for
different applications, a DC microgrid with different types of sources, and energy storage
to assess the impact of other sources.
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