
Citation: Huang, Q.; Tang, Z.; Weng,

X.; He, M.; Liu, F.; Yang, M.; Jin, T.

A Novel Electricity Theft Detection

Strategy Based on Dual-Time Feature

Fusion and Deep Learning Methods.

Energies 2024, 17, 275. https://

doi.org/10.3390/en17020275

Academic Editor: Valentina E. Balas

Received: 28 November 2023

Revised: 25 December 2023

Accepted: 27 December 2023

Published: 5 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Novel Electricity Theft Detection Strategy Based on Dual-Time
Feature Fusion and Deep Learning Methods
Qinyu Huang 1 , Zhenli Tang 2,* , Xiaofeng Weng 2, Min He 2, Fang Liu 2, Mingfa Yang 1 and Tao Jin 1,*

1 Department of Electrical Engineering, Fuzhou University, Fuzhou 350116, China;
220127039@fzu.edu.cn (Q.H.); yangmf@fzu.edu.cn (M.Y.)

2 Fujian YILI Information Technology Co., Ltd., Fuzhou 350001, China; wengxf@139.com (X.W.);
18059105943@189.cn (M.H.); rickydc@163.com (F.L.)

* Correspondence: 13950360570@163.com (Z.T.); jintly@fzu.edu.cn (T.J.)

Abstract: To enhance the accuracy of theft detection for electricity consumers, this paper introduces
a novel strategy based on the fusion of the dual-time feature and deep learning methods. Initially,
considering electricity-consumption features at dual temporal scales, the paper employs temporal
convolutional networks (TCN) with a long short-term memory (LSTM) multi-level feature extraction
module (LSTM-TCN) and deep convolutional neural network (DCNN) to parallelly extract features
at these scales. Subsequently, the extracted features are coupled and input into a fully connected
(FC) layer for classification, enabling the precise detection of theft users. To validate the method’s
effectiveness, real electricity-consumption data from the State Grid Corporation of China (SGCC)
is used for testing. The experimental results demonstrate that the proposed method achieves a
remarkable detection accuracy of up to 94.7% during testing, showcasing excellent performance
across various evaluation metrics. Specifically, it attained values of 0.932, 0.964, 0.948, and 0.986 for
precision, recall, F1 score, and AUC, respectively. Additionally, the paper conducts a comparative
analysis with mainstream theft identification approaches. In the comparison of training processes,
the proposed method exhibits significant advantages in terms of identification accuracy and fitting
degree. Moreover, with adjustments to the training set proportions, the proposed method shows
minimal impact, indicating robustness.

Keywords: deep learning; electricity theft detection; feature fusion; parallel model

1. Introduction

The theft of electricity by users is a significant factor contributing to non-technical
losses (NTL) in the operation of the power grid. This behavior not only causes substantial
economic losses to the country [1–4] but also has adverse effects on the safe and stable
operation of the electrical power system [5]. Traditional methods of electricity theft in-
clude deliberately damaging the electricity meter, bypassing the meter to obtain electricity
illegally, and so on. Traditional methods of detecting electricity theft typically require
employees from the power company to physically record the electricity consumption of
meters and identify meters with anomalies. This approach is both time-consuming and
labor-intensive, resulting in low efficiency [6]. In recent years, with the upgrading of smart
grids and the widespread adoption of advanced metering infrastructure (AMI), power
companies can now record electricity-consumption information in real-time [7]. Although
the widespread use of AMI systems can reduce the occurrence of electricity theft events,
such illicit activities persist and have become more covert and sophisticated. This is due
to the fact that AMI systems need to transmit user electricity-consumption information to
cloud storage. As a result, methods of electricity theft have evolved to include interference
with information communication in AMI systems or network attacks on cloud data stor-
age centers to manipulate electricity-consumption information [8], achieving the goal of
electricity theft.

Energies 2024, 17, 275. https://doi.org/10.3390/en17020275 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17020275
https://doi.org/10.3390/en17020275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0009-0008-0920-4030
https://orcid.org/0009-0005-3126-0352
https://orcid.org/0000-0003-3829-4545
https://doi.org/10.3390/en17020275
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17020275?type=check_update&version=1


Energies 2024, 17, 275 2 of 18

With the popularization of AMI systems and the wealth of user electricity information
they provide, research on data-driven electricity theft detection is gradually becoming a
highly regarded and popular field. Currently, many scholars have conducted extensive
research in this field, and the main research directions can be summarized as electricity theft
detection based on system state estimation, electricity theft detection based on game theory,
and electricity theft detection based on artificial intelligence algorithms [9]. The electricity
theft detection method based on system state estimation relies on mathematical constraints
on various electrical parameters in the power system. By observing the relationships
between electrical parameters and the differences between actual measured values and esti-
mated values, this method determines whether there is theft behavior by users. However,
this approach has limitations in practical engineering applications, as it requires complete
network topology information and accurate parameter data. The principle of electricity
theft detection based on game theory involves using the concepts and methods of game
theory to model and analyze the interaction between electricity thieves and power compa-
nies in the power system. However, this approach relies on a deep understanding of the
strategies and objectives of the participants, making it challenging to find a suitable model
to represent the relationship between electricity thieves and power companies [10]. With
the widespread application of big data and artificial intelligence algorithms in smart grids,
an increasing number of researchers are incorporating artificial intelligence algorithms
into the data-driven theft detection field. The advantage of this approach is that it is less
dependent on comprehensive grid information. Leveraging algorithms and data-mining
techniques, it can more flexibly handle and analyze electricity-consumption data, providing
a novel pathway for electricity theft detection. Regarding electricity theft detection methods
based on artificial intelligence algorithms, we will provide a more detailed introduction in
the following sections.

In order to improve the accuracy of electricity theft detection, this paper proposes a
novel electricity theft detection strategy based on dual-time feature fusion and deep learning
methods. This strategy uses temporal convolutional networks (TCN) with long short-term
memory (LSTM) multi-level feature extraction module (LSTM-TCN) and deep convolu-
tional neural network (DCNN) to extract the user’s one-dimensional power-consumption
features and two-dimensional power-consumption features in parallel. Then, the power-
consumption characteristics of dual-time scales are coupled, user classification is performed
through a fully connected (FC) layer, and, finally, electricity theft detection is realized. In
order to verify the effectiveness of the proposed method, this paper uses the State Grid
Corporation of China (SGCC) dataset [11] to conduct simulation experiments and com-
pares it with other electricity theft detection model algorithms. These comparative models
include support vector machine (SVM) [12], random forest (RF), extreme gradient boost-
ing (XGBoost) [13], gradient boosting decision tree (GBDT), 1D-CNN, 2D-CNN, DCNN,
LSTM-TCN, and CNN-LSTM [14]. The results indicate that, compared to the comparative
models, the proposed model outperforms in terms of accuracy, recall, F1 score, and area
under the receiver operating characteristic curve (AUC), and it achieves the second-best
performance in precision. The proposed electricity theft detection strategy not only exhibits
higher accuracy and outstanding performance but also demonstrates superior performance
under different training set proportions. In this context, the proposed electricity theft
detection strategy shows excellent robustness. The main contributions of this paper are
summarized as follows:

• By visualizing and introducing the Pearson correlation coefficient, we analyzed the
differences in electricity-consumption characteristics between normal users and elec-
tricity theft users on a weekly scale. The conclusion drawn is that, compared to normal
users, electricity theft users exhibit less apparent or irregular periodic electricity-
consumption features.

• In order to integrate the electricity-consumption features at both daily and weekly
scales, this paper proposes a novel theft detection strategy based on the fusion of
dual-time features and deep learning methods. This strategy utilizes a hybrid model
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composed of LSTM-TCN and DCNN to concurrently extract features from both scales
and achieves binary classification through an FC layer. The effectiveness of the pro-
posed theft detection strategy is validated through simulation experiments and re-
sult analysis.

The remaining sections of this paper are organized as follows. Section 2 briefly
describes previous studies on electricity theft detection methods. Section 3 analyzes the
difference in electricity-consumption characteristics between normal users and electricity
theft users on a weekly scale through visualization and the introduction of the Pearson
correlation coefficient. Section 4 introduces the overall framework of the novel theft
detection strategy based on deep learning and dual-time feature fusion, with further details
on the feature extraction module. Section 5 presents experimental simulations and case
analyses. Section 6 discusses the electricity theft detection strategy proposed in this paper.
Finally, we conclude this paper in Section 7.

2. Related Works

The artificial intelligence detection methods mainly include machine learning methods
and deep learning methods. In previous research, various methods have been applied to
theft detection. In [12], a new approach towards NTL detection in power utilities using an
artificial intelligence based on SVM is proposed, and experimental results show that SVM
has high discriminative ability and can accurately classify electricity customers. In [13],
a metered data theft detector based on XGBoost is proposed. Simulation results indicate
that, compared to other machine learning methods, this approach can detect theft behavior
with higher accuracy and lower false alarm rates, demonstrating good robustness in the
presence of data imbalance. However, given the limited detection performance of a single
learner, an increasing number of scholars are exploring the combination of various learners
to enhance the accuracy of electricity theft detection. In [15], Jindal et al. proposes a
comprehensive top-down scheme based on decision tree (DT) and SVM. Experimental
results demonstrate that this scheme significantly reduces false alarms and is practical
enough for real-time implementation. In [16], the authors proposed a hybrid method
based on deep learning and SVM for energy theft detection, and the results verified the
effectiveness of the method in terms of accuracy and a small detection error. In [17], an
ensemble learning-based system for detecting energy theft using a hybrid approach is
proposed. The simulation results show that the proposed ensemble model outperforms
the state-of-the-art methods in terms of accuracy when compared with the state-of-the-art
methods. Through the studies [15–17], we can conclude that integrating multiple machine
learning methods can effectively improve the performance of electricity theft detection. In
the field of machine learning, deep learning methods are widely applied in areas such as
load forecasting [18], energy scheduling optimization [19], and analysis of power quality
disturbances [20,21]. This paper applies them to the field of electricity theft detection.
Deep learning methods primarily utilize neural networks such as convolutional neural
networks (CNN), recurrent neural networks (RNN), and their variants, simulating the
structure and self-training ability of the human brain. They learn electricity-consumption
characteristics from users’ electricity-consumption data to achieve the detection of electricity
theft. Zheng et al. [11] propose a hybrid CNN to improve the electricity theft detection
accuracy, but the limitation of this work is that the fully connected layer that extracts
one-dimensional electricity consumption cannot learn the time dependence in customer
electricity-consumption time series [1]. In [14], a theft detection system that combines CNN
and LSTM structures is proposed. The experimental results indicate that this approach can
classify users with high accuracy. A novel theft detection method based on a convolution–
non-convolution parallel deep network is proposed in [22]. This method converts load
time series into two-dimensional images and utilizes neural networks to capture features
at different time scales. Simulations indicate that this approach significantly improves
the performance of electricity theft detection. In [23], a multi-resolution convolutional
neural networks architecture for fraud detection on smart grids is proposed. This method
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converts electricity-consumption data into images, combines the electricity-consumption
features of one-dimensional electricity consumption, and extracts features through CNN,
respectively. However, the conversion of electricity-consumption data into two-dimensional
images through methods such as visualization, Gram’s angle fields, and Markov transition
fields will complicate the design and training process of the classification model, and the
visualization may lead to the loss of features between data. On the contrary, directly using
electricity-consumption data as the input of the model can greatly simplify the training
process and preserve the temporal characteristics between the data. Table 1 summarizes
the algorithms, data sources, and the advantages and disadvantages of related works.

Table 1. The summary of algorithms, data source, and the advantages and disadvantages of related works.

Refs. Algorithms Data Source Advantages Disadvantages

[12] SVM
Tenaga Nasional

Berhad Distribution
(TNBD), Sdn.Bhd.

Detects meter tampering and
meter bypassing/Detects

abrupt changes in load-profile.

Readings are transformed into
average, which can deviate from

actual values.

[13] XGBoost Irish Smart Energy
Trial Dataset

The proposed method is robust
when the data are imbalanced.

The proposed method only
analyzes electricity-consumption
data alone, which may produce

limited results.

[15] Decision Tree
coupled SVM

References [37–39]
in [15]

The proposed scheme is
capable enough to detect the

thefts happening anywhere in
the power network.

This scheme needs to obtain many
features in advance.

[16] CNN-SVM Non-public The proposed model can
extract features automatically.

The detection performance on
other data sets needs further

verification.

[17]

ensemble-learning
approach and

ML-classifier training
method

Mendeley datasets

This study presents an
ensemble learning-based

system for detecting energy
theft using a hybrid approach.

The main limitation of this work is
its computational complexity.

[11] Hybrid CNN SGCC Dataset

A hybrid CNN model is
proposed to improve the

accuracy of electricity theft
detection.

The fully connected layer in the
model cannot learn the temporal

dependence in customer
electricity-consumption

time series.

[14] CNN-LSTM SGCC Dataset

The CNN is used for
automatically extracting

high-level features, then these
features are then flattened and

fed into an LSTM neural
network for capturing

temporal dependencies.

Requires larger computing
resources.

[22]
Convolution +

non-convolution
deep network

SGCC Dataset

The proposed method comes
from the CNCP structure,

which can capture features of
electricity-consumption time

series at different scales.

The process of visualizing data is
relatively complex and carries the

potential risk of losing features
among the data.

[23] CNN

Uruguayan power
generation and

distribution company
and CER dataset

Present a multi-resolution
convolutional neural networks
architecture for fraud detection

on smart grids.

The process of visualizing data is
relatively complex and carries the

potential risk of losing features
among the data.

In comparison to previous works, this paper tackles the challenges posed by long-term
dependencies in one-dimensional electricity-consumption sequences through the utilization
of LSTM-TCN. Additionally, drawing on previous research findings that demonstrate a
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better representation of electricity-consumption patterns by converting one-dimensional
usage data into a two-dimensional format on a weekly basis, this paper opts to utilize
DCNN for extracting two-dimensional electricity-consumption features. Furthermore, the
paper effectively addresses the issue of sample imbalance, introduces additional evaluation
metrics, and incorporates comparison models to comprehensively assess the effectiveness
of the proposed electricity theft detection strategy.

3. Analysis of User Electricity-Consumption Characteristics

After visualizing and analyzing the one-dimensional electricity-consumption data
for each electricity customer, it was observed that the electricity-consumption curve of
regular users exhibits a certain periodicity, while the electricity-consumption curve of
theft users shows significant fluctuations and pronounced peaks and valleys, indicating
sudden increases and decreases in electricity consumption during specific periods. Figure 1
illustrates the monthly electricity consumption for a normal user and an electricity theft user.
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Figure 1. Monthly electricity consumption by normal user and electricity theft user.

Through Figure 1, it can be observed that the electricity-consumption patterns of
regular users exhibit a consistent regularity each week, while there is a noticeable difference
in the electricity usage of electricity theft users in the second week compared to the other
three weeks. Therefore, this study considers plotting the electricity-consumption graph on
a weekly basis to observe the consumption patterns of electricity customers. In the graph,
each week is represented on the vertical axis, and each day within a week is represented on
the horizontal axis. The electricity-consumption bar chart is generated using data from the
first 28 days (4 weeks) as shown in Figure 2.
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Furthermore, to better analyze the periodicity of user electricity consumption, this
study incorporates the Pearson correlation coefficient to measure the degree of correla-
tion between consecutive weeks. Figure 3 depicts the correlation in weekly electricity-
consumption patterns between normal users and electricity theft users.
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Figure 3. The correlation heat map of weekly electricity consumption of electricity customers.
(a) Normal User. (b) Electricity Theft User.

By combining Figures 2 and 3, it can be observed that normal users exhibit a weekly
electricity-consumption pattern with positive correlations between consecutive weeks,
indicating a strong relationship in weekly electricity consumption. Furthermore, this nor-
mal user experiences a peak in electricity consumption every Tuesday and a trough every
Wednesday within each week. The difference in electricity consumption between adjacent
days does not exceed 0.3 kWh, demonstrating small and relatively stable fluctuations. In
contrast, electricity theft users show mostly negative correlations between weeks, lack-
ing clear weekly electricity-consumption patterns. These users tend to have days with
nearly zero electricity consumption, occasionally experiencing sudden peaks in electric-
ity usage on certain days. The difference in electricity consumption between adjacent
days can reach a maximum of 1.75 kWh, indicating significant and erratic fluctuations in
electricity consumption.

In conclusion, the analysis suggests that, in comparison to normal users, electricity
theft users exhibit either minimal or no apparent weekly electricity-consumption patterns.
Consequently, this study introduces weekly scale electricity-consumption features as an
auxiliary tool for electricity theft detection.

4. Framework for Electricity Theft Detection Strategy

In this section, we will introduce in detail the new electricity theft detection framework
based on dual-time feature fusion and deep learning methods proposed in this article, then
further introduce each module.

4.1. TCN with LSTM Multi-Level Feature Extraction Module

Given that users’ electricity-consumption data constitutes a complex long sequence
classification problem [24], LSTM was particularly well-suited for feature extraction in
this application. LSTM is a specialized form of RNN designed for handling long-term
dependencies in time series data, and its structure is shown in Figure 4. Unlike traditional
RNNs, LSTM excels in processing significant events with extended intervals. It introduces
memory cells, input gates, output gates, and forgetting gates to effectively capture and
manage crucial long-term dependencies in sequences. This architecture overcame the
gradient-related challenges associated with traditional RNNs, making it well-suited for
predicting and processing events with prolonged intervals in time series data.
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In the Figure 4, xt represents the input information at the current moment, ht−1 denotes
the hidden state from the previous moment, ht signifies the hidden state passed to the next
moment, σ represents the sigmoid function, and tanh represents the hyperbolic tangent
function. The components related to the forget gate, input gate, candidate cell state, new
cell state, and output are, specifically, as follows:

ft = σ
(

W f · [ht−1, xt] + b f

)
(1)

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = σ(WC · [ht−1, xt] + bC) (3)

Ct = ft × Ct−1 + it × C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot × tan h(Ct), (6)

where W represents weight.
With tanh as the activation function, its zero-centering contributes to model stability,

ensuring an output range within [−1, 1]. This helps prevent gradient vanishing and
promotes model convergence. Its definition is as follows:

tanh(x) =
ex − e−x

ex + e−x (7)

Concerning the network selection issue, prior research highlights the effectiveness of
RNN in addressing various sequence problems [25,26], including the sequence classification
challenge posed by electricity theft detection. However, practical application exposes a
limitation of RNN: its inability to perform large-scale parallel computations due to its
sequential processing nature, handling one time step at a time. This sequential approach
leads to excessive memory consumption and prolonged training times.

To address these shortcomings, we chose TCN as one of the modules for extracting
daily-scale electricity-consumption features [27]. TCN capitalizes on the parallel processing
capabilities of convolutional networks within a multi-layer structure, allowing for a broader
receptive field. In contrast to RNN, TCN’s parallel processing nature ensures efficient computa-
tion, even with a deep network structure, resulting in substantial time savings during training.
TCN is built upon CNN and incorporates enhancements inspired by the residual network.

Causal Convolution: In Figure 5a,b, the computational structures of traditional convo-
lution and causal convolution are presented. When considering timing issues, a drawback
of traditional one-dimensional convolution becomes evident—it operates bidirectionally,
observing the entire input sequence during convolution. This characteristic may inadver-
tently disclose future information, posing challenges for time series data analysis, where
temporal correlation is crucial. To mitigate this, causal convolution was introduced. Causal
convolution ensures that each output time step depends solely on current and past inputs,
preventing reliance on future inputs. When applied to time series data, causal convolu-
tion effectively preserves temporal correlations, mitigating the risk of revealing future
information and thereby enhancing model accuracy.
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Dilated Convolution: In conventional convolution, a down-sampling operation is
typically employed post-convolution to reduce parameters and computational load, but
this comes at the cost of information loss—commonly associated with down-sampling
techniques, such as pooling [28]. To address this trade-off, dilated convolution emerged as
a solution. Dilated convolution (as shown in Figure 5c) achieves efficient down-sampling
by increasing the distance (dilation rate) in the convolution kernel without significant
information loss. By widening the interval, the receptive field of the convolution kernel on
the feature map expands, allowing the convolutional neural network to extract features
across a broader range. This strategic approach reduces the size of the feature map while
minimizing information loss.

Given the uncertainty, randomness, and complexity of electricity users, the proposed
one-dimensional feature extraction framework in this article initially concatenated features
from the original input and LSTM output. Subsequently, one-dimensional feature extraction
was conducted through TCN. The incorporation of multi-level interleaved connections
ensured that the model captured both deep and shallow crucial information. Utilizing a
neural network, tailored for sequence data in the feature extraction process, guaranteed
the accurate extraction of features from the electrical power data sequence. In TCN,
rectified linear unit (ReLU) is used as the activation function. Its advantages include
simple computation, effective prevention of gradient vanishing, and accelerated model
convergence [14]. The ReLU activation function is defined as follows:

ReLU(x) =
{

x, x ≥ 0
0, x < 0

(8)

Please refer to the TCN with LSTM multi-level feature fusion module in Figure 6 for
the specific model structure. The parameter design of this part is shown in Table 2.

Table 2. Parameter settings of the TCN with LSTM multi-level feature extraction module.

Layer Name Parameters Activation Function

LSTM units = 1
return sequences = True tanh

Concatenate axis = 0 None

Res Block1
filters =32

kernel size = 3
dilation rate = 1

ReLU

Res Block2
filters =32

kernel size = 3
dilation rate = 2

ReLU

Res Block3
filters =16

kernel size = 3
dilation rate = 4

ReLU

Dense units = 128 ReLU
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learning methods.

4.2. DCNN Feature Extraction Model

From the analysis in Section 2, it is evident that observing only the one-dimensional
electricity-consumption data made it challenging to discern the consumption patterns of
electricity users. However, transforming the one-dimensional electricity-consumption data
into a weekly format can better highlight these patterns. Inspired by this insight, this study
used CNN as a basis to design a two-dimensional power-consumption feature extraction
module DCNN. The user’s one-dimensional electricity-consumption data sequence was
transformed into two-dimensional data on a weekly basis, which was then fed into this
module to extract periodic electricity-consumption patterns from the two-dimensional data.

Utilizing DCNN for two-dimensional electricity-consumption feature extraction brings
forth several advantages. First, DCNN excels at processing image data, and representing
the weekly electricity-consumption dataset in a two-dimensional format is akin to treating
it as an image data representation. This approach facilitates DCNN more effectively
capturing features related to weekly-scale electricity consumption. Second, DCNN is adept
at learning and extracting hierarchical features, providing valuable assistance in identifying
intricate patterns within electricity-consumption data. Through the synergistic integration
of multiple convolutional and pooling layers, the network can progressively abstract
and comprehend high-level features of the data, thereby enhancing its ability to capture
intricate electricity-consumption patterns and trends. Consequently, this paper introduced
a meticulously designed DCNN aimed at efficiently extracting features associated with
weekly-scale electricity consumption. The process of extracting electricity-consumption
features was as follows:

Zi(x) = Ai−1 ∗ Wi + bi (9)

Ai = fpool(Zi) (10)

In each feature extraction module mentioned above, Z represents the linear output of
the convolutional layer, A corresponds to the activation output of the previous layer, W
denotes the weights associated with the convolutional kernel, b is the bias of the convolu-
tional layer, and fpool represents the pooling function. After the convolutional computation
is completed, the result is fed through the ReLU activation function to the next layer of
connected units, cycling twice before sending the features to the pooling layer.
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The parameter settings for the two-dimensional electricity-consumption feature extrac-
tion module are outlined in Table 3. The module consists of three feature extraction blocks,
each comprising two convolutional layers and one pooling layer. Finally, the output of the
last max pooling layer is processed through a flatten layer and a dense layer to produce the
two-dimensional electricity-consumption features.

Table 3. Parameter settings of DCNN feature extraction module.

Layer Name Parameters Activation Function

Conv-1 kernel_size = 3 × 3, filter = 32 ReLU
Conv-2 kernel_size = 3 × 3, filter = 32 ReLU

MaxPooling-1 kernel_size = 2×2 None
Conv-3 kernel_size = 3 × 3, filter = 64 ReLU
Conv-4 kernel_size = 3 × 3, filter = 64 ReLU

MaxPooling-2 kernel_size = 2 × 2 None
Conv-3 kernel_size = 3 × 3, filter = 128 ReLU
Conv-4 kernel_size = 3 × 3, filter = 128 ReLU

MaxPooling-2 kernel_size = 1 × 1 None

4.3. Feature Fusion Module

Building upon the earlier discussion, this paper proposed a novel approach for detect-
ing electricity theft. The approach integrated dual-time feature fusion and deep learning
methods, as illustrated in Figure 6. It included extracting global power-consumption fea-
tures from one-dimensional data using the TCN with LSTM multi-level feature extraction.
Additionally, it captured periodic power-consumption patterns from two-dimensional
data through the DCNN, using the concatenate module for feature fusion. The fused
features undergo two-class classification via the FC layer, employing the Softmax function
for activation. The resulting variable Y represented the probability P(Yi) of the i-th category,
calculated as follows:

P(Yi) = Softmax(Yi) = eYi /∑N
k=1 eYk , (11)

where N represented the number of categories that needed to be classified, and Yi repre-
sented the output value of the i-th node. Finally, the maximum value of P(Yi) was selected
as the final result to complete the detection of electricity theft users.

5. Simulation Analysis and Experimental Results

In order to verify the feasibility of the new electricity theft detection strategy based on
dual-time feature fusion and deep learning methods proposed in this article, this section
will conduct simulation experiments and analyze the experimental results.

The proposed model and the comparison models involved in this study are built
using the TensorFlow and Keras frameworks in Python. The hardware specifications and
software versions configured in the experimental environment are presented in Table 4.

Table 4. Hardware Models and Software Versions.

Hardware/Software Model/Version Hardware/Software Model/Version

OS Win10 (64 bit) Python 3.6

CPU Intel Core i9-9820X
@3.3.0 GHz

Tensorflow 2.0.0
Keras 2.3.1

GPU NVIDIA GeForce RTX 2080 Scikit-learn 0.24.2
RAM DDR4 32 GB CUDA 10.0
HDD SSD 1 TB cuDNN 7.6.5
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5.1. Data Preparation

The dataset utilized in this paper comprises a real dataset provided by the SGCC,
encompassing the daily electricity-consumption data of 42,372 users over 1034 days, from
1 January 2014, to 31 October 2016. Among them, 38,757 normal users are marked as 0, and
3615 electricity theft users are marked as 1, and electricity theft users account for 8.5% of
the entire dataset.

The initial dataset is riddled with numerous missing values and outliers, potential
detriments to the model’s classification performance. Moreover, as mentioned earlier,
the dataset showcases an imbalance in class distribution, with a tendency for the model
to prioritize learning the electricity-consumption patterns of regular users, potentially
overlooking those of theft users. To address these issues, this study adopts the data
preprocessing method proposed in [29] to handle missing and outlier values in the raw
electricity-consumption dataset. The processing formula is shown below. Additionally, a
comprehensive sampling method from [29] is employed to balance the dataset by adjusting
the number of normal and theft users.

The formula for handling missing values is as follows:

f (xi) =


xi−1+xi+1

2 , xi ∈ NaN, xi−1&xi+1 /∈ NaN
0, xi ∈ NaN, xi−1|xi+1 /∈ NaN
xi, xi /∈ NaN

, (12)

where xi represents the electricity-consumption value of the electricity customer on a certain
day. If xi is a null value, it is represented by NaN.

For the treatment of outliers, this paper utilizes the “3σ rule” to handle the outliers
present in the dataset. The formula is as follows:

f (xi) =

{
X, if xi > X
xi, otherwise

, (13)

where X is equal to avg(x) + 2·std(x), where avg(x) is the average value of x and std(x) is the
standard deviation of x. Here, x represents the daily electricity-consumption set for a partic-
ular customer, x = {x1, x2, . . ., xn} (n is the total number of days a user consumes electricity).

Normalization processing can accelerate neural network convergence and prevent
significant detection errors arising from vast differences in data magnitude. This article
employs the maxmin method to normalize electricity-consumption data within the range
of (0, 1). The formula for the max-min normalization method is as follows:

f (xi) =
xi − min(x)

max(x)− min(x)
(14)

5.2. Evaluation Index

Electricity theft detection is essentially a two-classification problem. This paper intro-
duces a confusion matrix to illustrate the model’s classification results. The electricity theft
detection confusion matrix is presented in Table 5. Model classification results are typically
categorized into four situations: true positive (TP), false positive (FP), true negative (TN),
and false negative (FN).

Table 5. Confusion Matrix for Electricity Theft Detection.

User Category Actual: Abnormal Actual: Normal

Predict: Abnormal TP FP
Predict: Normal FN TN

According to the confusion matrix, this article introduces six indicators: accuracy
(Acc), precision (Pre), recall, F1 score (F1), receiver operating characteristic curve (ROC),
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and area under the ROC curve (AUC) to evaluate model performance. The abscissa of the
ROC curve, FPR, is the false positive rate, and TPR is the true positive rate, also known as
the recall rate. The formulas of each indicator are as follows:

Acc =
TP + TN

TP + FP + TN + FN
(15)

Pre =
TP

TP + FP
(16)

Recall = TPR =
TP

TP + FN
(17)

F1 = 2 × Pre × Recall
Pre + Recall

(18)

FPR =
FP

FP + TN
(19)

The AUC value represents the probability that a randomly selected positive sample
ranks higher than a randomly selected negative sample. The AUC calculation formula is
as follows:

AUC =
∑i∈positiveclass Ranki −

M(1+M)
2

M × N
, (20)

where Ranki represents the sequence number of sample i in ascending order of probability
and M and N represent the number of positive samples and negative samples, respectively.

5.3. Hyperparameter Selection

During the model training process, this article introduces the learning rate attenuation
strategy and early stopping mechanism to enhance network training performance and
prevent the deepening of network overfitting. The initial learning rate is set to 0.001. In
the learning rate decay strategy, if the accuracy of the validation set does not increase for
three consecutive epochs, the initial learning rate is reduced to 0.1 times the original value.
The early stopping mechanism is triggered when the accuracy of the training set fails to
increase for five consecutive epochs, leading the network to halt training and save the
optimal model.

The Adam optimizer can adaptively adjust the learning rate according to gradient
changes. Therefore, this article opts for Adam as the training optimizer.

An appropriate batch size is crucial for the training of neural networks. Too small of a
batch size may lead to excessively long training times and difficulty in achieving conver-
gence, while too large of a batch size may result in a decline in the model’s generalization
performance. Therefore, this paper conducts a detailed comparison of batch sizes, including
16, 32, 64, 128, and 256. The comparative results are illustrated in Figure 7.
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The impact of the batch size on the training time and accuracy is clearly illustrated in
Figure 7. The training time exhibits a negative correlation with the batch size, decreasing
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as the batch size increases. Notably, the test set accuracy peaks when the batch size is 64,
indicating optimal performance. For batch sizes less than 64, the test set accuracy is directly
proportional to the batch size, while for batch sizes exceeding 64, the accuracy decreases
with an increase in the batch size. Based on this analysis, the paper ultimately selects a
batch size of 64 to achieve the best test set accuracy while maintaining efficient training.

5.4. Model Performance Evaluation

In order to verify the performance of the proposed model in electricity theft detection,
this paper uses the same data set for comparative testing on different models. This article
selects four machine learning algorithms, SVM [12], RF, XGBoost [13], and GBDT, and five
deep learning algorithms, DCNN, 1D-CNN, 2D-CNN, LSTM-TCN, and CNN-LSTM [14],
as comparison models for the model proposed in this paper. During model training, all
models utilize the same dataset, randomly split into training and testing sets in an 8:2 ratio.
The validation set comprises 10% of the entire training set. The network parameters for the
comparative models are set according to the original papers.

Figure 8 presents the training process of the proposed model alongside five comparison
deep learning models, offering insights into the training performance of these models.
The training set accuracy (Train_Acc) and validation set accuracy (Val_Acc) serve as key
evaluation metrics throughout the training of various models. Additionally, the epochs at
which each model concludes training are marked in Figure 8.
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It can be concluded from Figure 8 that each model triggers the conditions set by
the early stopping mechanism during training and stops training early, and the model
reaches convergence. By observing the training curves of each model, it is apparent
that overfitting occurs across all models. Observing the training processes of various
models, it is evident that CNN-LSTM exhibits relatively lower overfitting but with a
lower accuracy, approximately around 76%. The proposed model, along with 1D-CNN,
2D-CNN, DCNN, and LSTM-TCN, converges to Train_Acc of around 99%, with Val_Acc
all exceeding 92%. Importantly, the proposed model’s Val_Acc is 3.2%, 2.2%, 2.0%, and
1.6% higher compared to 2D-CNN, DCNN, 1D-CNN, and LSTM-TCN, respectively. This
indicates that the novel strategy for electricity theft detection, based on dual-time feature
fusion and deep learning methods proposed in this paper, effectively improves Val_Acc,
mitigates overfitting, and enhances the model’s generalization performance. Notably, the
two electricity-consumption feature extraction modules proposed in this paper achieve
higher Val_Acc compared to 1D-CNN and 2D-CNN, further confirming the effectiveness of
the designed electricity-consumption feature extraction modules. In summary, the fusion of
dual-time scale electricity-consumption features leads to a higher accuracy in theft detection,
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validating the effectiveness of the proposed strategy. The proposed model concludes
training prematurely after 18 epochs, with the Val_Acc curve consistently surpassing all
other models. It stabilizes around the seventh epoch, maintaining a level of approximately
95%. This indicates that the model proposed in this study possesses a fast training speed
and superior capability in extracting electrical features.

In view of the potential impact of different amounts of training data on model per-
formance, in addition to the default training set ratio of 80%, this article also adds an
additional ratio of 60% and 70%, a total of three different training set ratios, to further
evaluate the performance of the model. The performance of the evaluation indicators of
each model under three different training set ratios is shown in Table 6. In Table 6, Acc is
the test set accuracy, and bold indicates the best effect.

Table 6. Comparison of evaluation indexes for various models at different training set ratios.

Models
Train Ratio 60% Train Ratio 70% Train Ratio 80%

Acc Pre Recall F1 AUC Acc Pre Recall F1 AUC Acc Pre Recall F1 AUC

RF 0.913 0.938 0.885 0.911 0.970 0.921 0.940 0.900 0.920 0.973 0.922 0.936 0.904 0.920 0.975
SVM 0.799 0.729 0.951 0.825 0.934 0.808 0.754 0.915 0.827 0.918 0.819 0.747 0.960 0.840 0.952

GBDT 0.809 0.804 0.816 0.810 0.888 0.813 0.810 0.814 0.812 0.890 0.837 0.831 0.841 0.836 0.912
XGBoost 0.889 0.885 0.894 0.889 0.952 0.897 0.894 0.903 0.898 0.959 0.900 0.893 0.905 0.899 0.958
1D-CNN 0.923 0.901 0.949 0.924 0.971 0.930 0.907 0.958 0.931 0.976 0.932 0.910 0.957 0.933 0.975
2D-CNN 0.924 0.909 0.943 0.923 0.972 0.928 0.915 0.944 0.929 0.974 0.934 0.914 0.957 0.935 0.974
DCNN 0.911 0.901 0.923 0.912 0.958 0.920 0.906 0.938 0.922 0.965 0.926 0.908 0.947 0.927 0.969

LSTM-TCN 0.899 0.873 0.913 0.900 0.958 0.919 0.911 0.932 0.923 0.966 0.932 0.912 0.958 0.934 0.973
CNN-LSTM 0.713 0.728 0.678 0.708 0.778 0.745 0.763 0.708 0.744 0.809 0.760 0.780 0.723 0.751 0.828

Proposal 0.933 0.918 0.949 0.933 0.974 0.939 0.930 0.957 0.940 0.983 0.947 0.932 0.964 0.948 0.986

Based on the data in Table 6, the performance of all models generally improves with an
increase in the training set proportion. This is attributed to the increased volume of training
data, which enhances the model’s ability to better learn electrical features. Across different
training set proportions, the proposed model consistently outperforms other comparison
models on the majority of evaluation metrics, demonstrating its robustness. When the
training set ratio is 80%, the Pre of the proposed model reaches the second highest among
all models, 0.932, which is slightly lower than RF. In addition, it achieved the best results of
0.947, 0.964, and 0.948 in terms of Acc, recall, and F1, respectively. These three evaluation
indicators exceeded the other nine comparison models. Recall increases by 12.3% compared
to GBDT, and the F1 value increases by 11.2% compared to GBDT. It is worth noting that the
Acc of the proposed model is improved by 18.7%, 12.8%, 11.0%, 4.7%, 2.5%, 2.1%, 1.5%, and
1.3%, respectively, compared to CNN-LSTM, SVM, GBDT, XGBoost, RF, DCNN, 1D-CNN,
LSTM-TCN, and 2D-CNN. It is fully verified that the model proposed in this article can
significantly improve the detection accuracy.

To further showcase the performance of the proposed model across various metrics,
this article presents a histogram illustrating each model evaluation indicator under different
training set proportions, as depicted in Figure 9.

From Figure 9e, it is evident that under different training set proportions, the proposed
model exhibits a notable improvement in AUC compared to the comparison models,
achieving the best performance. When the training set proportion is 80%, ROC curves are
plotted based on the variation in TPR at different FPR levels for each model, as illustrated
in Figure 10.

Combining the information from Table 6 and Figure 10, it is evident that the ROC
curve of the proposed model surpasses that of other comparison models, with an AUC
value reaching 0.986. Compared to CNN-LSTM, GBDT, SVM, DCNN, XGBoost, 2D-CNN,
LSTM-TCN, RF, and 1D-CNN, the proposed model demonstrates improvements of 15.8%,
7.4%, 3.4%, 2.8%, 1.7%, 1.3%, 1.2%, and 1.1%, respectively. The comprehensive analysis
indicates that the proposed model achieves a good balance between the true positive rate
and false positive rate, establishing itself as a reliable theft detection model.
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After synthesizing the above analysis, it becomes apparent that the innovative elec-
tricity theft detection strategy, based on the fusion of dual-time feature and deep learning
methods, can fully integrate electricity-consumption features from both time scales, unlike
the approach focusing solely on a single scale. This strategy not only attains a higher
detection accuracy but also showcases notably superior performance.

6. Discussion

To enhance the accuracy of theft detection for electricity consumers, this paper intro-
duces a novel strategy based on the dual-time feature fusion and deep learning methods.
First, we conducted an analysis of users’ electricity-consumption patterns. By observing
Figures 2 and 3, it is evident that normal users exhibit noticeable electricity consumption
periodicity on a weekly scale, whereas electricity theft users demonstrate less apparent
or irregular consumption patterns on a weekly scale. Based on this observation, we are
considering incorporating weekly-scale electricity-consumption features to assist in theft
detection, integrating them with the daily-scale electricity-consumption features.

Following that, we introduced a theft detection strategy based on the fusion of dual-
time features and deep learning methods. The overall framework is illustrated in Figure 6,
accompanied by a detailed explanation of the key modules within it. In this framework,



Energies 2024, 17, 275 16 of 18

we have devised a hybrid model composed of LSTM-TCN and DCNN to simultaneously
extract dual temporal-scale electricity-consumption features. This combination was chosen
because LSTM excels in capturing long-term dependencies in time series data, while TCN
can capture local features at different levels, effectively avoiding the gradient vanishing
issues present in traditional RNN models. Consequently, LSTM-TCN has the advantage
of capturing both long-term dependencies and electricity-consumption patterns simulta-
neously, providing a more comprehensive understanding of users’ daily-scale electricity-
consumption features. On the other hand, DCNN specializes in handling image data,
representing weekly electricity-consumption data in a two-dimensional format, similar to
treating it as image data. This representation aids DCNN in more effectively capturing the
weekly-scale power-consumption features. Furthermore, DCNN can proficiently learn and
extract hierarchical features. Through the collaborative effect of multiple convolutional lay-
ers and pooling layers, the network is better equipped to capture electricity-consumption
patterns and regularities. In the end, the fused electricity features are input into the FC
layer for classification, accomplishing theft detection.

To validate the effectiveness of the theft detection strategy proposed in this paper,
we conducted simulation experiments and performed a result analysis in Section 5. We
compared the model proposed in this paper with some existing theft detection models or
methods and analyzed the performance of each model under different training set ratios.
The results indicate that, during the training process of deep learning models, the model
proposed in this paper exhibits a significant advantage in network fitting and electricity
feature extraction. As the training set ratio is adjusted, the proposed model consistently
excels across most evaluation metrics, demonstrating excellent detection performance
and robustness.

7. Conclusions

In this paper, we aim to enhance the accuracy of theft detection for electricity con-
sumers under a data-driven approach. We consider electricity-consumption features across
different time scales and leverage the advantages of feature extraction using deep learning
models. Consequently, we introduce a novel theft detection strategy based on dual-time
feature fusion and deep learning methods. To implement this strategy, we first utilize
LSTM-TCN framework and DCNN in parallel to extract electricity-consumption features
at dual temporal scales. The resulting fused features are then processed by an FC layer
for classification. Subsequently, to validate the effectiveness of our proposed strategy, we
conduct simulation verification using the SGCC dataset. The experimental results indicate
that, during the training process, our proposed model exhibits a notable ability to alleviate
overfitting compared to other models, showcasing strong capabilities in generalization and
feature extraction. With an 80% training set proportion, the proposed model demonstrated
optimal performance in terms of Acc, recall, F1, and AUC, achieving values of 0.947, 0.964,
0.948, and 0.986, respectively. In terms of Pre, it secured the second position among all
models with a value of 0.932. With variations in the training set proportion, our model
exhibited outstanding performance and robustness across evaluation metrics.

In this study, there are also some limitations, such as model computational complexity
and resource constraints, diversification of application scenarios, and expansion of real-
world applications. Addressing these limitations will be a key focus of our future work,
and we will strive to resolve the following issues:

• We will optimize the model structure and accelerate model training to reduce the
computational complexity and resource constraints of the model.

• We are considering deploying the optimized model on a Raspberry Pi. The deployment
involves communication with smart meters to collect users’ electricity-consumption
information and automatically detect electricity theft. If the model is deployed, it
can be enhanced with Intel’s Neural Compute Stick. It is indeed feasible to further
optimize the proposed model and integrate it into practical engineering applications.
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• We will deploy Raspberry Pi embedded with the optimized model into various real-
world scenarios, further investigating the model’s generalization ability and robustness
in different contexts as proposed in this paper.
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