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Abstract: With increasing dual pressure from global large energy consumption and environmental
protection, multiple integrated energy systems (IESs) can provide more effective ways to achieve
better energy utilization performance. However, in actual circumstances, many challenges have been
brought to coupling multiple energy sources along with the uncertainty of each generated power to
achieve efficient operation of IESs. To resolve this problem, this article reviews primary research on
integrated energy optimization and scheduling technology to give constructive guidance in power
systems. Firstly, the conceptual composition and classification of IESs are presented. Secondly, the
coupling relationship between multiple energy sources based on mathematical expression is studied
deeply. Thirdly, the scheduling of IESs with different types and regions is classified, analyzed, and
summarized for clarification. Fourthly, on this basis, potential solutions for applications of key
optimization technologies involved in the scheduling process in IESs can be found systematically.
Finally, the future development trends to optimize scheduling integrated energy systems is explored
and prospected in depth.

Keywords: integrated energy system; coupling relationship; optimize scheduling; model; solution
method; technical challenges

1. Introduction

Amid the increasingly scarce global energy resources and the increasingly severe
environmental pollution, the development of green, low-carbon, and sustainable energy
has become the common pursuit of all countries [1]. The 26th Conference of the Parties
to the United Nations Framework Convention on Climate Change (UNFCCC COP26) in
2021 called for more urgent climate action from all countries. It aimed to halve global
greenhouse gas emissions by 2030 and achieve net zero by 2050, thereby controlling the
global temperature rise within 1.5 ◦C. However, currently, various energy sources are not
closely coupled, and energy networks such as power grids, transportation grids, heat grids,
natural gas networks, etc. are relatively independent. This phenomenon results in low
overall energy utilization efficiency [2]. Under the global climate emergency, one of the
crucial issues is to enhance the performance of traditional energy systems. For this issue,
the IES is considered an effective solution in energy conservation and emission reduction by
integrating multiple energy sources such as electricity, heat, and natural gas [3]. Optimized
scheduling of IESs can integrate renewable energy sources like wind and solar energy,
effectively responding to uncertainties in the system operation. However, some key tech-
nologies such as large-scale energy storage technology, multi-energy conversion equipment,
and multi-scale control are not yet mature or are costly [4]. On the other hand, the lack of
mature market mechanisms and policy support, such as an electricity pricing policy and
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carbon trading mechanism, may hinder the commercialization and large-scale development
of IESs [5]. In IES optimization, the volatility of loads and renewable energy sources should
be taken into account simultaneously, including the coupling of multiple energy sources [6].
Accordingly, an IES-based scheduling optimization method was proposed for better econ-
omy and stability in power systems [7]. Alternatively, a hierarchical optimization scheme
was developed by considering the reconfigurable capability of the distribution network
among the energy service providers (ESPs). Therefore, multi-energy coupling efficiency
was addressed in the IES [8]. A hybrid time-scale optimal scheduling model to reduce
uncertainty of the power system operation was thus constructed [9]. A multi-objective
particle swarm optimization algorithm for scheduling process in a regionally integrated
energy system was reported [10]. Also, a reserve scheduling model based on dynamic mul-
tistage robust optimization (DMRO) for the integrated electrical heating system (IEHS) was
proposed to harness the potential of uncertain renewable energy sources [11]. A nested Ben-
ders decomposition algorithm was therefore used to obtain the global optimum. Another
coordinated optimal scheduling method for IES clusters based on an improved multi-agent
deep deterministic policy gradient (MADDPG) algorithm with a compression mechanism
of initial state space was developed recently [12]. It faster increased the solving speed
by 40 times than the alternating direction method of multipliers (ADMMs) distributed
algorithm while ensuring the convergence and optimality of the process.

To comply with the global energy demand and promote the development of integrated
energy system optimal scheduling, it is crucial to systematically investigate and summarize
models in scheduling strategies. For this reason, this paper starts from the concept, com-
position, and classification of IESs. Based on the mathematical expressions, the coupling
relationship between different energy sources is also unveiled and discussed in depth [13],
which reveals the effective integration of energy sources in practical applications. Sec-
ondly, IES scheduling using different source types and regions is classified, analyzed, and
summarized in detail. This allows the researchers to have a deeper understanding of the op-
timization of IES operation under various conditions. Potential solutions to the uncertainty
and coupling problems in IES operation are also presented. Finally, the future IES optimal
scheduling is envisioned to promote the improvement of system digital intelligence and
resilience, thus realizing the efficient energy utilization with regional autonomy.

2. Overview of Optimized IES Scheduling
2.1. Conceptual Components of IESs

IESs can increase the power utilization efficiency of renewable energy, covering gen-
eration, transmission, conversion, storage, and distribution in multiple energy sources.
According to the complementary characteristics of electricity, heat, gas, and other types
of energy, the multi-energy system needs unified planning and coordinated optimization
operation among integrated energy production, supply, and consumption integration sys-
tems [14]. In general, in the typical IES structure, as shown in Figure 1, the energy supply
part consists of electricity, heat, gas, and other energy sources and the use of their energy
characteristics through the type of equipment to achieve a variety of heterogeneous energy
subsystems between the coordinated planning, optimization of the operation, and comple-
mentary mutual aid [15]. The source side is used to integrate power supply, gas supply,
cooling, and heat supply to meet the user’s demand for multiple types of energy [16].

In addition to the grid power supply, IESs can also carry out the conversion of gas
to electricity through gas turbine equipment, thereby providing electrical energy. The
power-to-gas (P2G) equipment is used to perform the conversion of electric–gas energy.
At the same time, the gas turbine, through a heat exchanger, provides heat energy, ef-
fectively utilizing the energy produced by preheating. IESs can also link with combined
heat and power (CHP) units to generate electricity and heat. Through the electric boiler,
heat pumps electricity–heat energy conversion for the supply of heat. The use of absorp-
tion chillers, electric chillers, and heat–cold energy provides energy to the cold load via
electricity–cold energy conversion. When energy supply and demand are in imbalance,
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the excess/insufficient energy is stored/released through the energy storage equipment
(electricity storage, gas storage, heat storage, cold storage, etc.) to maintain the dynamic
balance of the system energy. The IES system can realize the energy balance and make
energy more effectively through the mutual coupling of energy sources, conversion of
energy, distributed energy storage, and other technologies.
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2.2. Classification of IESs

IESs can be categorized into inter-regional, regional, and user level based on the
geographic situation and energy generation, transmission, distribution, and use charac-
teristics [6]. The integration characteristics of the integrated energy system are shown in
Figure 2. The inter-regional integrated energy system is mainly involved in two energy
forms, i.e., electricity and gas. It should be able to produce large-scale energy with long-
distance transmission. It consists of centralized wind and solar power stations, large-scale
integrated energy stations retrofitted with carbon capture equipment as energy production
units, seasonal energy storage equipment as energy storage units, and long-distance energy
transmission units such as transmission lines, gas pipelines, and transportation networks.
User-level IESs provide energy services directly to end-users, and their components in-
clude small-scale wind power generation systems, geothermal energy, small-scale electric
energy storage devices, and heat storage tanks. Due to the significant changes in the energy
users’ behavior, these systems often suffer from “source-load” volatility and randomness.
Regional-level IESs [17] realize energy transmission, distribution, conversion, and balanc-
ing by coupling power distribution systems, medium and low-voltage natural gas systems,
and functional networks such as heating, cooling, and water supply systems. They cover a
variety of heterogeneous energy sources, combines multifaceted energy storage devices,
and forms a deeply coupled electricity, gas, heat, and cold energy transmission network.

Existing IES studies have been focused on the regional level, especially for industrial
or technology parks. The coverage of regional-level IESs is moderate, and it can reflect the
complexity and diversity of energy systems [18]. In contrast, inter-regional level systems
have large-scale energy production and long-distance transmission with many uncertainties
and variables, making the research more difficult. However, IESs at the regional level have
significant advantages in dealing with energy optimization, resource allocation, economics,
and environmental benefits, enhancing regional energy efficiency and sustainability [19].
Regional-level IES modeling is relatively simple, with sufficient empirical data support,
while inter-regional-level and user-level IESs modelling are more complex and have big
challenges due to the volatility and stochasticity of energy sources [20].
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3. Models of IES
3.1. New Energy Generators

In an integrated energy system, wind and photovoltaic (PV) are known as major power
generators. Wind energy relies on wind speed, blade radius, air density, and the wind
turbine’s geographic location and performance attributes [21,22]. As a result, wind turbine
modelling is determined by influential factors such as cut-in wind speed, cut-out wind
speed, rated wind speed, and actual wind speed [23]. On the other hand, the PV system
modelling should consider a variety of factors, including the cleanliness of the PV panels,
solar irradiance, the mounting area of the PV panels [24], the operating temperature, the
angle of incidence of light, and the inverter efficiency [25].

3.2. Modeling of Energy-Coupled Equipment

An integrated energy system is a system that couples multiple energy systems, such
as electricity, heat, cooling, and natural gas to achieve complementary and synergistic
optimization of energy sources. Therefore, the efficiency, security and flexibility of energy
utilization can be improved or enhanced in the of energy supply. At the same time,
environmental pollution and lower energy costs can be reduced considerably. Typical
physical models applied in energy systems are reviewed more specifically as follows.

3.2.1. Modeling of Gas–Electric Coupled Equipment Units

Gas turbines in gas–electric coupled devices convert the chemical energy of natural gas
into electrical and thermal energy, while hydrogen fuel cells convert the chemical energy
of hydrogen directly into electrical energy. The gas turbine model is focused on power
generation efficiency and air consumption, and it is usually used to generate the electrical
power for a period of time. However, the energy conversion efficiency and cost can be
directly affected by its efficiency, and it is usually applied to integrated energy systems. On
the other hand, the hydrogen fuel cell model simulates the hydrogen consumption to be
applicable to clean energy demand scenarios such as renewable energy systems, microgrids,
and electric vehicle charging stations.
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(1) Gas turbine model
The gas turbine (GT) generates power in an integrated energy system through the

process of combustion of fuel and compression of air, of which the typical physical model
is the following equation [26]:

PGT(t) = ηGT,eGGT(t) (1)

where PGT(t) is the output electric power of the gas turbine at time period t, ηGT,e is the
power generation efficiency of the GT, and GGT(t) is the power consumed by the air in the
T cycle.

(2) Hydrogen fuel cell model
Hydrogen fuel cells (HFCs) utilize the chemical energy present in hydrogen to generate

electricity efficiently and cleanly. The cell relies on a constant supply of fuel and an oxidizer
(usually oxygen) to maintain the reactions that power the electricity generation process.
Thus, fuel cells have the ability to generate electricity continuously as long as a steady
supply of fuel and oxygen is maintained. A typical physical model of this is [27]:

PHFC
t = ηHFCδconvMtkfc

t (2)

where PHFC
t is the output electric power, ηHFC denotes the combustion hydrogen discharge

efficiency, δconv denotes the transfer coefficient between the electric energy and the weight
of hydrogen, and Mtk_fc

t denotes the weight of the hydrogen output from the hydrogen
storage tank to the fuel cell at time t.

3.2.2. Modeling of Electric–Gas Coupled Equipment Units

Electric–gas coupling equipment is used for electrical energy to be converted to hydrogen
by electrolyzing water. Subsequently, the hydrogen can be used in a fuel cell to generate
electricity or burned directly in a gas turbine, completing the cycle of electric–gas energy
conversion and storage. The electrolyzer efficiently breaks down water into hydrogen by
utilizing electricity, and its efficiency and generation rate depend on the power, operating
voltage, and efficiency of the electrolyzer. The performance efficacy of the electrolyzer
directly affects the production of hydrogen and the energy conversion efficiency in the
entire system. Hydrogen storage tanks, on the other hand, are responsible for storing
this hydrogen, and their capacity and hydrogen volume are affected by the temperature,
pressure and ideal gas constants. The design and operating conditions of hydrogen storage
tanks are critical to ensure storage efficiency and system stability.

(1) Electrolyzer
An electrolyzer is a place where excess electricity generated by a solar wind system is

utilized to convert water into hydrogen. Typical physical model equations for the rate of
hydrogen production in an electrolyzer are [28]:

.
M

in
H2 =

Pelz
1
2 ∗ F ∗ Uelz

(3)

where Pelz and Uelz represent the power and operating voltage of the electrolyzer, respec-
tively, 1/2 is the reciprocal of the molar mass of hydrogen, and F is the Faraday constant.

The variable
.

M
in
H2 (g/s) represents the mass flow rate of hydrogen produced in the electrolyzer.

Uelz is given by the efficiency of the electrolyzer ηelz, defined in the equation as:

ηelz =
1.25
Uelz

(4)
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(2) Hydrogen storage tank
Hydrogen tanks are used to store hydrogen produced by the electrolyzer, computed

using Mtank(t) at specific time period t [28]:

Mtank(t) = Mtank(t − 1) +
.

M
in
H2 −

.
M

out
H2 (5)

where
.

M
out
H2 is the flow rate of hydrogen discharged in the electrolyzer. The volume of

hydrogen stored, Vtank, is given via the equation [28]:

Vtank =
Mtank ∗ Ttank ∗ R

Ptank
(6)

where Ttank, Ptank, and R are the temperature (K) and pressure (Mpa) in the hydrogen tank
and the ideal gas constant (J/(mol∗K)).

3.2.3. Modeling of Electric–Thermal Coupling Equipment Unit

The electric–thermal coupling equipment is an electric boiler that directly converts
the electric power into thermal energy to produce hot water. The heat pump using electric
power extracts heat from the environment to realize the electric power conversion to thermal
energy. In the electric heat boiler model, the input electric power and energy production
efficiency are taken into account to calculate the thermal power produced in a specific
time period. Its efficiency directly affects the system’s ability to convert electric energy
into thermal energy, which has a significant impact on the energy utilization efficiency and
operating costs, and is particularly suitable for district heating and hot water supply during
times of excess electricity or low electricity prices. The heat pump model, on the other
hand, is focused on power input and performance coefficients, including both cooling and
heating modes, and is used to calculate the cooling and heating output of the heat pump in
a specific time period. The energy efficiency in the heating and cooling modes is determined
by its performance coefficients. Its application is crucial to achieve efficient energy usage
and minimize the energy consumption, especially in areas with variable climates.

(1) Electric Boiler Model
An electric boiler (EB) produces hot water by consuming electricity, and its typical

physical model is defined as [26]:

QEB(t) = ηEBPEB(t) (7)

where PEB(t) is the input electric power of the EB, QEB(t) is the output thermal power of
the EB, and ηEB is the energy production efficiency of the EB.

(2) Heat pump model
The typical physical model of a heat pump (HP) for the required cooling power, Pout,t

HP,c,
and heating output, Pout,t

HP,h, is expressed as [29]:

Pout,t
HP,c = COPc

HPPin,t
HP (8)

Pout,t
HP,h = COPh

HPPin,t
HP (9)

where Pin,t
HP is the power input of the heat pump at time t, and COP denotes the coefficient

of performance.

3.2.4. Modeling of Gas–Heat Coupled Equipment Unit

The gas–heat coupled equipment consists of a gas boiler (GB) that generates heat by
consuming natural gas. The model describes the heat generation of the boiler through
heat output, gas consumption, and thermal efficiency. It can be used for calculating
the required heat output of a gas boiler when there is insufficient heat in the system.
The thermal efficiency and boiler gas consumption have a direct impact on the energy
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consumption and operating costs of the system, which in turn determines the efficiency of
energy utilization. This model ensures the provision of reliable heat not only in residential
and commercial buildings, but also in district heating systems when the energy supply
is unstable. Moreover, it can optimize system performance to reduce heating costs and
improve the energy efficiency and system reliability. When GB is activated and the heat
energy produced, it is calculated as follows [30]:

QGB = VGBηGB (10)

where QGB, VGB, and ηGB represent the heat output, gas consumption, and thermal effi-
ciency of the gas boiler plant, respectively.

3.2.5. Modeling of Heat–Cooling Coupling Equipment Unit

In the heat–cooling coupling system, the absorption chiller (AC) uses high-temperature
heat energy to drive the refrigeration cycle. It transfers heat from the low-temperature side
to the high-temperature side, thus generating cold energy for refrigeration and discharging
heat energy at the same time. The model considers the output refrigeration capacity and
input heat capacity as well as the energy efficiency ratio of the equipment. This type
of chiller is suitable for scenarios with a stable heat input, such as industrial waste heat
recovery, a solar thermal collector, or renewable energy systems. It can achieve an efficient
cooling process through low-grade thermal energy, thereby increasing the energy utilization
of integrated energy systems and reducing the reliance on conventional electrical energy for
cooling. Absorption chillers utilize thermal energy to drive the cooling effect through the
exchange and circulation of refrigerant between the absorber and the generator. They are
widely used in industrial and commercial locations and are particularly suitable for those
that can provide thermal energy as a power source, such as the utilization of waste heat in
industrial facilities or solar thermal collectors. Its typical physical modeling equations are
expressed as follows [31]:

CAC(t) = EERAC × QAC(t) (11)

where CAC(t) and QAC(t) are the output cooling capacity and input heat capacity of the
absorption chiller, kW, respectively; EERAC is the energy efficiency ratio of the absorp-
tion chiller.

3.2.6. Modeling of Electricity–Cooling Coupling Equipment Unit

In the electric–cooling coupling system, the electric chiller consumes electrical energy
to generate cold energy, part of which is used directly for the cooling demand, while the
remainder is stored in a storage tank by releasing cold energy during peak demand to
balance the cooling load. The electric chiller model considers the input electric power and
the refrigeration coefficient to calculate the output refrigeration power for a specific period
of time. The refrigeration coefficient directly determines the energy efficiency, system’s
energy consumption, and operating costs. It is suitable for commercial buildings, data
centers, and industrial refrigeration, etc., where high refrigeration efficiency is required. The
cold storage tank model is focused on the heat storage residual, heat loss rate, and charging
and discharging power. It is used to simulate the thermal energy storage and release
process of the cold storage tank. Its efficiency and heat loss rate have a significant impact
on the system’s energy efficiency and thermal energy management. It is applicable to the
district cooling system and the storage of cold energy in large-scale buildings, especially in
the low valley of the energy load.

(1) Electric chiller
The electric chiller (EC) utilizes the phase change of refrigerant in different pressure

states to absorb and release heat to achieve the cooling effect. Typical physical model
equations are as follows [32]:

QEC
c (t) = COPc

ECEEC(t) (12)
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where QEC
c (t), and EEC(t) are the EC output cooling power and input electric power,

respectively, and COPc
EC represents the EC cooling coefficient.

(2) Cooling storage tank
Cold storage tanks store the cold energy converted from the excess of other energy

loads during the trough to improve the efficiency of energy utilization. The commonly used
media for cold storage tanks are water and ice, which are clean, safe, and easily accessible,
and their typical physical models are shown below [33]:

QC(t) = (1 − µcloss)Qc(t0) +

(
Qcch(t)ηcch − Qcdis

ηcdis

)
∆t (13)

where QC(t) and Qc(t0) denote the heat storage residual quantity of the accumulator at
the time of t and t0, respectively, µcloss denotes the heat loss rate of the accumulator, Qcch
and Qcdis denote the heat charging and discharging power of the accumulator between the
time of t0 and t, respectively, and ηcch and ηcdis denote the heat charging and discharging
efficiency of the accumulator, respectively.

3.2.7. Modeling of Electricity–Heat–Gas Coupled Plant Unit

Electricity–heat–gas coupled equipment is a cogeneration unit that produces electricity
and heat energy through simultaneous production of electricity and heat. The CHP unit
in the electricity–heat–gas coupled system takes into account a number of factors, such as
power generation, heat production, gas consumption, and start/stop status, and parameters
such as the conversion efficiency, the heat exchange coefficient, the heat loss coefficient,
and the gas-to-heat ratio. CHP systems are suitable for scenarios that require a stable
supply of electricity and heat, such as industrial areas, commercial complexes, and urban
residential areas, especially during peak energy demand. Such systems enhance energy
security by reducing dependence on external energy sources, while lowering energy costs
and environmental impacts. The flexibility of CHP allows it to adjust the ratio of power
and heat output according to actual demand, ensuring system stability and reliability.
Cogeneration units are classified into two types: a back-pressure type and steam extraction
type. The coupling model of the back-pressure type cogeneration unit refers to a system
that simultaneously utilizes a gas engine or a steam turbine to generate electricity, where
the heat energy is used for heating or other industrial purposes through heat recovery
equipment. It is highly economical and suitable for occasions with stable heat loads, taking
the back-pressure type cogeneration unit as an example. Assuming that the relationship
between power generation and power generation is constant, the energy conversion can be
expressed as [34]:{

pCHP
i,t ICHP

i,t = ηg2egCHP
i,t

qCHP
i,t ICHP

i,t = ηg2hgCHP
i,t = ηHE(1 − ηg2e − ηL)gCHP

i,t
, ∀t = T (14)

where pCHP
i,t , qCHP

i,t , and gCHP
i,t denote the hourly power generation, heat production, and gas

consumption of the CHP unit, kW; the binary variables, ICHP
i,t , denote the start-stop state of

the CHP unit; the parameters, ηg2e, ηHE, ηL, and ηg2e denote the conversion efficiency, heat
transfer coefficient, heat loss coefficient, and gas-to-heat ratio of the CHP unit.

3.2.8. Modeling of Cooling-Heat–Power-Gas Coupling

The coupled cooling-heat–power-gas model (CCHPG) integrates the conversion and
synergistic optimization between electricity, natural gas, heat, and cold energy, where the
electricity, heat, and cooling loads and natural gas are involved. The conversion efficiency
between different energy sources, such as natural gas to electricity and electricity to cooling,
by means of the coupling coefficient, is also described. It is suitable for situations where
multiple energy inputs and outputs need to be managed in an integrated manner, such as
smart cities, industrial parks, and large commercial complexes. This model improves the
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energy utilization efficiency, reduces waste, lowers operating costs, and enhances system
reliability and resilience. Application scenarios are wide-ranging, including smart grids,
district heating and cooling networks, and integrated energy services. In a multi-energy
system, the inputs are electricity and natural gas, and the outputs are electricity, heat, and
cooling to meet different load requirements. Based on the concept of energy hubs and
energy conservation, the relationship between inputs and outputs can be quantified via the
following model [35]: Eload

Qh,load
Qc,load

 =

fee fge
feh fgh
fec fgc

[Ein
Gin

]
−

ηe 0 0
0 ηh 0
0 0 ηc

 ∆Esto
∆Qh,sto
∆Qc,sto

−

 0
qh,discard

0

 (15)

where Eload, Qh,load, and Qc,load denote the loads of electricity, heat, and cooling on the user
side, respectively; Ein and Gin denote the inputs of electricity and natural gas, respectively;
f denotes the coupling coefficients between different types of energy sources, e.g., fge de-
notes the efficiency of the conversion from natural gas to electricity, including that of the
gas turbine and the absorption chiller efficiency; fee denotes the transformer efficiency
from photovoltaic/wind/grid to electric energy; fec denotes the efficiency of the absorption
chiller; η denotes the storage efficiency of electric, heat, and cold energy; ∆E denotes the
increase in energy storage; and qh,discard denotes the unrecovered heat discard, which
distinguishes the present model from a typical energy hub model.

3.2.9. Modeling of Dynamic Energy Hub

The dynamic energy hub (DEH) model in the literature [36] was constructed to more
accurately simulate the energy conversion in the power system, especially considering the
variations of different load rates such as the energy conversion efficiency, load factor, and
performance data of the equipment. The model is suitable for applications in smart grids,
distributed energy systems, and energy management in industrial parks. Literature [37]
further developed a multi-timescale optimization strategy based on the DEH model from
literature [36] to adapt to the efficiency changes of equipment under different operating
conditions. An efficiency correction algorithm was developed to determine the time-
varying coupling factor. In this study, the relationship between the equipment efficiency
and load factor was built up for day-ahead, intraday and real-time scheduling. Such
a modeling framework can better deal with the uncertainty and time dispersion in the
energy supply and also improve the accuracy of the system operation and scheduling.
Alternatively, for different energy conversion devices, the literature [37] fits a polynomial to
obtain a specific expression for the efficiency as a function of the load factor. It is suitable for
complex energy systems that require optimal scheduling on multiple time scales, especially
in environments with high fluctuations. The energy conversion coupling can be expressed
via a polynomial model, as follows [37]:

ηαβ = f(Rαβ) (16)

where ηαβ is the efficiency of the energy conversion device, and Rαβ is the load factor of
the energy conversion device, i.e., the output capacity ratio.
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where α, β. . .n are the elements of the energy form set, such as electricity, heat, cold, gas,
etc., L is the output power vector, P is the input power vector, s is the attribution coefficient
matrix of the energy storage device, E is the actual charging and discharging energy vector
of the energy storage device, and Rαβ is the loading coefficient of the energy converting
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device, i.e., the output capacity ratio; the charging energy of the energy charging device is
positive, and the energy charging device’s discharging energy is negative.

4. Optimization Scheduling of IESs

Multiple heterogeneous energy networks such as the power grid energy network,
gas energy network, cold energy network, and heat energy network are involved in IESs.
Interdisciplinary technologies include physics, chemistry, materials science, control science,
artificial intelligence technology, optimization theory, economic principles, etc. Key tech-
niques for comprehensive demonstration are concluded in Figure 3. More detailed analysis
is presented in the following subsections.
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IESs can be categorized by multiple time scales, including the day-ahead, intraday,
and real-time stages. The coupling of green certificates and carbon trading mechanisms
was considered under the diversified utilization of hydrogen energy [38]. The regulation
level of renewable energy with the coupling mechanism is more effective in achieving
economy and low carbon. Multi-spatial scale classification is conducted based on regional
characteristics and divided into multi-region, park, and user levels. According to the system
structure, it is classified as distributed, hierarchical, and centralized. The basic framework
of interaction between typical parks and regional energy internet was introduced [39].
Therefore, the stratification phenomenon under geographical factors, scheduling factors,
and energy management factors can be elaborated. The day-ahead optimization scheduling
model was therefore proposed. The optimization objectives include cost minimization,
energy efficiency maximization, carbon emission minimization, reliability optimization,
etc. The demand-side response classification and resource integration in the participa-
tion of new energy were summarized [40]. Consequently, an integrated energy system
optimization model and scheduling algorithm considering the demand response was
proposed to achieve single-objective optimization under dual-carbon targets. A multi-
objective optimization method for a park-level integrated energy system (PIES) was also
reported [41]. Numerical simulation under different scenarios indicates that the proposed
multi-objective optimal scheduling model can provide different scheduling strategies to
achieve multi-objective optimization, including random optimization, robust optimization,
and multi-scenario optimization. A stochastic optimization scheduling model considering
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extreme scenarios was proposed using extreme scenario weights combined with traditional
stochastic optimization for scenario analysis [42]. CPLEX solver in MATLAB was used to
achieve the goals of day-ahead economic efficiency and daily stability. A hybrid interval
optimization method for interactive power management among distribution networks was
proposed [43], considering building parameters, renewable energy, and load uncertainty.
According to the classification of cooperative optimization, the cooperative optimization
model emphasizes the coordination between different energy sources and energy systems
to achieve the optimal operation of the entire system. A low-carbon optimal scheduling
method combining hydropower, wind power, PV, and heat power was developed [44].
Through cascade carbon trading, the peak power load can be reduced without increasing
operating cost so that the consumption of renewable energy can be thus alleviated. A
two-stage collaborative optimization method that considers both long-term operation and
short-term operation scheduling of the system was proposed [45]. It can achieve capacity
optimization under long-term operation and good interaction with the power grid during
daytime scheduling.

4.1. Multi-Time Scale Optimization Scheduling Model

Multi-timescale techniques are capable of handling multiple dynamic processes rang-
ing from fast changing to slow evolving, providing IESs with a more refined and flexible
scheduling approach for the system to be more skillfully scheduled through the accuracy of
forecasts. The day-ahead phase usually relies on long-term forecasts, while on the contrary,
the intraday and real-time phases to optimize the daily schedule rely on short-term and
real-time forecasts. Multiple mechanisms such as demand response, carbon trading, and
green certificate trading are considered to develop a multi-timescale model to respond to
changes in customer demand and market price fluctuations. Multi-mechanism technology
is suitable for energy market environments that require a high degree of flexibility and re-
sponsiveness, such as electricity markets, district heating and cooling systems, smart cities,
and industrial zones, etc. By integrating different market and operational mechanisms, it
provides IESs with a more flexible and cost-effective way to respond to changes in energy
supply and the uncertainty of market conditions. Literature [46] proposed an IES model
and a multi-timescale optimal scheduling method based on a demand response mecha-
nism by introducing electric heating/cooling complementary substitution and horizontal
time-shift demand at different stages of scheduling. A quantum sparrow search algorithm
(QSSA) was applied to minimize the cost of adjusting the output power of the equipment.
Literature [47] offset part of the carbon emissions through joint carbon trading and green
certificate trading. It fully united the source-side and load-side flexible response resources,
and effectively improved the level of wind power consumption under multiple time scales.
Using hydrogen and carbon capture, a multi-timescale optimal scheduling model with
a coupling device is constructed to realize the mutual conversion and complementarity
between different energy systems. Literature [48] proposed an electricity–heat–hydrogen
supply/demand balance model, where hydrogen energy can be dispatched and utilized in
multiple microgrids. It effectively mitigated the effects of prediction errors by using model
predictive control (MPC)-based rolling scheduling. On the other hand, literature [49] estab-
lished a multi-timescale model by analyzing the real-time characteristics of cogeneration
creep constraints, carbon capture equipment operation, and photovoltaic (PV) power gen-
eration. It used a fully neurodynamics-based optimization algorithm to compute one day
ahead for an integrated urban energy system. A two-stage time-scale optimal scheduling
model for hybrid energy storage was developed [50]. It solved the multi-timescale problem
of heterogeneous energy sources and the co-operation of a hybrid energy storage system.
For example, a mixed integer linear programming (MILP) problem can be solved via rolling
optimization such as cutting-plane algorithms, branch-and-bound algorithms, and so on.
Alternatively, a multi-timescale optimal scheduling model based on distributed model
predictive control (DMPC) is a new type of control strategy [51,52]. It transforms the online
optimization problem of a large-scale system into the optimal solution of each subsystem.
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The control strategy of each subsystem not only contains optimal control of itself, but
also ensures it meets the requirements of the economic conditions through interactions
with other subsystems. In order to realize the flexibility of multi-energy coordination and
optimization, a multi-timescale optimal scheduling model was established to improve the
flexibility of the power system [53]. It can effectively enhance the flexibility of the system
operation by coordinating the output of the equipment, thus smoothing out the power
fluctuation of electric heat and gas energy in different time scales.

Among the solution methods, the quantum sparrow search algorithm and improved
particle swarm optimization can deal with complex and nonlinear problems under mul-
tiple regimes, with high dimensional and multi-peak problems. The system model with
carbon capture was enhanced using a distributed neural dynamics optimization algorithm
by considering reliability, robustness, flexibility, and privacy in the economic dispatch
of integrated energy systems. MILP mainly deals with linear functions and integer and
continuous variable optimization problems, and it is very flexible in modeling and is
able to describe more complex real-world problems, but the solution complexity increases
significantly with the size of the problem. On the other hand, the core idea of MPC is
rolling time-domain optimization. It aims to predict the trajectory of the system in the
time domain, where it is able to optimize the control strategy in real time by updating
the prediction model and the optimization objective in a rolling fashion. However, it is
very sensitive to prediction accuracy, and larger computational resources are required.
When the system is complex and computationally intensive, it can be divided into multiple
subsystems, from which DMPC is derived. The computational system chunking can be
thus simplified for optimization. Simultaneously, it is able to balance the local control
decision with the global optimization objective while reducing the centralized computa-
tional burden. Here, effective communication and coordination mechanisms are required to
ensure consistency of decision-making among the subsystems. Furthermore, mixed integer
linear programming models are able to describe more complex real-world problems, but
the solution complexity is highly related to the problem size. The multi-time scale models
are classified and summarized in this paper, as presented in Table A1 of the Appendix.

4.2. Multi-Spatial Scale Optimization Scheduling Model

An IES is often very complex and encompasses a variety of energy forms and conver-
sion techniques. Multi-spatial scale technologies are concerned with data representation
and analysis at different spatial resolutions or scales. Regional integrated energy systems
are intrinsically characterized by multiple levels and multiple subjects. Through the divi-
sion of spatial scales, complex problems are decomposed into smaller and more manageable
sub-problems. The micro-scale focuses more on local energy efficiency, while the macro-
scale focuses more on the operation of large-scale energy networks and inter-regional
energy exchange. The multi-spatial scale optimal scheduling model aims to achieve op-
timal energy allocation from local to global through centralized scheduling, distributed
scheduling, and hierarchical scheduling. In centralized scheduling, a central controller
is responsible for global decision-making; in distributed scheduling, decision-making is
delegated to subsystems, which improves flexibility but requires coordination to avoid
conflicts. In order to minimize the daily operating cost, a load cost optimization model of a
regional distributed energy system for cooling and heating electricity consumption was
constructed [54]. The distributed energy system consists of multiple energy conversion
devices and related coupling units, which are coupled and converted to satisfy the multiple
energy demands of the end-users. Literature [55] proposed a distributed optimal schedul-
ing method based on an improved ADMM to reduce the system cost, being focused on the
distributed optimal scheduling in an integrated electricity–gas–heat regional energy system.
Hierarchical scheduling combines the advantages of distributed and centralized scheduling.
For example, a hierarchical optimal scheduling method based on distributed autonomous
and centralized coordinated design architecture was proposed [56]. A dynamic economic
scheduling model was established in the upper layer, and an opportunity constraint model
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for autonomous energy management in multi-energy microgrids was established in the
lower layer. The upper and lower layers were decoupled based on analytical target cascad-
ing (ATC), and only boundary electric power and thermal power need to be exchanged
to obtain the global solution. The global optimal strategy was obtained through parallel
microgrid computation based on iterative solving between layers. Literature [57] proposed
a hierarchical distributed optimal scheduling decision-making method for a regional in-
tegrated energy system based on the cascade of analytical objectives. The upper layer
was used by the regional integrated energy system operator (DIESO) for interacting with
different energy networks, and the lower layer was used by the DIESO for interacting with
subsystems and sub-subsystems. Literature [58] studied the joint optimal scheduling of
multi-region IESs and the influence of the district heating network on the joint schedul-
ing and established a two-layer model for the joint scheduling of multi-region IESs. The
heat network provided a path to absorb excess energy so that the influence of heat load
movement on IESs can be reduced. It ensured the independence of individual IESs while
efficiently optimizing the energy scheduling between IESs. Literature [59] proposed a
two-layer optimization model for multi-park distributed cooperation that did not depend
on the accurate prediction of uncertainties such as source loads and tariffs. In the upper
layer, the predictive decision-making in integrated scheduling can be achieved via the
communication neural network. On the other hand, the lower layer adopted ADMM can
be used to optimize the distribution of energy storage equipment, while protecting the
privacy of data in each park. The performance is close to the theoretical optimal strategy
under the premise of protecting the privacy of each park’s data.

Among the above algorithms, ATC mainly solves objective and constraint optimization
problems with multiple layers, where it decouples the upper and lower layers by increasing
the augmented Lagrange penalty function. It can simplify the problem structure, improve
the computational efficiency, and identify and deal with the dependencies between different
layers. On the other hand, the ADMM mainly deals with large-scale optimization problems
and allows distributed computation and parallel processing by means of the separation
and coordination strategy. Its solving process has better convergence, but it may be affected
by the step size and convergence speed. Via the spatial structure, the integrated scale
optimization scheduling models can be classified into regional distributed, regional layered,
regional layered distributed, multi-regional layered distributed, and multi-park distributed,
as shown in Table A2 of Appendix A.

4.3. Multi-Objective Optimal Scheduling Model

In order to improve energy efficiency and reduce costs, multi-objective optimal dis-
patch models have been developed to achieve optimal dispatch of IESs in recent years.
Literature [60] constructed a multi-objective optimal dispatch model by combining multi-
objective beluga whale optimization (MOBWO) with a price-based demand response (PDR)
mechanism. It exhibited more a robust search capability and faster convergence to mini-
mize the operating costs and maximize the environmental benefits, using non-dominated
sorted beluga whale optimization (NSBWO). It combined the non-dominated sorted genetic
algorithm II (NSGA-II) and the beluga whale optimization (BWO) algorithm. Literature [61]
proposed a Q-learning-based multi-population dung beetle optimizer for multi-objective
scheduling in hybrid integrated energy systems. It can dynamically and adaptively adjust
the number of populations to enhance the information exchange between different sub-
populations. Literature [62] proposed a multi-objective optimization model for regional
integrated energy systems (RIES) from the perspective of external gas analysis of user satis-
faction. Literature [63] established a multi-objective optimization method for integrating
rural distributed IES solar collectors with air source heat pumps to achieve economic and
environmentally friendly operation. Literature [64] proposed a multi-objective interaction
scheduling optimization model for energy interaction scheduling and price optimization
in a regional multi-intelligent IES body. It is based on Nash bargaining cooperative game
theory to achieve economic and stable operation of each body, giving the whole region the
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objectives of economy, flexibility, and carbon emission. Literature [65], in the field of marine
renewable energy, established a multi-energy complementary system using multi-objective
optimization to achieve efficient energy use of ocean temperature difference energy, wind
energy, and solar energy. For large ships, literature [66] proposed a combined cooling
and heating power generation system with energy storage. The multi-objective grey wolf
optimization (MOGWO) algorithm was applied to optimize the three objectives of total
power, total cost, and annual CO2 emission reduction. Literature [67] investigated smart
home energy management through a multi-objective optimization approach to balance the
energy payment cost, user satisfaction, and self-sufficiency.

Multi-objective dung beetle optimization with q-learning (MODBO-QL) is suitable
for dealing with complex and high-dimensional decision space problems [30]. With the
adaptive capability gained through reinforcement learning, the multi-population strategy
leads to a better balance between global search and local exploration. At the same time,
a large number of iterations are required to learn an effective strategy. Nash bargaining
cooperative game theory provides a fair and theoretically effective solution to the multi-
objective problem by seeking the Pareto-optimal allocation [64]. However, it may receive
multiple equilibrium solutions, making it difficult to predict the final negotiation outcome
in practical applications. In the multi-objective grey wolf optimizer (MOGWO), it simulates
the perceptual abilities of gray wolves, including smell, vision, and hearing [66]. Behaviors
such as searching, tracking, and aggregation can be facilitated during the optimization
process. Compared with traditional heuristic stochastic search algorithms, the MOGWO
algorithm requires fewer parameters and converges faster so that it is suitable for solving
high-dimensional optimization problems. NSGA-II can effectively maintain the diversity of
the population and guide the search direction to find a more uniformly distributed solution
set in multi-objective problems, but its computational complexity is high [68]. In the future,
AI technologies, especially machine learning and deep learning, can be applied to optimize
the operation and maintenance of IESs by analyzing a large amount of data [69]. Therefore,
the energy demand, power generation costs, and market prices can be predicted to optimize
the allocation of resources and reduce the operating costs. Objectives and solutions from
the multi-objective optimal scheduling models are as shown in Table A3 of the Appendix A.

4.4. Uncertainty Optimization Scheduling Model

In the planning and operation of IESs, uncertainty analysis is crucial to ensure system
reliability and efficiency. Uncertainty handling techniques allow the system to adapt to the
changing energy environment and effectively improve the resilience and reliability in the
power system [70]. However, they may introduce additional computational complexity
and model uncertainty, especially in the context of global climate change and energy transi-
tion. In stochastic optimization methods, some parameters in the model are considered
as random variables with known probability distributions. Literature [71] proposed a
multi-stage stochastic optimization model based on a scenario tree for an AC-DC hybrid
distribution network in response to PV intermittent uncertainty. The day-ahead discrete
decision variables of the multi-stage stochastic optimization model can be adaptively ad-
justed with the change of uncertainty information in intraday and real-time stages. It is
more in line with the operational requirements of an AC-DC hybrid distribution network
under actual high percentage of PV penetration. Accordingly, the in situ consumption of
PV and the peak shaving and valley filling of the system can be realized in applications. In
this study, the second-order cone relaxation technique was used to transform the nonlinear
model into a linear model, and the mixed-integer second-order cone planning model was
used to solve the model more efficiently. Literature [72] established a two-stage stochastic
optimization method based on scenario analysis by considering the uncertainty of source
loads in a multi-energy hybrid grid. Probabilistic analysis and an improved K-means
clustering algorithm were used to reduce the generated scenarios. The scheduling plans
were developed to flexibly cope with the uncertainty based on different risk preferences
using a mixed-integer second-order conical programming model. The robust optimization
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approach focuses on performance in order to find a solution in the worst case scenario. It
does not rely on the probability distribution of random variables, but solves for the limit or
range of uncertainty. For example, literature [73] proposed a two-stage robust allocation
optimization model with multiple uncertainties. The multiple uncertainties in PV, wind,
electricity, heat, and cooling loads were considered, and the fluctuations of the uncertainty
parameters by means of adjustable robustness metrics were described. The decision maker
can adjust the robustness parameters according to the risk preference to make the system
more robust. In this study, the column and constraint generation algorithm (C&CG) was
used to solve the two-stage robust optimal allocation model. Literature [74] established a
network model suited for the electricity–gas–heat energy system under the extreme cases
of the day-ahead and real-time phases. With the largest load and wind forecast errors, the
iterative method was used to solve the master problem and sub-problems by utilizing the
C&CG algorithm and strong binary theory. Literature [75] proposed a two-stage robust op-
timal scheduling model for a multi-energy complementary system under dual uncertainty
of source and load. By constructing the moment uncertainty sets of load and wind power
output, the two-stage robust model carries out a dyadic dynamic transformation using
a dyadic dynamic planning algorithm. Literature [76] used a data-driven distributional
robust optimization method, combining kernel density estimation and integrated paradigm
constraints, to construct an uncertainty set for PV and wind power. A distributed robust
optimization (DRO) approach was used for optimal scheduling under the worst case of
random variables. Also, a linear programming solver was used to solve the DRO model
and obtain the optimal allocation solution. Multi-scenario optimization deals with uncer-
tainty by considering a series of possible scenarios, each with a corresponding probability
of occurrence. All scenarios are considered together in the optimization process, so the
expected value or weighted average is used to find a solution under multiple scenarios.
Literature [77] used a day-ahead multi-scenario stochastic optimization algorithm and an
intraday fuzzy opportunity constrained optimization algorithm to model the uncertainty of
load and PV forecast errors. To reach the minimum in the operation cost, carbon emission
cost, and adjustment cost, the scheduling plan within the day ahead is adjusted using flexi-
ble adjustment (FAD). In solving the uncertainty problem, the nonlinear model is usually
transformed into a linear model so that it can be solved via the mixed-integer second-order
conic programming model; the C&CG algorithm solves the uncertainty problem by de-
composing it into the main problem and sub-problems, where the optimal solution can be
found through continuous iteration. Various methods have been adopted to deal with these
uncertainties, including stochastic optimization, robust optimization, and multi-scenario
optimization, as shown in Table A4 of the Appendix A.

4.5. Collaborative Optimization Scheduling Model

Multi-energy synergistic optimization technology achieves efficient utilization and
optimal dispatch of energy by considering the interactions and conversions between dif-
ferent energy systems, e.g., electricity, heat, natural gas, cold energy, etc. The crucial issue
is to solve the coupling problem between different energy systems. The overall energy
efficiency and economy can be therefore improved by coordinating different energy sys-
tems. Multi-energy interconnection coordination using optimization technology is suitable
for areas with diverse energy demands and supply conditions. It can benefit from multi-
energy interconnection when multiple energy supplies are demanded in places such as
large industrial parks, smart cities, university campuses, etc. To better guide the practice of
IES optimal scheduling, cooperative scheduling between different energy systems can be
supplemented to ensure the stability and reliability of the whole system, especially in the
case of an unstable energy supply. Source–load cooperative optimization is the coordina-
tion between the energy supply side (source) and the demand side (load). Literature [78]
proposed a source–load cooperative optimal scheduling strategy to optimize energy pro-
duction and consumption by predicting and responding to the dynamics of both parties.
Shared energy storage cooperative optimization considers the role of the energy storage
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system as a buffer between energy supply and demand. Literature [79] reported a new
energy sharing framework that considers hydrogen trading, where shared energy storage
operators (SESOs) can facilitate hydrogen trading by setting time-of-day (TOD) pricing. A
hierarchical optimization scheduling method was also proposed based on the Stackelberg
game. It simplifies the complex Stackelberg game process into an information interaction
problem between the upper and lower layers. Additionally, a two-tier optimization method
via combining particle swarm optimization (PSO) and MILP is suitable for scenarios like res-
idential, industrial, and commercial RIES structures. Source–load–storage co-optimization
also considers the energy supply, demand, and storage segments. Literature [80] estab-
lished a two-tier scheduling model for source–load–storage co-operation with a double
game at the system level and the hydrogen production level, reaching balance between
economic conflicts and consistency in absorbing wind power. Multi-energy subsystem
co-optimization is for the integrated energy system containing multiple energy subsystems,
through optimizing the conversion and interaction between different energy subsystems,
to achieve integrated management and gradient utilization of energy. Literature [81] pro-
posed a regional multi-energy system optimal scheduling model based on the cloud edge
synergy theory, which can effectively improve the scheduling data processing capacity
and the economics of regional multi-energy system scheduling. Literature [82] reported a
two-tier optimal scheduling model for regional multi-energy systems with the cloud service
application layer and the edge computing layer as the upper and lower optimal scheduling
layers. The model was solved using a multi-objective whale optimization algorithm with
the objectives in the optimal scheduling cost and minimum scheduling data transmission.
Accordingly, it can effectively improve the scheduling data processing capacity and achieve
economy of regional multi-energy system scheduling. Co-optimization of distributed
energy systems emphasizes local energy self-sufficiency and nearby consumption. Litera-
ture [83] established a distributed cooperative optimization scheduling strategy for IESs
based on edge computing and a consistency algorithm, which returns the optimization
results of distributed cooperative computing at the edge layer to the cloud and device
layers to achieve optimal scheduling, and proposed the distributed group consistency
algorithm (DGCA), which uses two consistency protocols to solve the electricity, heat, and
gas coupling problems. The reliability and anti-interference capability can be improved by
optimizing the distribution and operation of distributed energy sources.

In the above methods, MILP is used in combination with PSO to simplify the multi-
variate and large-scale nonlinear optimization problem into a linear optimization problem,
which reduces the complexity of Stackelberg’s game problem and improves the accuracy
and speed of the computed solution. For the multi-objective whale algorithm, it mainly
deals with multi-objective optimization problems. It is superior in its global search ability
and has better convergence performance so that multiple high-quality Pareto solution sets
can be found. However, the parameter selection and adjustment may be more complicated.
On the other hand, the DGCA is used in multiple distributed energy units, achieving group
consistency by exchanging information among distributed individuals. It can reduce the
dependence on centralized control, but faces challenges in communication efficiency and
information synchronization. The models and solutions for cooperative optimal scheduling
are provided in Table A5 of the Appendix A.

5. Future Challenges and Prospects

IES faces a number of challenges in terms of technical limitations, storage capacity,
conversion efficiency, and infrastructure requirements. Firstly, with the frequent occurrence
of extreme weather in recent years, existing studies are more mature regarding modeling the
coupling of multiple forms of energy in IESs under normal operating conditions. However,
there is still insufficient modeling and analysis for possible failure events in the coupled
system. Secondly, how to tap the passive carbon reduction in addition to active CO2 capture
needs to be addressed in different energy segments. With the access of large-scale renewable
energy, its intermittency and volatility lead to energy storage technology development in
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the storage capacity. Improving the efficiency of energy conversion equipment such as CHP
and P2G is crucial to reduce overall energy consumption and carbon emissions. Hydrogen
in the hydrogen-containing integrated energy system serves as an important medium for
the conversion of various energy sources, and the efficiency and economy of the various
types of conversion technologies associated with it directly affects the development of the
system as a whole. The technologies of electric hydrogen production and hydrogen fuel
cells are still not sufficiently mature due to the low degree of commercialization and high
cost. In terms of infrastructure, the expansion and optimization of natural gas pipeline
networks and heat networks are crucial to the realization of multi-directional flow and
complementary use of energy; at the same time, the convergence of transportation and
information networks provides new resources of flexibility for the energy system, but it
puts forward higher requirements for the construction and management of infrastructure.
The effective operation of IESs requires the integration of advanced information and
communication technologies (ICT) to achieve rapid data transmission and processing,
which places higher demands on the ICT infrastructure. In response to these challenges,
the following outlook is proposed to optimize the scheduling of the IES to enhance the
reliability and economy of the system.

(1) Improvement of IES resilience
The enhancement of IES resilience has become particularly urgent in the global climate

change. IES resilience involves the ability of the grid to withstand, recover, and adapt
in the face of extreme weather events. To meet this challenge, future IESs will rely more
on the application of intelligent and automated technologies. This includes real-time
monitoring using advanced sensors and smart monitoring systems, as well as the use of
adaptive control techniques to automatically adjust grid operations to maintain stability.
Internet of things (IoT) and AI algorithms will play a key role in data collection, analysis,
and forecasting, improving the system’s responsiveness to extreme weather events and
decision-making efficiency. In addition, the construction of a diversified energy structure,
such as the integration of wind, solar, and energy storage devices, will enhance the IES’s
regulation and emergency backup capabilities to ensure the security of energy supply
under extreme weather conditions.

(2) Zoning and layering balance
The future development trend in IESs is to develop the model for zonal autonomy

and local balancing. It emphasizes the efficient use and optimal dispatch of energy in the
region through intelligent energy management and control technologies. Zonal autonomy
means dividing the IES into smaller zones, each of which is able to produce, distribute,
and consume energy independently, thus increasing the flexibility and responsiveness
of the system. In situ balancing, on the other hand, is focused on achieving optimal
matching of energy supply and demand within these regions. It can promote the synergistic
optimization of distributed energy resources, such as distributed power generation, energy
storage, and demand response. Furthermore, the establishment of inter-regional energy
trading will find the optimal allocation and complementarity of energy sources and improve
overall energy efficiency. User-side participation and response are also encouraged to
realize a more dynamic and interactive energy management system.

(3) Digital intelligence advancement
The application of emerging technologies and digital intelligence is becoming a key

force in driving industry progress. The application of artificial intelligence, IoT, big data
analytics, and cloud computing in IESs is promoting the intelligent and digital transfor-
mation of the industry. Advances in energy storage technology provide IESs with greater
regulation capabilities, enabling them to respond more effectively to fluctuations in sup-
ply and demand and extreme weather events. The development of internet of energy
(IoE) technology enhances energy interconnection and improves the efficiency of energy
management and dispatch. The application of artificial intelligence and big data technolo-
gies, on the other hand, provides powerful support in energy demand forecasting and
resource planning and management, making energy dispatch more accurate and efficient.
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The integration of these technologies not only increases the operational efficiency of the
energy system, but also strengthens the reliability and flexibility of the system. With the
continuous progress of technology, the future energy system will rely more on data-driven
decision-making and automated operation to achieve optimal allocation and efficient use
of energy.

6. Conclusions

In the face of the double pressure in global energy consumption and environmental
protection, the emergence of IESs provides an innovative solution for realizing the efficient
energy utilization and the balance between supply and demand. This paper reviews
the main research in IES optimal scheduling technology. The concept, composition, and
classification of an integrated energy system is firstly introduced. Then, the coupling
relationship between multiple energy sources is investigated and studied in depth. Based on
the coupling transformation and complementary utilization between heterogeneous energy
flows, the electricity/heat/gas/cold in the system equipment unit can maintain its own
unique energy quality attributes when coupling with other energy equipment. Different
types of integrated energy system scheduling in different regions are categorized and
evaluated. It covers many points such as dynamic scheduling in time scale, block control
in space scale, simultaneous realization of multiple objectives, uncertainty analysis and
treatment of the system, and synergistic optimization of source network, load, and storage,
etc. The study exhibits that different types of optimal scheduling strategies can effectively
improve the reliability and economy of the system; however, the efficient operation of the
IES is faced with some problems, e.g., the complexity of energy coupling, the low efficiency
of energy conversion, the lack of energy efficiency, the immature and costly technology,
the poor adaptability in the face of unexpected conditions, etc. To address these issues,
this paper discusses emerging technologies in the optimal IES scheduling process. It also
provides important information in utilizing artificial intelligence and big data to promote
energy interconnection, improve system resilience, and achieve efficient energy use with
zonal autonomy.
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Appendix A

Table A1. Proposes and solves multi-time scale optimization scheduling models.

Model Time Scale Solved Problem Solution Method Remark

Multi-time scale
optimal scheduling
model under multiple
mechanisms

Multiple mechanisms are considered
for scheduling and demand response
strategy optimization day-ahead,
intraday and real-time stages

Considers demand
response and market
mechanisms such as
carbon trading and
green certificate trading
and adapt to the
flexibility and
uncertainty of both
supply and demand

Quantum sparrow
search algorithm
(QSSA), improved
particle swarm
optimization, mixed
integer linear
programming (MILP)

[46,47]
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Table A1. Cont.

Model Time Scale Solved Problem Solution Method Remark

Multi-time scale
optimal scheduling
model with a coupling
device

Based on the constructed coupling
model, power is balanced and carbon
trading costs are taken into account in
the day-ahead, intraday and
real-time processes

Considers hydrogen
energy using carbon
capture to achieve
low-carbon operation

Model predictive
control methods (MPC),
fully distributed
optimization
algorithms

[48,49]

Multi-time scale
optimal scheduling
model based on hybrid
energy storage

Based on the hybrid energy storage
system (composed of battery and
hydrogen storage), a two-stage
time-scale model of fast and slow
is established

Energy storage
equipment
optimization to
improve energy
efficiency and stability

MPC, MILP [50]

Multi-time scale
optimal scheduling
model based on
distributed model
predictive control

Based on the MPC strategy, the basic
scheduling plan is determined before
the day, and the rolling optimization
and feedback correction are carried
out in real time within the day

Renewable energy and
load demand
uncertainty,
computational
efficiency, and system
stability

Distributed model
predictive control
(DMPC)

[51,52]

Multi-time scale
optimal scheduling
model for multi-energy
coordination

Day-ahead scheduling can coordinate
the output of the equipment, and
day-long real-time scheduling can
smooth the power fluctuations of the
electric hot gas on different time scales

Flexibility for
coordinated
optimization

MATLAB/YALMIP
toolbox combined with
GUROBI solver

[53]

Table A2. Proposes and solves the multi-spatial scale optimization scheduling models.

Model Type Spatial Scale Intended Solution Method Remark

Regional
distributed optimal
scheduling model

Energy systems within a
single area

Improve the coupling and
collaboration between energy
systems in the region and reduce
regional energy costs and
CO2 emissions

Alternating direction
method of multipliers
(ADMM), MATLAB/
YALMIP toolbox
combined with CPLEX
solver

[54,55]

Regional
hierarchical optimal
scheduling model

A hierarchy is added to a single
region, which may include a
regional control center on the
upper level and a local control
unit on the lower level

The upper level is responsible for
overall optimization and
coordination, while the lower level
is responsible for specific energy
supply and demand response

Analytical target
cascading (ATC) [56]

Regional layered
distributed optimal
scheduling model

Combining the characteristics of
stratification and distribution,
optimal scheduling is not only
carried out at the regional level
but also involves the distributed
decision-making of different
sub-regions or subsystems
within the region

Problems such as data privacy,
conflict of interest, and
interactive power mismatch exist
among multiple entities and
better deal with heterogeneity
and dynamics within the region

ATC [57]

A multi-region
hierarchical
distributed optimal
scheduling model

It involves energy scheduling
and collaboration between
multiple regions, each of which
may adopt a hierarchical
distributed structure

Deal with inter-regional energy
trading, transmission, and
coordination among different
areas to achieve a more extensive
range of optimization

ATC [58]
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Table A2. Cont.

Model Type Spatial Scale Intended Solution Method Remark

Multi-park
distributed optimal
scheduling model

Optimization of energy systems
across multiple campuses, such
as various university campuses,
residential complexes, or
business parks

Each park can manage energy
independently, while energy
exchange and collaborative
optimization can be carried out
between parks

Communication neural
networks (CommNet)
enhance imitation
learning and alternate
direction multiplier
method (ADMM) for
two-layer optimization

[59]

Table A3. Proposes and solves the multi-objective optimal scheduling models.

Research Object Optimization Objective Intended Solution Method Remark

Integrated energy
system for
industrial park

Minimize operating costs
and maximize
environmental benefits

Achieve low-carbon economic
dispatch and improve the
consumption rate of
renewable energy

Non-dominated sorting
genetic algorithm II
(NSGA-II) and beluga
whale optimization (BWO)

[60]

Hybrid integrated
energy system

Minimize economic costs
and polluting
gas emissions

Lower economic costs and
reduce carbon emissions

Multi-objective dung beetle
optimization with
q-learning (MODBO-QL)

[61]

Integrated district
energy systems

Economy, carbon
emissions, and
activity efficiency

Adapt to changing energy
supply, demand, and the impact
of customer-side load
fluctuations on the system

NSGA-II [62]

Integrated rural
energy systems

Economic and
environmental protection

Rural energy consumption is
characterized by sloppy
management, poor economics,
and high gas emissions

NSGA-II with dynamic
crowding distance [63]

Integrated
multi-regional
energy systems

Economy, flexibility, and
carbon emissions

Combine multiple energy types
interact with each other for
stable operation, including
economic and environmental
improvement throughout
the region

Alternate direction
multiplier method
(ADMM)

[64]

Integrated offshore
energy systems

Improve the economic
viability and reliability of
the system in providing
energy and
freshwater supplies

The goal is to reduce energy
waste, achieve high conversion
efficiency and minimize
equipment investment

NSGA-II [65]

Cold, heat, and power
cogeneration system
for large marine vessels

Thermal performance,
economy, and environ-
mental friendliness

Promote sustainable
development and emission
reduction in the
maritime industry

Improved multi-objective
grey wolf optimizer
(IMOGWO)

[66]

Smart home integrated
energy system

Optimizing energy
payments, end-user
satisfaction, and end-user
self-sufficiency preferences

Multiple technologies, including
electrical energy storage systems
and electric vehicles (EVs),
are considered

Mixed integer linear
programming (MILP),
general algebraic modeling
system (GAMS) combined
with CPLEX solver

[67]
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Table A4. Uncertainty optimal scheduling models proposed and solving methods.

Method Class Model Uncertainties Intended Solution Method Remark

Stochastic
optimization

Multi-stage stochastic
optimization model

Generating PV output
scenarios using Monte
Carlo with improved
k-means clustering for
scenario reduction

Reducing decision bias
and realizing system
economy and flexibility
based on PV
uncertainties

Mixed-integer
second-order
cone
programming

[71]

A two-stage stochastic
optimization approach
based on scenario
analysis

Probabilistic analysis
of source load forecast
errors using mixed
and conditional
distributions

Flexibility to cope with
uncertainty by
developing scheduling
plans based on different
risk appetites

Mixed-integer
second-order
cone
programming

[72]

Robust
optimization

Two-stage robust
configuration
optimization model

Constructing PV, wind,
and multi-load
uncertainty sets

Improve system
reliability and reduce
load loss

Column and
constraint
generation
algorithm
(C&CG), big M
method

[73]

The two-stage robust
optimization model

Constructing
uncertainty ensembles
for wind power and
load forecast errors

Improve system
robustness, wind power
consumption capacity,
and reduce additional
costs due to fluctuations
in electricity prices

C&CG [74]

A two-stage robust
optimization scheduling
model

Modeling wind power
and load uncertainty
using moment
uncertainty ensemble

Improve the robustness
of the system while
overcoming the problem
of over-conservatism
and the risks associated
with uncertainty

Pairwise
dynamic
programming
algorithms

[75]

Distributed robust
optimization

Distributed robust
optimal scheduling
model

Modeling of PV and
wind power output
uncertainty using
kernel density
estimation and latin
hypercube sampling
methods

Maintain optimal
balance between
economic efficiency and
operational robustness,
carbon emission
reduction

A data-driven
robust
optimization
approach

[76]

Multi-scene
optimization

Day-ahead
multi-scenario stochastic
optimization model,
intraday fuzzy
chance-constrained
optimization model

Uncertainty modeling
of load and PV
forecast errors via
multi-scenario
techniques and fuzzy
theory

Mobilize system energy
flexibility and overcome
the impact of
uncertainty on
scheduling

Linear solver [77]

Table A5. Cooperative optimal scheduling models and solutions.

Model Co-Optimization Intended Solution Method Remark

Source–load
cooperative optimal
scheduling model

Increase electricity-to-gas technology
installations on the source side to increase
the space for wind power output and
establish time-of-day tariffs and demand
response models on the load side

Solve problems of
inefficient and
irrational energy use in
rural areas and optimal
low-carbon economic
dispatching

MATLAB/YALMIP
toolbox combined
with CPLEX solver

[78]
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Table A5. Cont.

Model Co-Optimization Intended Solution Method Remark

Collaborative
optimized dispatch
model for shared
energy storage

Optimization of IES connected to shared
energy storage

Increase utilization of
RESs and effective
reduction of operating
costs of systems

Particle swarm
optimization (PSO),
mixed integer linear
programming
(MILP)

[79]

Source–load–storage
cooperative optimal
scheduling model

Renewable energy at the source to meet
user demand, natural gas at the load side
to the cogeneration unit to meet the user’s
cooling and heating needs, and each
storage device will be excess electricity,
heat, cooling, gas storage

Consider fine-grained
demand response and
source–load–storage
synergistic hydrogen
production to increase
large-scale wind power
consumption

MATLAB/YALMIP
toolbox combined
with CPLEX solver

[80]

Multi-energy
subsystem synergistic
optimal scheduling
model

Integration and coordination of energy
subsystems such as electricity, heat,
natural gas, and cooling for efficient
energy conversion and distribution

Satisfy higher data
processing
requirements for
energy equipment and
loads, complexity of
operating status of
multiple energy
equipment

Mathematical
planning methods,
multi-objective
whale optimization
algorithm

[81,82]

Cooperative
optimization
scheduling model for
distributed energy
systems

When there are multiple independent
operating entities or energy production
and consumption units, decisions can be
made independently and overall
optimization can be achieved through
coordination mechanisms

Solve the IES
optimization
scheduling problem in
electrical, thermal, and
gas coupling

Distributed group
consistency
algorithm (DGCA)

[83]
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