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Abstract: This paper investigated the use of linear models to forecast crude oil futures prices (WTI)
on a monthly basis, emphasizing their importance for financial markets and the global economy.
The main objective was to develop predictive models using time series analysis techniques, such
as autoregressive (AR), autoregressive moving average (ARMA), autoregressive integrated moving
average (ARIMA), as well as ARMA variants adjusted by genetic algorithms (ARMA-GA) and particle
swarm optimization (ARMA-PSO). Exponential smoothing techniques, including SES, Holt, and Holt-
Winters, in additive and multiplicative forms, were also covered. The models were integrated using
ensemble techniques, by the mean, median, Moore-Penrose pseudo-inverse, and weighted averages
with GA and PSO. The methodology adopted included pre-processing that applied techniques to
ensure the stationarity of the data, which is essential for reliable modeling. The results indicated that
for one-step-ahead forecasts, the weighted average ensemble with PSO outperformed traditional
models in terms of error metrics. For multi-step forecasts (3, 6, 9 and 12), the ensemble with the
Moore-Penrose pseudo-inverse showed better results. This study has shown the effectiveness of
combining predictive models to forecast future values in WTI oil prices, offering a useful tool for
analysis and applications. However, it is possible to expand the idea of applying linear models to
non-linear models.

Keywords: oil; time series; ensembles; linear models; metaheuristics

1. Introduction

The global energy consumption scenario is dominated by non-renewable sources such as
coal, oil and natural gas. In 2022, according to the Energy Information Administration (EIA) [1],
the consumption was: oil (29.5%), coal (26.8%), natural gas (23.7%), biomass (9.8%), nuclear
energy (5.0%), hydroelectric energy (2.7%) and other sources (2.5%). In the coming years,
oil and natural gas are expected to remain prominent, driven by the development of nations
such as China, the largest importer and second largest consumer of oil [2].

Oil, a raw material with high industrial value, has its price influenced by global
economic and geopolitical aspects [3–9]. This price is determined by a complex, non-linear
system with many uncertainties [10].

Since 2008, the fall in oil prices has been influenced by the global economic slowdown and
geopolitical instability, as well as the crisis between China and the US. The COVID-19 pandemic
and the war between Russia and Ukraine have added new uncertainties, affecting price
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formation [6,11,12]. These events have caused fluctuations in prices, challenging market
and political decisions, but also offering opportunities to explore forecasting methods.

Forecasting models include linear and non-linear approaches and combination strate-
gies such as hybrids and ensemble. Linear models, such as exponential smoothing, are
used to capture patterns in time series by adjusting for trends and seasonality. For example,
Simple Exponential Smoothing (SES) is suitable for series with no trend or seasonality,
while the Holt-Winters model deals with series that have these characteristics. Box & Jenkins
models, such as AR, ARMA and ARIMA, are essential for analyzing time dependencies,
where AR captures the linear relationship between an observation and several past lags,
MA models the forecast error as a linear combination of past errors and ARIMA handles
non-stationary series by incorporating differentiation [13].

Variants of the ARMA model optimized by Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) improve forecast accuracy by automatically adjusting parame-
ters, allowing for more effective modeling of complex dynamics [14]. These optimization
techniques provide an enhanced ability to capture subtle patterns and deal with the inherent
complexity of time series.

In addition to hybrid models, combination strategies such as ensemble combine out-
puts from individual predictors [15]. These strategies include averages, medians, weighted
averages and other combinations [16,17]. ensemble techniques optimize the accuracy of
forecasts by combining results from multiple models, reducing the variance of errors and
increasing the consistency of estimates in volatile markets.

The literature has evolved regarding forecasting models for monthly crude oil (WTI)
futures prices [18–20]. Although new techniques are emerging, linear models are still
widely used, from simple comparisons to hybrid models [21].ensemble models have the
potential to improve forecast accuracy, but are still little explored [15–17].

The aim of this article is to explore linear models, specifically smoothing and Box &
Jenkins models, and apply incremental adjustments to the ARMA model using GA and
PSO. Combination strategies ensemble considered include mean, median, pseudo-inverse
of Moore-Penrose and dynamic adjustments of weights with GA and PSO, significantly
improving the performance of the results.

2. Linear Models
2.1. Smoothing Models

This section presents the first set of models used, known as smoothing models. In
these models, the main objective is to estimate the smoothing parameters. The models will
be divided as follows: Simple Exponential Smoothing SES, Holt Exponential Smoothing
(HES), Additive Holt-Winters (A-HW) and Multiplicative Holt-Winters (M-HW).

2.1.1. Simple Exponential Smoothing (SES)

Simple Exponential Smoothing SES is a data smoothing model that applies non-
corresponding weights to the fundamental values of the time series [22,23]. The forecast
for one period ahead is given by Equation (1):

F̂t+1 = αxt + (1 − α) · Ft (1)

where Ft+1 is the forecast, xt is the actual data in period t, Ft is the forecast in period t and
α is the smoothing parameter (0 < α < 1).

Values of α close to zero indicate slower forecasts and less reaction to changes, while
values close to one result in faster responses to recent changes in the time series.

After defining the SES model equation, the next section will introduce the Holt model.

2.1.2. Holt Exponential Smoothing (HES)

The Holt Exponential Smoothing HES models are widely used in time series with a
linear trend [24]. Unlike the SES model, which smooths only the level, the Holt model also
models the trend. Represented by Equations (2)–(4).
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Lt = αZt + (1 − α) · (Lt−1 + Tt−1) (2)

Tt = β(Lt − Lt−1) + (1 − β)Tt−1 (3)

Ŷ = Lt + Tt (4)

where Lt is the new smoothed value, α is the smoothing coefficient (0 < α < 1), Zt is
the current value in period t, β is the trend smoothing coefficient (0 < β < 1), Tt is the
predicted trend, and Ŷ is the predicted value.

Low values of β indicate a slow adjustment to the trend, while high values indicate a
rapid response to changes in the trend.

The next section will introduce the Holt-Winters model, which models seasonality in
an additive or multiplicative way.

2.1.3. Holt-Winters Model

The Holt-Winters model, or triple smoothing model, is used for data with trend, level
and seasonality [25]. This model has two variations: Additive Method and Multiplica-
tive Method.

Additive Holt-Winters Method (A-HW): Represented by Equation (5):

Zt = Lt + Tt + St + εt (5)

where Lt is the level, Tt the trend, St the seasonality at time t and ε the white noise. The
estimates of the model components are given by Equations (6)–(8):

T̂t = β(Lt − Lt−1) + (1 − β)Tt−1 (6)

L̂t = α(Zt − St − 1) + (1 − α)(Lt−1 + Tt−1) (7)

Ŝt = γ(Zt − Lt) + (1 − γ)St−1 (8)

where α, β and γ are the smoothing parameters for level, trend and seasonality (0 < γ < 1).
Multiplicative Holt-Winters Method (M-HW): Represented by Equation (9):

Zt = (Lt + Tt)St + εt (9)

The estimates of the model components are given by Equations (10)–(12):

L̂t = α

(
Zt

St−1

)
+ (1 − α)(Lt−1 + Tt−1) (10)

T̂t = β(Lt − Lt−1) + (1 − β)Tt−1 (11)

Ŝt = γ

(
Zt
Lt

)
+ (1 − γ)St−1 (12)

Additive models are indicated for seasonal variations of constant amplitude [26], while
multiplicative models are suggested for increasing or decreasing seasonal variations [27]. Both
models were tested in this study. The next section will present the adjustments of the
smoothing models.

After presenting the smoothing models, the next section will introduce the Box & Jenkins
models and their variations.
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2.2. Box & Jenkins Models

The Box & Jenkins models, such as ARIMA(p, d, q), are notable for their accuracy in
forecasting time series [25,28,29]. In addition to ARIMA, there are AR(p) and ARMA(p, q)
models, and the challenge is to determine the values of (p), (d) and (q) and their respective
coefficients [30].

Next, the AR(p), ARMA(p, q) and ARIMA(p, d, q) models are discussed.

2.2.1. Autoregressive Model—AR(p)

The AR(p) model uses p time lags as inputs to forecast future observations, represented
by the linear combination Ẑt − 1 + . . . + Ẑt − p of the past terms of the series, multiplied
by the coefficients ϕp and adding a Gaussian white noise at [13,31]. Based on a deterministic
approach, AR(p) uses the Yule-Walker Equations to estimate its coefficients, minimizing
the error between the observed data and the predictions [28]. Equation (13) represents
the model.

Ẑt = ϕ1Zt − 1 + ϕ2Zt − 2 + . . . + ϕpZt − p + at (13)

where Zt is the predicted value at time t, ϕp is the weighting coefficient for the delay of
p ∈ 1, 2, . . . , P.

Direct application of this model requires stationary data.

2.2.2. Autoregressive Moving Average Model—ARMA(p,q)

The ARMA(p, q) model combines autoregression (AR) and moving average (MA)
components [13,32]. Equation (14) describes the model:

Ẑt = ϕ1Zt−p + ϕ2Zt−p−1 + . . . + ϕpZt−p−p+1 − θ1at−1 − θ2at−2 − . . . − θqat−q + at (14)

2.2.3. Autoregressive Integrated Moving Average Model—ARIMA(p,d,q)

The ARIMA(p, d, q) model extends ARMA with an order of differentiation d to remove
trends and make the series stationary [33]. Equation (15) describes the model:

Ẑt = ϕ1Zt−1 + . . . + ϕpZt−p − θ1εt−1 − . . . − θqεt−q − εt (15)

The direct application of the ARIMA model makes it possible to model random shocks
using the forecast error from the previous step εt−1, where εt = at.

Maximum likelihood estimation can be used to determine the θ coefficients of the
ARMA(p, q) and ARIMA(p, d, q) [34] models.

2.3. Bioinspired Optimization Tools

In this section, we present the algorithms used to optimize the ARMA(p, q) models,
using two different strategies: Genetic Algorithms GA and Particle Swarm Optimization
PSO. The details of how these algorithms were applied to the problem in question will be
provided in Section 3 along with the application of the Ensemble model.

2.3.1. Genetic Algorithms (GA)

Optimization using Genetic Algorithms GA is widely used among algorithms inspired
by biological processes. Based on the principles of the theory of evolution of Darwin [35–37],
GAs model biological behavior to solve optimization problems. Introduced by [38] and refined
by [39,40], GAs are recognized for identifying optimal or suboptimal solutions, and are
robust to various problems, as they seek a global optimal solution [41].

In the context of GAs, the problem is modeled by representing individuals associated
with the parameters and coefficients of the models to be optimized, evaluated by the degree
of adaptability, known as fitness [14]. This establishes an analogy between an individual’s
ability to thrive in an environment and the effectiveness of parameters in producing an
optimal solution.
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2.3.2. Particle Swarm Optimization (PSO)

A major advantage of metaheuristics is that they are derivative-independent, unlike
classical optimization techniques such as gradient descent or Newton methods, which
require derivatives of the predictor [42]. This makes them especially useful in problems
where derivatives are unavailable or difficult to calculate.

Inspired by the social behavior of birds and fish, Particle Swarm Optimization PSO,
proposed by [35], uses individual and collective experience to solve problems. PSO limits
the distribution of swarm members in the search space by the current position (xp) and
velocity (vp) [43]. The search for the best solution is guided by improving the local position
(pbest) and the best global position (gbest).

Reference The authors [44] proposed adding the inertia coefficient (ω), according to
Equation (16), restricting the area surveyed. Values of ω vary from 0.9 for broad searches to
0.4 for narrow searches, affecting convergence. Cognitive components c1 and c2 influence
the solution using past experiences, initially defined as 2 [44].

v(i+1)
p = ωv(i)p + c1 · rand(i)

1 [pbest p − x(i)p ] + c2 · rand(i)
2 [gbest p − x(i)p ] (16)

The performance of the PSO is influenced by c1 and c2, controlling the speed and
direction of the search. When the swarm starts, the particles are randomly distributed in
the search space. Each particle is evaluated by the fitness function; the best position found
is stored in (pbest) and (gbest). The speed of each particle is updated in each iteration based
on (pbest) and (gbest), until the stopping criterion is reached.

After defining the linear models and optimization tools, the next section presents the
Ensemble strategies used.

2.4. Tools for Combining Predictors Ensemble

One of the main advantages of ensembles lies in the ability to synergistically com-
bine different individual models, which can result in remarkable improvements in the
generalization process and in the accuracy of predictive models, as mentioned by [45–47].
Therefore, it can be said that a Ensemble has the ability to reduce error variance.

However, it is important to note that the effectiveness of ensembles is directly linked to
the assertiveness of the individual models, which is influenced by the combination method
adopted, as pointed out by [48]. There is no definition or consensus on which ensemble
strategy should be used [49].

An ensemble can consist of several stages, such as the generation of individual models,
the selection of models and, finally, their combination or aggregation [50,51].

The model generation stage is crucial for creating diversity within the Ensemble [51].
It can be classified as heterogeneous, using models with different architectures, or ho-
mogeneous, using models with the same architecture [50,52]. The combination of both
approaches is common to diversify the Ensembles [53,54], although heterogeneous models
can face challenges in maintaining diversity [53]. Homogeneous models, on the other hand,
offer greater control over diversity [53].

The selection and combination of models are fundamental steps in the process of form-
ing an ensemble, with the aim of balancing diversity and forecast accuracy. After generating
the models, the next stage is selection, which is essential for building an efficient Ensemble.

A fundamental part of the composition of an ensemble is the selection of predictors,
which can involve choosing all the available predictors or a specific subgroup, following
established criteria. Selection can be static, using one model or subgroup for the entire test
set [55,56], or dynamic, choosing models based on the region of competence during the test
phase [50,57]. Although selection is not mandatory at this stage, it can influence the results.
Considering all predictors for the final stage may be prudent to avoid selecting models that
may underperform in the test set [57]. The next step in forming an Ensemble is the final
combination of predictors.

This step integrates the results of the forecasts of the individual predictors, forming the
Ensemble forecast (Ẑt+1). In time series problems, it is common to aggregate the forecasts
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of k predictors to obtain more accurate results, usually using the mean or median of the
forecasts [58,59].

Both the mean and the median are non-trainable ensemble models, reducing computa-
tional costs as it is not necessary to retrain the models repeatedly. The mean is represented
by Equation (17), where yi are the predictions of the predictor i and m is the total number
of predictors.

Ẑt+1 =
1
m

m

∑
i=1

yi (17)

The median, represented by Equation (18), is useful in the presence of outliers, offering
a robust estimate of the central tendency of the forecasts.

Ẑt+1 = Median{y1, y2, . . . , ym} (18)

Figure 1 illustrates the process of combining previously trained models using a non-
trainable approach.

Figure 1. Non-trainable Ensemble Flowchart.

In addition to the non-trainable ensembles, we also investigated the trainable ones,
which differ in the assignment of weights to each predictor [60,61]. This stands out as the
main contribution of this research.

Weights can be determined in various ways, such as minimum, maximum or product
of the predictors’ outputs. A viable strategy is the weighted average, assigning greater
weights to the models with the best performance [62–64].

The pseudo-inverse of Moore-Penrose can be used to calculate the weights, effectively
adapting to the characteristics of the predictors [65]. Equation (19) provides the solution to
this problem:
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W = (YTY)−1YTy (19)

Figure 2 shows the procedure for combining previously trained models, incorporating
an additional re-training step.

Figure 2. Trainable Ensemble Flowchart.

This additional step adjusts the weights of the ensemble models according to the
evolution of the data or problem conditions, resulting in a trainable approach.

In this paper, we propose an ensemble of predictive models, where the final output is
calculated as the weighted average of the models’ individual predictions, represented by
Equation (20).

ŷ =
M

∑
i=1

wi · ŷi, (20)

The weights wi are optimized using Genetic Algorithm GA and Particle Swarm Opti-
mization PSO, in order to minimize the prediction error of the ensemble [66].

After defining the linear models, optimization and combination tools, the next section
will present the evaluation of these steps.

3. Methodology

In this section, the stages for the development of this research will be presented. Figure 3
illustrates the organization of the stages.

All the statistical tests and computational results were developed using the Python
3.11.5 version programming language.
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Figure 3. Stages for Forecasts with Linear Models and Ensemble.

3.1. Database

The data analyzed, from the EIA [1], covers the monthly closing prices of WTI crude oil
from January 1987 to February 2023, totaling 434 observations and showing total integrity
with no missing or null records. The distribution of this data is illustrated in Figure 4.

Figure 4. WTI Crude Oil Price.

To develop the models, 75% of the data was used for training, while the remaining
25% was used for testing, as shown in Figure 4.

3.2. Pre-Processing

After collecting the data, it was analyzed to identify behaviors such as trend, cyclicality,
seasonality and a random term. One of the ways to detect these behaviors is to use certain
tests, such as the Cox-Stuart test and the Friedman test [67,68].

The tests show that the series has a trend and seasonality. In this case, it is necessary to
pre-process the data to ensure stationarity. The so-called stationary series have a constant
mean, constant variance and autocovariance that does not depend on time, reflecting a
more stable behavior of the data, which for modeling, especially the Box & Jenkins models,
is a sine qua non condition [25,28,69].

For this study, we used the logarithmic transformation and the moving average with a
12-month window, along with differentiation, as shown in Equations (21)–( 23).

L(t) = log(Z(t)) (21)

in this case L(t) will be the value of the logarithm, Z(t) represents the time series at time t.
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M(t) =
1
N

t

∑
k=t−n+1

L(i) (22)

and M(t) represents the value of the moving average at time t. The moving average is
calculated as the average of the L(i) values with a window of N-periods. Now (i) represents
the iteration over all the points in the N-period window.

If we then apply differentiation using Equation (23), you get:

∆ = (L(t)− M(t))− (L(t − 1)− M(t − 1)) (23)

Combining all the parts, the complete transformation of the time series is represented
by ∆.

The next step is to determine the parameters of the smoothing models. In this case,
determine the parameters for level, trend and seasonality.

3.3. Estimating the Smoothing Coefficients

Exponential smoothing models require the determination of the α, β and γ coeffi-
cients. The literature indicates that there is no consensus on an ideal method for this
determination [70]. Using the numerical evaluation of the cost function, the L-BFGS-B (The
standard algorithm in the statsmodels library minimizes the mean square error (MSE) using
the Quasi-Newton method, without the need to provide the Hessian matrix or the structure
of the objective function) method was used to minimize the MSE and define the parameters
in the training set.

Although Exponential Smoothing models do not require the series to be stationary, it
was decided to use stationary data in this study. The adjusted parameters α, β and γ are
shown in Table 1 and Appendix A.

Table 1. Smoothing Model Coefficients.

Models α β γ

SES 1.00 - -

Holt 1.00 1.09 × 10−4 -

A-HW 9.99 × 10−3 4.65 × 10−8 3.17 × 10−8

M-HW 1.00 8.75 × 10−11 6.67 × 10−11

Source: Own authorship (2024).

After determining the coefficients of the smoothing models, we proceeded to apply
the Box & Jenkins models.

3.4. Estimating the Coefficients and Orders of the Box & Jenkins

For the Box & Jenkins models, the orders and coefficients were determined in two ways:
the classical approach and the optimization of the coefficients of the ARMA(p, q) model
using GA and PSO.

The candidate orders were evaluated using the Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF) graphs. The θi coefficients were estimated by
solving the Yule-Walker Equations for AR(p) [71]. For the ARMA(p, q) and ARIMA(p, d, q)
models, the maximum likelihood estimator [34] was used. The d part of the ARIMA model
was determined as 1 by applying a differentiation to the data.

Significant lags were defined by analyzing Figure 5, which makes it easier to under-
stand the autocorrelation patterns in the adjusted time series.
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Figure 5. Autocorrelation and Partial Autocorrelation.

The ACF and PACF help identify significant lag components for the AR and MA
models, respectively [72]. Determining these parameters can be challenging due to the
complexity and volume of the data. For the AR(p) model, although Figure 5 suggests
testing up to lag 2, lags from 1 to 6 were observed. For the ARMA(p, q) model, the MA(q)
part was tested up to order 6, as indicated by the ACF.

For the ARIMA(p, d, q) model, the same orders were tested, with d set to 1. The
coefficients of the Box & Jenkins models are shown in Table 2. After analyzing the orders, it
was decided to refine the choice of parameters, especially for the ARMA(p, q) model, using
GA and PSO optimization for greater precision [73,74].

Table 2. Box & Jenkins Model Coefficients.

Models p d q

AR 1 - -

ARMA 1 - 3

ARIMA 6 1 6
Source: Own authorship (2024).

Bioinspired algorithms, such as GA and PSO, were applied to the ARMA(p, q) model [14]
Table 3 and 4. In GA, the parameters ϕ and θ were optimized with p = 1 and q = 3,
using one-point crossover, dynamic mutation and roulette wheel selection. The specific
parameters are detailed in

Table 3. Description of GA Parameters—ARMA.

Parameters Values

Population Size 50

Number of Iterations 30

Offspring Generated by Crossover 50

Mutation Amplitude Regulator 0.1

Percentage Mutation Rate 10 %

Frequency of Use of Local Search 100

Local Search Delta 0.05

Maximum Number of Generations 150

Search Interval for ϕ [−1,1]

Search Interval for θ [−1,1]
Source: Own authorship (2024).
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Table 4. Description of the PSO—ARMA Parameters.

Parameters Values

Number of Particles 150

Number of Iterations 150

Inertia Coefficient w 0.7

Cognitive Term c1 2.0

Social Term c2 2.0

Maximum Number of Executions 30

Local Search Delta 0.05

Search Interval for ϕ [−1,1]

Search Interval for θ [−1,1]
Source: Own authorship (2024).

In PSO Table 4, particles represent candidate solutions (ϕ1, θ1, θ2, θ3) ∈ R. The particles
adjust their trajectories based on the best individual (pbest) and global (gbest) experiences.
The inertia (w), cognitive (c1) and social (c2) coefficients modulate the search dynamics.
30 simulations were carried out to identify the optimal configuration.

The optimized values of (ϕ1, θ1, θ2, θ3) ∈ R are shown in Table 5. With the application
of GA and PSO, all the linear models are ready to be combined. The ensembles can be
developed using the techniques presented in Section 2.4.

Table 5. ARMA(p, q) GA and PSO Model.

Model ϕ1 Θ1 Θ2 Θ3

ARMA-GA 0.1192 −0.0081 −0.0586 −0.1268
ARMA-PSO 0.6036 −0.5537 0.1161 −0.0438

Source: Own authorship (2024).

3.5. Ensemble

To build ensemble 1, the average of the models’ forecasts was used, as described in
Equation (17), for the forecast horizons of 1, 3, 6, 9 and 12 steps ahead. The forecasts were
collected and the arithmetic mean was calculated, with all model outputs contributing
equally to the final forecast, without the need for readjustment or retraining. Individual
errors were calculated for each horizon.

Ensemble 2 was developed based on the median of the models’ forecasts, following the
same steps as ensemble 1 and using Equation (18). Each model was evaluated individually.

Ensemble 3, unlike ensembles 1 and 2, is trainable. Initially, the model predictions
were organized in a Y matrix and the actual values in a y vector. The weights that minimize
the quadratic difference between predictions and actual values were calculated by applying
the pseudo-inverse of Moore-Penrose to solve the least squares problem Equation (19).

For ensemble 4, the weighted average of the models’ predictions was used, with
weights initially optimized using GA. A chromosome was formed representing the weights
W, with the restriction that the weights add up to 1 and are non-negative. GA was applied
with one-point crossover, dynamic mutation and tournament selection, as detailed in
Table 6.
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Table 6. Description of the GA Parameters for Optimizing the Weights in a Weighted Average Ensemble.

Parameters Values

Population Size 150

Number of Iterations 30

Offspring Generated by Crossover By Generation, Half of the Population

Crossover Rate 90%

Mutation Rate 50%

Mutation Amplitude (Standard Deviation) 0.1

Tournament Size 4

Number of Individual Models 9
Source: Own authorship (2024).

After simulations and tests with GA, the parameters for PSO were defined Table 7.
Each particle in the PSO represents a candidate solution and adjusts its trajectory based on
the best individual (pbest) and global (gbest) experiences, following Equation (16).

Table 7. Description of the PSO Parameters for Optimizing the Weights in a Weighted Average Ensemble.

Parameters Values

Number of Particles 150

Number of Iterations 150

Inertia Coefficient w 0.9

Cognitive Term c1 2.0

Social Term c2 2.0

Maximum Number of Executions 30

Number of Models by Particle 9
Source: Own authorship (2024).

3.6. Post-Processing

After the initial transformations to the time series data, it was necessary to reverse the
modifications to recover the “removed” values and return the forecasts to the original scale.
This makes it easier to understand and visualize the results accurately, ensuring that the
accuracy metrics are on the same scale as the original data.

The following evaluation metrics were used: MSE, MAE, MAPE and AE.
The Mean Square Error MSE calculates the average of the squared errors with Equation (24).

MSE =
1
n

n

∑
t=1

(y − ŷ)2 (24)

The Mean Absolute Percentage Error MAPE avoids different scale penalties, repre-
sented with Equation (25).

MAPE =
n

∑
t=1

|y − ŷ
ŷ

| (25)

And the Mean Absolute Error MAE calculates the average of the absolute errors with
Equation (26).

MAE =
1
n

n

∑
t=1

|y − ŷ| (26)
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On the other hand, the Absolute Error AE is the difference between the observed value
and the predicted value and can be calculated with Equation (27).

AE = |y − ŷ| (27)

Section 4 will present the final results with the models adjusted and reversed as
described in Section 3.6.

4. Results

This section presents the results of the models evaluated for each forecast horizon,
based on the MSE, MAE and MAPE errors, followed by a ranking of the models (Table 8).
For each horizon, the best result is illustrated next to the actual data, as well as the Absolute
Error AE curves over time for the 14 models evaluated.The graphs are organized as follows:

• Figure 6: A corresponds to the prediction of the best model and B o the evaluation of
the AE for one-step ahead;

• Figure 7: C represents the prediction of the best model and D the AE evaluation for
three-steps ahead;

• Figure 8: E shows the prediction of the best model and F the AE evaluation corre-
sponding to six-steps ahead;

• Figure 9: G shows the best model prediction and H the AE evaluation for nine-
steps ahead;

• Figure 10: I contains the prediction of the best model and J the AE evaluation of the
absolute error considering twelve-steps ahead.

Table 8. Evaluation and Rankings for One-Step Ahead Forecasts.

Models MSE MAE MAPE Rank MSE Rank MAE Rank MAPE Total Score Final Ranking

Ensemble 5 26.1324 3.8052 0.0732 1 1 2 4 1
Ensemble 1 26.5979 3.8855 0.0748 2 3 3 8 2
ARMA-PSO 35.7461 4.5461 0.0836 3 4 4 11 3
ARMA-GA 36.0904 4.5779 0.0845 4 5 5 14 4
SES 39.3276 4.7244 0.0878 5 8 8 21 5
Holt 39.7390 4.7383 0.0881 6 9 9 24 6
ARMA 42.1666 4.9635 0.0917 7 6 7 20 7
ARIMA 42.2707 4.9896 0.0915 8 7 6 21 8
AR 42.5677 5.0139 0.0924 9 11 10 30 9
M-HW 43.6446 5.0792 0.0931 10 13 12 35 10
A-HW 42.7063 5.0471 0.0940 11 12 13 36 11
Ensemble 2 38.1103 4.8385 0.0888 7 10 11 28 12
Ensemble 4 42.8594 5.0280 0.9389 12 14 14 40 13
Ensemble 3 47.2520 3.8363 0.0732 14 2 1 17 14

Source: Own authorship (2024).

As shown in Table 8, ensemble 5, using the weighted average with PSO, stood out
by dynamically adjusting the weights of the models in the Ensemble based on historical
performance, maximizing overall accuracy. This flexibility justifies its superior performance
compared to ensembles 1 and 2, which assign equal weights to each model, according to
Equations (17) and (18). By looking at the scores assigned to each model according to its
performance per evaluation metric, it is possible to construct a score with the sum of all the
scores. It can be seen that although ensemble 5 had the best overall performance, ensemble
3 stood out with the best position in relation to MAPE error.

Figure 6 illustrates the best model for predicting a step forward on the test set (Observed).
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Figure 6. Ensemble 5 Forecasts One-Step Ahead and Errors.

Subfigure A contains the predicted values with the best model. While subfigure B
presents the absolute error for each predicted value of all models. Next to it are the values
with the MAE errors per model. This analogy is used for the other predicted steps.

After evaluating the one-step ahead forecasts, we moved on to analyze the three-steps
ahead horizons. Table 9 shows the results of all the models based on the MSE, MAE and
MAPE error metrics.

For this horizon, ensemble 3 stood out, using the pseudo-inverse of Moore-Penrose
to combine the models, taking better advantage of their individual characteristics. The
ensembles 4 and 5 also outperformed the individual models, indicating the effectiveness
of the GA and PSO approaches. Individual models such as AR, ARMA and ARIMA
showed relatively high errors, with the multiplicative Holt Winters model obtaining the
highest MSE.

In the three-steps horizon, the ARMA-GA model outperformed ARMA-PSO, possibly
due to uncertainties in the parameter selection process. The smoothing models behaved
similarly to the one-step horizon, with larger errors in multi-step forecasts. Ensemble 3
again stood out in this horizon.
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Table 9. Evaluation and Rankings for Three-Steps Ahead Forecasts.

Models MSE MAE MAPE Rank MSE Rank MAE Rank MAPE Total Score Final Ranking

Ensemble 3 31.5856 4.2631 0.0809 1 1 1 3 1
Ensemble 5 46.6288 5.1197 0.1039 2 6 2 10 2
ARMA-GA 62.9834 4.5779 0.1230 3 3 5 11 3
ARMA-PSO 72.1269 6.2979 0.1148 4 4 3 11 4
Ensemble 4 62.1147 6.0290 0.1206 5 5 4 14 5
SES 85.8354 6.8282 0.1371 6 8 6 20 6
Holt 87.4450 6.9225 0.1385 7 9 7 23 7
Ensemble 1 80.2616 6.6111 0.1325 8 7 8 23 8
ARMA 93.7271 4.3698 0.1500 9 2 9 20 9
ARIMA 94.1366 7.1262 0.1451 10 10 11 31 10
AR 97.7222 7.4393 0.1572 11 11 12 34 11
A-HW 100.0355 7.1951 0.1491 12 12 10 34 12
M-HW 105.9239 7.5685 0.1528 13 13 13 39 13
Ensemble 2 116.4333 8.1610 0.1540 14 14 14 42 14

Source: Own authorship (2024).

As mentioned above and illustrated in Table 9, ensemble 3 obtained better results than
all the predictive models. This is because ensemble 3 is more precise when adjusting the
weights, directly minimizing the prediction error. In this case, it provides more sensitive
and accurate responses to fluctuations, which are more evident in forecasts with longer
horizons. Its performance is also evident when evaluating the final ranking, thus obtaining
a better score in all error metrics. It is worth noting, however, that as in the previous
step, ensembles 4 and 5 obtained good results compared to the other ensembles, again
highlighting the efficiency of using GA and PSO. In this sense, Figure 7 shows the best
prediction model, obtained by ensemble 3.

Figure 7. Ensemble 3 Forecasts Three-Steps Ahead and Errors.
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Similarly, we went on to evaluate other forecast horizons, in this case for six-steps
ahead, as shown in Table 10.

Table 10. Evaluation and Rankings for Six-Steps Ahead Forecasts.

Models MSE MAE MAPE Rank MSE Rank MAE Rank MAPE Total Score Final Ranking

Ensemble 3 36.6887 4.8088 0.0940 1 1 1 3 1
Ensemble 4 42.2360 5.1421 0.0985 2 2 2 6 2
Ensemble 5 70.8841 6.1835 0.1182 3 3 3 9 3
Ensemble 2 92.1716 6.9610 0.1375 4 4 4 12 4
ARMA-PSO 102.7793 7.6440 0.1418 5 5 5 15 5
ARMA-GA 108.8052 7.9844 0.1469 6 6 6 18 6
Ensemble 1 113.8113 7.7389 0.1515 7 7 7 21 7
SES 145.3774 6.6541 0.1718 11 8 10 29 8
ARIMA 143.9546 8.5516 0.1633 10 9 7 26 9
AR 141.2104 8.6026 0.1633 9 10 8 27 10
ARMA 136.2695 8.8349 0.1656 8 11 9 28 11
A-HW 152.3447 8.8144 0.1734 13 12 12 37 12
Holt 151.8369 8.8701 0.1747 12 13 11 36 13
M-HW 181.0155 9.7933 0.1855 14 14 13 41 14

Source: Own authorship (2024).

Ensemble 3 was again superior, reinforcing its ability to determine the best weightings
for longer forecasts. The ensemble 5 also stood out, showing the efficiency of the opti-
mization algorithms. Its performance is also evident when evaluating the final ranking,
thus obtaining a better score in all the error metrics. Ensemble 2, which uses the median,
performed reasonably well, being robust against outliers as the steps increase. Figure 8
shows the best result for this horizon, obtained by ensemble 3.

Figure 8. Ensemble 3 Forecasts Six-Steps Ahead and Errors.
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After these considerations, the forecasts for the models considering nine-steps ahead
were evaluated, as illustrated in Table 11.

Table 11. Evaluation and Rankings for Nine-Steps Ahead Forecasts.

Models MSE MAE MAPE Rank MSE Rank MAE Rank MAPE Total Score Final Ranking

Ensemble 3 40.7999 5.1785 0.0996 1 2 2 5 1
Ensemble 4 42.8763 5.0218 0.0948 2 1 1 4 2
Ensemble 5 76.2204 6.6119 0.1212 3 3 3 9 3
Ensemble 2 107.0554 7.7230 0.1550 4 4 4 12 4
ARMA-GA 116.7820 8.2592 0.1580 5 5 6 16 5
ARMA-PSO 138.9001 8.3752 0.1573 6 6 5 17 6
Ensemble 1 131.7656 8.6014 0.1707 7 7 7 21 7
SES 195.8325 10.2751 0.2050 10 8 9 27 8
ARMA 183.8635 10.2683 0.1816 8 9 8 25 9
AR 207.4238 10.7631 0.1998 9 10 10 29 10
Holt 209.9169 10.7295 0.2121 11 11 10 32 11
ARIMA 235.2772 11.7777 0.2230 12 12 11 35 12
M-HW 262.9169 12.3568 0.2253 14 13 12 39 13
A-HW 254.0866 12.4684 0.2357 13 14 13 40 14

Source: Own authorship (2024).

Ensemble 3 stood out again, as shown in Table 11. As the horizons increase, the errors
of the individual models increase significantly, which does not occur in the ensembles.
Ensemble 3 was the best for forecasts nine-steps ahead, as illustrated in Figure 9. Its
performance is also evident when evaluating the final ranking, thus obtaining a better
score in all the error metrics. The Box & Jenkins models maintained their performance,
highlighting the efficiency of the GA and PSO algorithms. Although ensemble 2 was not
the best, it obtained considerable results, demonstrating its robustness for longer horizon
forecasts, due to the reduction in variability when using central values.

Figure 9. Ensemble 3 Forecasts Nine-Steps Ahead and Errors.
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Finally, with regard to the last forecast horizon, considering twelve-steps ahead, Table 12
shows the results of all the models.

Table 12. Evaluation and Rankings for Twelve-Steps Ahead Forecasts.

Models MSE MAE MAPE Rank MSE Rank MAE Rank MAPE Total Score Final Ranking

Ensemble 3 42.399 4.9668 0.0980 1 1 1 3 1
Ensemble 4 59.7894 5.7881 0.1103 2 2 2 6 2
Ensemble 5 84.6815 6.7984 0.1286 3 3 3 9 3
Ensemble 2 106.8666 7.3913 0.1541 4 4 4 12 4
ARMA-GA 120.2188 8.4345 0.1550 5 6 5 16 5
Ensemble 1 122.8396 8.0137 0.1633 6 5 7 18 6
ARMA-PSO 147.1678 8.9393 0.1641 7 7 6 20 7
ARMA 160.8367 9.5246 0.1768 8 8 8 24 8
AR 179.3992 9.7180 0.1840 9 9 9 27 9
ARIMA 191.2371 9.7794 0.1891 10 10 10 30 10
A-HW 190.4970 9.9673 0.1967 11 11 11 33 11
M-HW 238.7421 11.3661 0.2129 12 12 12 36 12
SES 346.1113 13.1934 0.2469 13 13 13 39 13
Holt 379.3841 13.8740 0.2570 14 14 14 42 14

Source: Own authorship (2024).

The Box & Jenkins models maintained the same results as the previous cases. In the
Smoothing models, there was a change, with the additive and multiplicative models,
previously the worst, becoming the best. The ensemble 3 remains the most effective.

The exponential smoothing models showed variations in results, with the Addi-
tive Holt Winters being the most effective, especially in long-term forecasts, due to its
stability and predictability. The SES model also benefited from stationarity in shorter
horizon forecasts.

Finally, the results reinforce that ensemble 3 significantly outperformed the individual
models, and the ensembles in general proved superior at other forecast horizons.

Figure 10. Ensemble 3 Forecasts Twelve-Steps Ahead and Errors.
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After the aforementioned considerations for a forecast horizon of twelve-steps ahead,
Figure 10 shows the best answer, in this case ensemble 3.

Several were analyzed and MSE, MAE and MAPE were used to evaluate them. These
metrics illustrate average values (the best overall approximation in the analysis). Abrupt
changes in the direction of the time series make it difficult for models to predict, but some
models have the ability to adapt better than others. By analyzing AE, it is possible to see
which models have the smallest outliers, which is additional behavioral information that
the usual averages do not provide.

The results presented in this section confirm the concepts discussed in the Section 2.4,
demonstrating the robustness of the ensemble models over different forecast horizons.
Specifically, ensemble 5 proved to be superior in the forecast horizon of one-step ahead,
while for forecasts of 3, 6, 9 and 12 steps ahead, ensemble 3 was superior to all models.

In general, ensemble models have different advantages and disadvantages. The mean
is simple, but can be influenced by outliers. The median is robust against outliers, but
can ignore variability. The Moore-Penrose inverse optimizes weights based on historical
performance, and is accurate but computationally complex. Weighted averaging with
PSO and GA dynamically adjusts the weights, improving accuracy, but requires more
computing power. For short-term forecasts, the mean and median are effective; for the
long term, the inverse of Moore-Penrose and the weighted mean offer better optimization,
provided there is sufficient data.

5. Conclusions

The main contribution of this work is related to the use of the pseudo-inverse of
Moore-Penrose to determine the weights of the models to be used in the formation of the
Ensemble, in addition to the use of metaheuristics.

It is known that GA and PSO algorithms are widely used in the literature, although
not so much for application in ensemble. In this sense, as an initial work, it was decided to
use these techniques.

The results show that the ensemble models, especially those that used metaheuristics
and the pseudo-inverse of Moore-Penrose, significantly improved the individual results of
the predictive models at all forecast horizons.

After pre-processing the data, the model parameters were determined in various
ways: for the smoothing models, a numerical model that minimizes the cost function
was used; for the Box & Jenkins models, the Yule-Walker equations and maximum likeli-
hood estimators were used, with delays tested exhaustively. Specifically for the ARMA
model, two coefficient optimization techniques were used: GA and PSO. For the ensem-
ble, several strategies were tested, including arithmetic mean, median, pseudo-inverse of
Moore-Penrose and weighted mean with GA and PSO. The results showed that the ensemble
approaches outperformed the individual models, with the weighted average with PSO
(ensemble 5) standing out in step 1, and the pseudo-inverse of Moore-Penrose (ensemble 3)
in the other steps.

The results indicate the feasibility of using ensembles in time series forecasting, allow-
ing it to be applied to forecasting models other than linear ones.

In this sense, the research can be further developed with the insertion of other approaches
aimed at technological development, such as the creation of other Ensembles. Mention could
be made of the use of artificial neural networks to form a non-linear ensemble.
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The following abbreviations are used in this manuscript:

ACF Autocorrelation function
AE Absolute error
A-HW Additive Holt-Winters’ models
AR Autoregressive
ARIMA Autoregressive integrated moving average
ARMA Autoregressive-moving-average
EIA Energy Information administration
GA Genetic algorithm
HES Holt simple exponential smoothing
MAE Mean absolute error
MAPE Mean absolute percentage error
M-HW Multiplicative Holt-Winters’ models
MSE Mean Squared Error
PACF Partial autocorrelation function
PSO Particle swarm optimization
SES Simple exponential smoothing
WTI West Texas Intermediate

Appendix A

Together with the parameters observed in Table 3, the fitness of the adjusted model
can be seen in Figure A1.

Figure A1. Fitness of the ARMA-GA Model.

For the application of the Autoregressive Moving Average Model-ARMA(p, q) with
corrections using the PSO as mentioned in Section 3.4, the parameters used are shown in
Table 4.

With the parameters observed in Table 4, the fitness of the adjusted model can be seen
in Figure A2.
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Figure A2. Fitness of the ARMA-PSO Model.

Adjustments of the ϕ and θ values with Table 5.
Table A1 shows the weights associated with the ensemble 3 model.

Table A1. Weights Associated with Ensemble 3.

Models Weights

SES 5.3110

ARMA 0.3103

AR 0.9854

ARMA-PSO −0.0534

A-HW 0.6266

M-HW −1.0575

HOLT −4.8867

ARIMA −1.1908

ARIMA-GA 0.6770

Figure A3. Fitness of the Ensemble 4—GA Model.
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Figure A4. Fitness of the Ensemble 5—PSO Model.

Figure A5. Model Dispersion.
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