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Abstract: Short-term load forecasting plays a crucial role in managing the energy consumption of
buildings in cities. Accurate forecasting enables residents to reduce energy waste and facilitates
timely decision-making for power companies’ energy management. In this paper, we propose a novel
hybrid forecasting model designed to predict load series in multiple households. Our proposed
method integrates multivariate variational mode decomposition (MVMD), the whale optimization
algorithm (WOA), and a temporal fusion transformer (TFT) to perform one-step forecasts. MVMD is
utilized to decompose the load series into intrinsic mode functions (IMFs), extracting characteristics at
distinct scales. We use sample entropy to determine the appropriate number of decomposition levels
and the penalty factor of MVMD. The WOA is utilized to optimize the hyperparameters of MVMD-
TFT to enhance its overall performance. We generate two distinct cases originating from BCHydro.
Experimental results show that our method has achieved excellent performance in both cases.

Keywords: MVMD; energy consumption; residential buildings; load forecast; temporal fusion transformer

1. Introduction

As the global economy and population continue to expand, energy demand corre-
spondingly escalates. A significant segment of this consumption is attributed to the building
sector, which tops the list of energy consumers worldwide, followed by the industrial and
transportation sectors. Notably, residential energy consumption comprises approximately
75% of the total energy utilization within the building sector [1]. Load forecasting (LF)
plays a pivotal role in ensuring the highest level of efficiency and economic benefit within
the power system. Accurate household load forecasting is crucial for the optimal planning,
operation, and dispatch of the power system. It enables a reduction in energy wastage and
maximizes benefits for both residents and power companies [2].

The advancement in information technology has paved the way for data-driven
methods to become the mainstream approach in load forecasting. In order to achieve
precise load prediction, there are two primary data-driven methodologies: statistics-based
and machine learning-based methods.

Machine learning-based methods, such as XGBoost [3], MLR [4], and SVR [5], of-
fer a more flexible approach capable of forecasting load series without the constraint of
the series being of a specific type. By incorporating exogenous variables into their models,
these methods yield more accurate predictions. AI-based methods, as an advancement
within machine learning, are now extensively employed in individual load forecasts due
to their enhanced capability for nonlinear processing. In addition to designing models
for individual predictions , clustering and ensemble algorithms [6–8] have been applied
to solve such problems. Recently, an algorithm based on a novel graph neural network
has been used for prediction, achieving state-of-the-art performance [9]. These studies

Energies 2024, 17, 3061. https://doi.org/10.3390/en17133061 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17133061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0009-0001-1801-5724
https://doi.org/10.3390/en17133061
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17133061?type=check_update&version=1


Energies 2024, 17, 3061 2 of 22

showcase the ability of deep learning to handle complex relationships between input and
output. However, load series characterized by high volatility and nonlinearity still pose
challenges for these methods.

Statistics-based methods, including Holt–Winters and ARIMA, conceptualize load
series as a composite of trend and seasonal components. The simplicity of their calcula-
tions enables swift and efficient forecasting. In contrast to deep learning methods, these
approaches are ill-suited for forecasting nonlinear data [10,11].

Mode decomposition is a widely used methodology that facilitates the decomposition
of signals into a series of oscillating components. These components, known as intrinsic
mode functions (IMFs), are characterized as amplitude-modulated–frequency-modulated
(AM–FM) signals. IMFs reflect distinct patterns inherent in the original signals, facilitating
the model’s ability to capture its distinctive patterns. In order to further enhance the
performance of AI-based methods, researchers have explored their amalgamation with
mode decomposition, aiming to achieve accurate load forecasting. In [12], researchers
integrated EMD with BiLSTM, utilizing EMD to extract intricate temporal and spectral
characteristics from power load data. This process resulted in the generation of multiple
IMFs spanning various frequency bands, ultimately enhancing the predictive accuracy of
BiLSTM models. In the study detailed in [13], EEMD is employed to smooth the power load
sequence and generate IMFs. The LSTM and ELM models are deployed to predict the high-
frequency and low-frequency IMFs, respectively, which are subsequently integrated to yield
the prediction results. In [14], EWT serves as an enhanced version of EMD and is utilized
to extract IMFs and smooth the load data. LSTM is employed to predict the low-to-mid-
frequency IMFs, whereas the high-frequency IMFs undergo enhanced DBSCAN clustering
before being individually forecasted by another LSTM and LSSVM, capturing distinct
samples within the outcomes. Similarly, researchers have forecasted electric load utilizing a
hybrid VMD-LSTM network [15]. The IMFs generated by VMD are individually predicted
by LSTM. When combined with error correction, the proposed method outperforms all
other hybrid methods across all datasets in terms of various metrics. However, the studies
on mode decomposition mentioned above can only process one sequence and require
predictions for each IMF, making the entire forecasting process complex.

Load series in individual households display rapid fluctuations and are closely linked
to residents’ behaviors. These dynamics pose a significant challenge when aiming for
accurate prediction [16,17]. The temporal fusion transformer (TFT) is an advanced model
developed by the Google team. It exhibits the ability to forecast multiple series simultane-
ously, showing excellent performance in predicting various types of time series, including
load [18], PV power [19], wind speed [20], supply air temperature [21], and tourist de-
mand [22] and volume [23].

In order to further enhance the performance of the TFT in individual forecasting
problems, we incorporated MVMD. Our combined method avoids training models for
each IMF component. Meanwhile, regarding the parameter selection issue of MVMD,
we offer a new perspective on choosing its penalty factor and decomposition levels through
sample entropy. Furthermore, the WOA is employed to optimize the hyperparameters of
the MVMD-TFT to find reasonable hyperparameters. For performance comparisons, we
consider separately training the CNN-LSTM, LSTM, BiGRU-CNN, MVMD-LSTM, and
MVMD-CNN-LSTM models.

The main contributions of this article are the following:

(1) We proposea hybrid MVMD-WOA-TFT model, which can forecast load for multiple
houses accurately. MVMD is employed to decompose multi-load data into multi-
ple IMFs, extracting the common features shared among different load sequences.
The WOA is utilized to optimize the hyperparameter of the MVMD-TFT, enhancing
its overall performance.

(2) We select an appropriate decomposition level and penalty factor for MVMD from an
entropy-based perspective.
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(3) We validate the performance of the proposed model by comparing it to the original
TFT and multiple separate training models.

2. Methodology
2.1. Multivariate Variational Mode Decomposition

Multivariate variational mode decomposition (MVMD) serves as a comprehensive
extension of VMD, designed to extract a specific number of multivariate modulated oscil-
lations from input data that consist of multiple data channels. MVMD obtains IMFs by
solving constraint optimization problems, as described in Equation (1), in which uk,c

+ (t)
denotes the analytic signal corresponding to uk(t), where uk(t) is defined as a vector
comprising C channels, represented as uk(t) = [u1(t), u2(t), . . . uC(t)].

min
{uk,c}{ωk}

{
∑
k

∑
c
||∂t[uk,c

+ (t)e−jωkt]||22

}
subject to ∑

k
uk,c(t) = xc(t) c = 1, 2, 3 . . . C

(1)

The variable k represents the decomposition level (number of IMFs), and ωk and ∂t,
respectively, denote the center frequency of the kth IMF and a partial derivative operation
for time t.

ωn+1
k =

Σc
∫ ∞

0 ω|ûk,c(ω)|2dω

Σc
∫ ∞

0 |ûk,c(ω)|2dω
(2)

ûn+1
k,c (ω) =

xc(ω)− ∑i ̸=k ûi,c(ω) + λ̂c(ω)
2

1 − 2α(ω − ωk)2 (3)

λ̂n+1
c (ω) = λ̂n

c (ω) + τ(x̂c(ω)− ∑
k

ûn+1
k,c (ω) (4)

The ADMM algorithm is employed to convert the original expression into three itera-
tive sub-optimization problems. These subproblems aim to optimize the center frequency
ωk, mode uk,c, and Lagrangian multiplier. The solutions to these subproblems are pre-
sented in Equations (2)–(4). Upon completing one iteration using Equations (2)–(4), MVMD
proceeds to check a convergence condition. The process continues until the convergence
condition is met or until the specified number of iterations is reached. The implementation
details of MVMD can be found in [24].

2.2. Parameter Setting for MVMD Based on Sample Entropy

The decomposition level, k, has a great influence on the performance of VMD. As indi-
cated in [25], the residual between the sum of IMFs obtained by decomposition and the
original signal can serve as a criterion for the decision of the decomposition level. If the
input signal is effectively decomposed, the residuals should contain all the noise of the
input signal; hence, the complexity of the residuals should be the largest.

r = ∑
k

f (k)− x. (5)

This principle is described in Equation (5), where f (k) represents the IMF obtained by
VMD, x denotes the original signal, and k is the number of IMFs. Sample entropy [25] is
a widely used entropy-based method that quantifies the irregularity of signals by evalu-
ating the repeatability of a template; it is an effective measurement of signal complexity.
The larger the sample entropy of the residual, the higher the complexity of the residual
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term, and the more noise it contains. Hence, we can obtain a better decomposition effect of
the signal.

rs = ∑
i

∑
j

f (i, j)− x(i) (6)

In the case of multiple signals, the scenario can be extended as described in Equa-
tion (6), where x(i) represents the ith signal, and f (i, j) denotes the jth IMF of the ith signal.
The concept of residuals is further extended to accommodate multiple signals. We assume
there are multiple signals and that they are decomposed using the same decomposition
level. The residual of each signal is calculated using Equation (5). An effectively decom-
posed signal is anticipated to exhibit a large sample entropy for its residual. Consequently,
if all the signals are effectively decomposed, the sum of the sample entropies of their
residuals should be maximized. From this point forward, we utilize the sum of sample
entropies of the residuals from multiple signals to ascertain the appropriate decomposition
level for MVMD. Additionally, the penalty factor is another crucial parameter that signif-
icantly impacts the decomposition effectiveness. Different penalty factors yield varying
sample entropy values. Therefore, we calculate the sample entropy for different penalty
factors to identify the one that maximizes the entropy. The final decomposition outcome is
determined by both the chosen decomposition level and the optimal penalty factor.

In order to calculate the sample entropy, a specific range was defined for both the
decomposition level and the penalty factor with an enumeration of intervals. Considering
the significant time cost associated with this process, we set the range of the penalty factor
to (10, 5000) with an interval of 20, and the decomposition level was set to (1, 25) with an
interval of 1. For each parameter combination defined by the decomposition levels and
penalty factor, denoted as [k, α], we obtain IMFs through the MVMD process. Subsequently,
based on Equation (8), we aggregate the acquired IMFs and compute their difference from
the original signal to derive the residual term. We then calculate the sample entropy of this
residual term. Figure 1 illustrates the iterative process, where the yellow boxes represent a
series of sample entropies calculated for an individual k value with multiple α values, and
the red box indicates the maximum sample entropy for the current k value.

Figure 1. Search for the optimal decomposition level and the corresponding penalty factor.
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2.3. Combination of MVMD and TFT

The TFT partitions the inputs into three distinct parts: the past input, the future
input, and the static input, as illustrated in Figure 2. The past input can be represented as
X(t) = [Xt−w, . . . Xt], where the size of the look-back window is denoted by w. The future
input, denoted as x(t) = [xt+1, . . . xt+τ ], serves as a prior variable that resides within the
same temporal range as the predicted target. Here, τ represents the forecast step, indicating
the number of time units into the future that we aim to predict. The static input comprises
variables that are independent of time.

Figure 2. Architecture of the TFT.

The principle of the TFT is mainly composed of the following components:

(1) Gated residual network: The GRN is designed to control the flexibility of nonlinear
mapping in the model.

(2) Variable selection network: The VSN is designed to provide instance-wise vari-
able selection. It can learn the most salient input variable, which contributes to
the prediction problem. It provides access to static information that enhances the
weight-generation process.

(3) Attention mechanism: The TFT applies an average attention mechanism that prevents
the model from attending to different input features at different times and facilitates
the evaluation of the importance of instance-wise attention weights.

(4) Quantile loss: The TFT provides a distribution of possible future outcomes along with
point estimates through quantile output, and it is trained using quantile loss. In our
research, the quantile is set to {0.1, 0.5, 0.9}.

In order to enhance the ability of the TFT to simultaneously learn patterns from
multiple load series, we introduced a novel approach by substituting the load series in past
inputs with the results obtained from MVMD.

Figure 3 illustrates the integration of MVMD with the TFT. Consider a scenario with
C load series and s exogenous variables, each having a length of L. The decomposition
level of MVMD is set to k. After decomposition on the load series, a three-order matrix of
dimensions [C, k, L] is obtained. In order to incorporate the past known input using LSTM,
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the decomposition matrix is reshaped into [C × L, k]. By incorporating the exogenous
variables, the final input matrix size becomes [C × L, k + s].

Figure 3. Architecture of MVMD-TFT.

2.4. The Process of Optimizing MVMD-TFT Using WOA

The whale optimization algorithm (WOA) [26] is a nature-inspired optimization
algorithm that mimics the foraging behavior of whales to solve complex optimization
problems. The WOA introduces two strategies for position updates, which are intended to
occur with equal probability. It ensures the exploration and exploitation of the search space.

Strategy 1: Encircling prey. Suboptimal candidates update their positions based on
a pair of cross-correlation vectors. The mathematical expression describing this update
process is outlined in Equations (7) and (8):

X⃗(n + 1) = X⃗∗(n)− A⃗ · D⃗ (7)

X⃗(n + 1) =
−−→
Xrand(n)− A⃗ · D⃗ (8)

where n represents the current iterations, X⃗ represents the position of suboptimal candi-
dates, and X⃗∗ denotes the position of the current optimal candidate. Vector A⃗, D⃗ denotes
the coefficient vectors. The algorithm incorporates a random foraging strategy, which is
related to the norm of A⃗. If |A⃗| > 1, the position of the current optimal candidate is re-
placed with a randomly generated vector, and the remaining candidates are updated using
Equation (8), with

−−→
Xrand denoting a randomly generated vector. Otherwise, Equation (7) is

employed for updating.
Strategy 2: Bubble-net attacking method:

X⃗(n + 1) = |X⃗∗(n)− X⃗(n)| · eβl · cos(2πl) +
−→
X∗(n). (9)

The suboptimal candidates update their position by calculating the distance be-
tween themselves and the optimal candidate. The mathematical expression is presented
in Equation (9), where l represents a random number between [−1, 1] and β denotes a
constant related to helicity.

Figure 4 depicts the process of optimizing MVMD-TFT hyperparameters with the
WOA over one iteration. Initially, we establish the population size and boundary conditions,
from which we derive the initial values of solution candidates. Subsequently, we feed the
hyperparameter sets represented by each candidate into the TFT model for training, thereby
acquiring the quantile loss specific to each individual. Based on the results of quantile loss,
we determine the current optimal individual and randomly select the strategy to update
the candidates.
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Figure 4. The procedure for MVMD-TFT optimization through the WOA.

3. Results and Discussion
3.1. Experimental Setup

The environment used in this experiment is TensorFlow 2.5, Python 3.8, and a single
RTX2080Ti. We implemented the Python version of MVMD by referring to vmdPy and
MVMD source code.

3.2. Data Preprocessing

The datasets utilized in this study were obtained from BCHydro [27], encompassing
the hourly electricity consumption of 28 residential customers. The consumption data span
3 years. The meteorological data from neighboring weather stations was also incorporated.
The temporal boundaries for energy consumption data vary among the 28 buildings in the
original dataset, making it impractical to use the entire dataset for training purposes. In
order to ensure the selection of appropriate buildings and time frames from the original
dataset, we applied the following criteria:

(1) In order to minimize the missing values within the selected time range, we have
stipulated that the proportion of missing values for all variables employed in model
training within the specified time range be less than 0.5%. Variables exceeding this
missing value threshold were excluded from consideration. In order to facilitate a
comparison between LSTM and CNN-LSTM, we opted for two non-overlapping
time ranges. One time range spans approximately 3 months (1 November 2017 to
29 January 2018) (Case A), similar to [7], while the second time range encompasses
roughly 16 months (26 June 2016 to 30 October 2017) (Case B).

(2) The meteorological data for the selected buildings all originate from the same weather
station. Additionally, each building is accompanied by its corresponding descriptive
information. Buildings that have incomplete descriptions are excluded from the
analysis. Following the aforementioned criteria, Case A comprises 14 buildings, while
Case B includes 10 buildings.

For cases A and B, we applied a consistent data processing methodology, which can be
summarized as follows. For Case A, we first aggregated the data from different buildings.
Next, we added the “building_id” feature to distinguish the load of different buildings.
For the data from each building, we constructed training, validation, and test sets in an
8:1:1 ratio. Then, we performed MVMD decomposition on the load part of these three
parts of the data separately. After that, we processed the training set of each building
based on “building_id” using Equation (10) and obtained the corresponding maximum and
minimum values. We then normalized the test set and validation set using the maximum
and minimum values obtained from the training set.

Table 1 presents the variables that were selected as inputs for our model, taking into
consideration the criteria based on the number of missing values.

Min − Max Scaler(x) =
x − min(x)

max(x)− min(x)
(10)
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Table 1. Variables input for the TFT.

Variable Datatype Description

building_id Category Identification of buildings
RUs Category The number of rental suites in the house

facing Category What direction the house is facing
housetype Category House types

weather Category A textual description of the type of weather
day Category Day of the week

weekend Category Boolean value to indicate weekend
hour Category Hour of the recording, from 1 to 24

temperature Continuous Outside ambient temperature in degrees Celsius (°C)
humidity Continuous Outside humidity in percentage (%)
pressure Continuous Atmospheric pressure in kilopascals (kPa)

energy_Kwh Continuous Hourly consumption (kWh)

3.3. Entropy Computation Results of MVMD

Figure 5 displays the results of residual sample entropy obtained by selecting the
optimal penalty factor α for two training set cases (red boxes in Figure 1). We find that the
residual sample entropy of Case B is lower than that of Case A, implying that the signal
patterns in Case B are more intricate, resulting in lower residual complexity.

Figure 5. Maximum residual entropy in different decomposition levels.

Figure 6 illustrates the impact of different penalty factors on residual sample entropy
(yellow boxes in Figure 1) for the same decomposition level. We selected five decomposition
levels for analysis based on their highest residual sample entropy. The introduction of the
penalty factor leads to complexity in the pattern of residual sample entropy. Specifically,
we observe pronounced fluctuations in residual sample entropy for higher decomposition
levels under varying penalty factors, for instance, in Case A, when the decomposition
level was set to 24, and in Case B, when the decomposition level was set to 21, 22, and 19.
These fluctuations gradually diminish as the penalty factor increases, eventually reaching a
relatively stable state. Based on these findings, for Case A, the decomposition level was
set to 9, with a corresponding penalty factor of 170. For Case B, the decomposition level
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was set to 21, with a corresponding penalty factor of 4230. The initial center frequency of
MVMD is initialized using a uniform distribution, and the tolerance level is set to 1 × 10−6.

For the test set and validation set, we similarly obtained their optimal penalty factors
based on Figure 1 while maintaining the same number of decomposition levels as the
training set. The penalty factors for the validation set and test set in Case A were set as
1230 and 1240, respectively. For Case B, the penalty factors for the validation set and test
set were set as 3410 and 4030, respectively.

Figure 6. Relationship between the penalty factor and sample entropy of the residual.

3.4. Optimization Results Using WOA

In order to enhance the performance of the MVMD-TFT model, we employed the
WOA to optimize its hyperparameters. In this paper, we set the population size and number
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of iterations for the WOA to 10, taking into account the significant computational cost
associated with the TFT training.

Figure 7 shows the optimal value obtained in each iteration from the WOA. In case A,
during 10 iterations, the quantile loss was only optimized once, and the difference between
the optimized loss and the previous loss was relatively small. In Case B, the quantile
loss was optimized five times, with the resulting loss being lower than that of Case A.
The hyperparameters of the optimized MVMD-TFT and corresponding search range are
shown in Table 2.

Figure 7. WOA optimization for the MVMD-TFT .
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Table 2. Optimized hyperparameters for the MVMD-TFT.

Hyperparameter Case A Case B Search Range

batch size 108 16 [4, 128]
hidden layer size 27 19 [5, 100]
number of heads 1 1 [1, 4]

learning rate 0.002 0.001 [0.0001, 0.01]
dropout rate 0.209 0.134 [0.1, 0.9]

max gradient norm 0.093 0.883 [0.1, 1]

3.5. Interpretability of MVMD-TFT

The TFT gives the interpretability between the input and output variables through the
calculation in VSN. The results are presented in Figures 8–10.

Figure 8. Variable importance of past inputs.
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Figure 8 illustrates the weight distribution of VSN in past inputs, indicating that
the IMFs obtained from MVMD emerge as a crucial factor, demonstrating a notable level
of significance. Figure 9 illustrates the weight distribution of the VSN in future inputs,
highlighting the significant roles played by the time indicators ‘day’ and ‘hour’. Figure 10
presents the weight distribution of the VSN in static inputs, emphasizing ‘building_id’ as
the most prominent feature.

Figure 9. Variable importance of future variables.
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Figure 10. Variable importance of static variables.

3.6. Model Evaluation

For performance comparisons, we employed LSTM [6], CNN-LSTM, [7] and BiGRU-
CNN [28]. A distinct model was trained for each building using these methods. In order
to ensure consistency with the reference, we adopted the original preprocessing method,
which involved representing the time indicator using one-hot encoding. The input for these
models consisted of both time indicators and load series, enabling a comprehensive analysis
of their predictive capabilities. Additionally, we conducted a comparative analysis with
separately trained MVMD-LSTM and MVMD-CNN-LSTM models to further substantiate
the efficacy of our method. The implementation of these standalone models followed the
methodology outlined in [29], employing LSTM and CNN-LSTM architectures for the pre-
diction of the IMFs and the subsequent reconstruction of the predicted signals. Concerning
the CNN-LSTM-based, LSTM-based, and BiGRU-CNN models, we incorporated one of
the lag inputs specified in [7]. Specifically, we configured it to 12. As a preliminary trial
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for the TFT and MVMD-TFT models, we utilized 24 lag inputs. Table 3 displays other
configurations of the models.

Table 3. Model configuration.

Model Description

MVMD-TFT (epochs = 50, patience = 5, loss = ‘quantile’)

TFT (epochs = 50, patience = 5, loss = ‘quantile’, unit = 20, batch size = 54, number of heads = 4)

LSTM same as [6] (epochs = 300, patience = 30, loss = ‘MAE’)

CNN-LSTM same as [7] (epochs = 300, patience = 30, loss = ‘MAE’)

BiGRU-CNN same as [28] (epochs = 300, patience = 30, loss = ‘MAE’, units = 20, filter = 20)

MVMD-LSTM same as [6] (epochs = 300, patience = 30, loss = ‘MAE’)

MVMD-CNN-LSTM same as [7] (epochs = 300, patience = 30, loss = ‘MAE’)

As our data contain both outliers and stable points, we utilized Equations (11)–(14)
to evaluate the performance of the models, where yi represents the actual value, and ŷi
denotes the predicted value. MAE and MSE are the two most commonly used metrics in
predictive problems, with MSE being more sensitive to outliers relative to MAE. MedAE
serves as a robust measure of the variability of deviation of the observed values from the
predict values. Additionally, we introduce WAPE to measure the percentage difference
between actual and predicted values, as our data contain zeros, making this metric an
alternative to MAPE. These four metrics provide different perspectives on the model’s
performance. All methods exhibit a prediction horizon of 1, meaning that the predicted
results correspond to the consumption data for the next hour. We made the original building
name more concise by simplifying ‘Residential_’ to ‘R’.

MAE =
1
N

ΣN
i=1|yi − ŷi| (11)

MSE =
1
N

ΣN
i=1(yi − ŷi)

2 (12)

WAPE =
ΣN

i=1|yi − ŷi|
ΣN

i=1|yi|
(13)

MedAE = median(|y1 − ŷ1|, . . . , |yi − ŷi|) (14)

Table 4 illustrates the prediction errors associated with Case A on the test set. The re-
sults show that the introduction of MVMD yielded substantial improvements in the per-
formance of the CNN-LSTM, LSTM, and TFT models. A consistent decrease in all metrics
shows this enhancement. Figure 11 depicts the corresponding prediction outcomes of
‘R11’ and ‘R24’ in Table 4, where the TFT and MVMD-TFT employ median forecasting.
Table 5 illustrates the four loss function outcomes for Case B on the test set. We can derive
similar conclusions to those of Case A when the dataset expands. It is worth noting that
certain buildings, such as R13 and R5, demonstrate elevated MSE values that surpass the
corresponding MAE values. After undergoing MVMD and subsequent prediction, it is
observed that the MSE decreases to a level smaller than that of the MAE. This reveals that
the implementation of MVMD preprocessing effectively attenuates the deleterious impact
of outliers on predictive outcomes. Figure 12 aligns with the predictions of ‘R15’ and ‘R22’
outlined in Table 4.
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Table 4. Evaluation metrics of different methods in Case A.

Building
Name Metric MVMD-

TFT TFT LSTM CNN-
LSTM

MVMD-
LSTM

MVMD-
CNN-
LSTM

BiGRU-
CNN

R3

MAE (kWh) 0.095 0.294 0.245 0.268 0.109 0.128 0.319
MSE (kWh)2 0.016 0.272 0.211 0.243 0.023 0.034 0.372
WAPE (%) 10.2 31.5 26.3 28.8 11.7 13.7 34.2
MedAE (kWh) 0.073 0.138 0.111 0.116 0.101 0.085 0.115

R4

MAE (kWh) 0.128 0.370 0.358 0.389 0.137 0.157 0.365
MSE (kWh)2 0.030 0.303 0.294 0.312 0.037 0.047 0.295
WAPE (%) 7.5 21.9 21.2 23.0 8.2 9.3 21.7
MedAE (kWh) 0.108 0.246 0.228 0.280 0.101 0.112 0.236

R5

MAE (kWh) 0.127 0.376 0.395 0.417 0.140 0.178 0.399
MSE (kWh)2 0.031 0.433 0.469 0.544 0.045 0.070 0.532
WAPE (%) 13.3 39.2 41.3 43.5 14.6 18.6 41.7
MedAE (kWh) 0.090 0.166 0.174 0.196 0.101 0.115 0.177

R6

MAE (kWh) 0.044 0.131 0.129 0.139 0.049 0.083 0.131
MSE (kWh)2 0.003 0.042 0.043 0.046 0.004 0.012 0.046
WAPE (%) 9.1 26.9 26.5 28.7 10.1 17.2 26.9
MedAE (kWh) 0.036 0.081 0.072 0.086 0.038 0.065 0.073

R9

MAE (kWh) 0.089 0.182 0.159 0.187 0.109 0.122 0.176
MSE (kWh)2 0.015 0.088 0.080 0.109 0.023 0.023 0.090
WAPE (%) 13.2 27.0 23.5 27.7 16.1 18.1 26.0
MedAE (kWh) 0.065 0.093 0.072 0.091 0.080 0.115 0.083

R10
MAE (kWh) 0.111 0.273 0.293 0.315 0.133 0.147 0.384
MSE (kWh)2 0.033 0.308 0.331 0.337 0.043 0.056 0.486
WAPE (%) 16.7 41.1 44.0 47.3 20.0 22.0 57.7
MedAE (kWh) 0.075 0.115 0.110 0.139 0.092 0.089 0.184

R11
MAE (kWh) 0.077 0.209 0.195 0.217 0.081 0.091 0.218
MSE (kWh)2 0.011 0.111 0.112 0.126 0.012 0.015 0.134
WAPE (%) 13.7 36.9 34.5 38.3 14.4 16.2 38.5
MedAE (kWh) 0.056 0.123 0.102 0.087 0.069 0.073 0.097

R13
MAE (kWh) 0.121 0.363 0.325 0.332 0.113 0.152 0.383
MSE (kWh)2 0.027 0.371 0.330 0.360 0.025 0.043 0.409
WAPE (%) 10.1 30.3 27.1 27.8 9.4 12.7 32.0
MedAE (kWh) 0.101 0.182 0.159 0.104 0.093 0.130 0.170

R14
MAE (kWh) 0.107 0.374 0.395 0.446 0.136 0.159 0.402
MSE (kWh)2 0.020 0.322 0.337 0.382 0.035 0.041 0.360
WAPE (%) 6.7 23.6 24.8 28.1 8.6 10.0 25.3
MedAE (kWh) 0.085 0.232 0.264 0.316 0.096 0.122 0.250

R19
MAE (kWh) 0.123 0.386 0.346 0.342 0.120 0.139 0.367
MSE (kWh)2 0.025 0.264 0.252 0.241 0.025 0.033 0.272
WAPE (%) 6.1 18.9 17.0 16.8 5.9 6.8 18.0
MedAE (kWh) 0.095 0.299 0.250 0.231 0.103 0.106 0.258

R20
MAE (kWh) 0.115 0.333 0.322 0.294 0.119 0.135 0.343
MSE (kWh)2 0.021 0.273 0.247 0.191 0.028 0.036 0.283
WAPE (%) 9.1 26.2 24.7 23.1 9.3 10.6 27.0
MedAE (kWh) 0.100 0.181 0.185 0.179 0.077 0.099 0.205

R21
MAE (kWh) 0.049 0.124 0.127 0.139 0.053 0.078 0.124
MSE (kWh)2 0.005 0.070 0.074 0.079 0.008 0.015 0.074
WAPE (%) 16.9 42.8 44.6 48.2 18.5 26.9 42.9
MedAE (kWh) 0.033 0.059 0.067 0.053 0.034 0.054 0.056
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Table 4. Cont.

Building
Name Metric MVMD-

TFT TFT LSTM CNN-
LSTM

MVMD-
LSTM

MVMD-
CNN-
LSTM

BiGRU-
CNN

R24
MAE (kWh) 0.060 0.185 0.174 0.196 0.094 0.116 0.187
MSE (kWh)2 0.009 0.115 0.116 0.126 0.026 0.033 0.118
WAPE (%) 11.6 35.7 33.6 37.7 18.2 22.3 36.1
MedAE (kWh) 0.037 0.094 0.079 0.102 0.062 0.080 0.108

R25
MAE (kWh) 0.089 0.246 0.252 0.303 0.119 0.155 0.236
MSE (kWh)2 0.014 0.231 0.253 0.271 0.031 0.052 0.240
WAPE (%) 14.2 39.5 40.4 48.5 19.1 24.8 37.9
MedAE (kWh) 0.071 0.118 0.122 0.161 0.083 0.103 0.093

The bold represent the best performance.

Table 5. Evaluation metrics of different methods in Case B.

Building
Name Metric MVMD-

TFT TFT LSTM CNN-
LSTM

MVMD-
LSTM

MVMD-
CNN-
LSTM

BiGRU-
CNN

R4

MAE (kWh) 0.070 0.304 0.314 0.329 0.079 0.150 0.323
MSE (kWh)2 0.008 0.206 0.212 0.229 0.010 0.038 0.227
WAPE (%) 5.6 24.4 25.1 26.4 6.3 12.0 25.9
MedAE (kWh) 0.058 0.199 0.196 0.214 0.066 0.114 0.197

R5

MAE(kWh) 0.084 0.335 0.365 0.385 0.098 0.168 0.377
MSE (kWh)2 0.012 0.403 0.457 0.518 0.018 0.058 0.482
WAPE (%) 10.6 42.2 46.0 48.5 12.3 21.1 47.6
MedAE (kWh) 0.062 0.127 0.135 0.127 0.075 0.120 0.137

R6

MAE (kWh) 0.028 0.115 0.103 0.103 0.028 0.048 0.112
MSE (kWh)2 0.002 0.041 0.040 0.038 0.001 0.005 0.047
WAPE (%) 8.6 34.9 31.4 31.9 8.4 14.6 34.0
MedAE (kWh) 0.022 0.062 0.039 0.043 0.021 0.035 0.041

R9

MAE (kWh) 0.048 0.186 0.186 0.187 0.060 0.100 0.193
MSE (kWh)2 0.004 0.119 0.121 0.133 0.007 0.024 0.136
WAPE (%) 7.9 30.5 30.5 30.7 9.8 16.5 31.7
MedAE (kWh) 0.036 0.078 0.075 0.069 0.045 0.066 0.078

R10

MAE (kWh) 0.062 0.228 0.228 0.243 0.066 0.106 0.237
MSE (kWh)2 0.007 0.207 0.210 0.251 0.008 0.028 0.233
WAPE (%) 10.4 38.5 38.6 41.0 11.1 17.9 40.0
MedAE (kWh) 0.043 0.098 0.097 0.084 0.051 0.068 0.085

R13

MAE (kWh) 0.083 0.295 0.333 0.364 0.098 0.160 0.337
MSE (kWh)2 0.011 0.315 0.358 0.431 0.017 0.045 0.403
WAPE (%) 8.3 29.3 33.3 36.2 9.7 16.0 33.5
MedAE (kWh) 0.069 0.109 0.145 0.147 0.076 0.131 0.128

R14

MAE (kWh) 0.084 0.372 0.371 0.385 0.085 0.162 0.382
MSE (kWh)2 0.014 0.390 0.387 0.417 0.016 0.058 0.412
WAPE (%) 5.2 23.1 23.0 23.9 5.3 10.1 23.7
MedAE (kWh) 0.065 0.194 0.186 0.209 0.062 0.130 0.191

R15

MAE (kWh) 0.161 0.643 0.512 0.552 0.332 0.321 0.611
MSE (kWh)2 0.056 1.700 1.418 1.428 0.230 0.231 1.723
WAPE (%) 13.6 54.4 44.3 46.7 28.1 27.2 51.7
MedAE (kWh) 0.094 0.216 0.166 0.196 0.200 0.204 0.219
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Table 5. Cont.

Building
Name Metric MVMD-

TFT TFT LSTM CNN-
LSTM

MVMD-
LSTM

MVMD-
CNN-
LSTM

BiGRU-
CNN

R20

MAE (kWh) 0.055 0.258 0.257 0.272 0.062 0.101 0.268
MSE (kWh)2 0.005 0.181 0.178 0.205 0.007 0.022 0.200
WAPE (%) 6.2 29.1 29.0 30.7 7.0 11.4 30.2
MedAE (kWh) 0.044 0.148 0.146 0.148 0.046 0.073 0.140

R22

MAE (kWh) 0.060 0.245 0.210 0.205 0.084 0.105 0.213
MSE (kWh)2 0.008 0.210 0.235 0.235 0.015 0.024 0.245
WAPE (%) 17.2 69.9 59.9 58.5 24.2 30.1 60.7
MedAE (kWh) 0.041 0.135 0.066 0.059 0.062 0.079 0.062

The bold represent the best performance.

Figure 11. Forecasting results for Case A (22 January 2018 00:00:00 to 29 January 2018 23:00:00).

The results in Tables 4 and 5 reveal a similarity in the experimental outcomes between
the MVMD-based models. In order to establish the statistical significance of the results
displayed in Tables 4 and 5, we introduce the Friedman and post-hoc Nemenyi tests [30]
to assess the differences among various models for evaluation. The null hypothesis of the
Friedman test is that there is no difference among all comparison methods in the 24 datasets
of Case A and Case B. We set the p-value to be 0.05. If the calculation result of the Friedman
test is less than 0.05, the null hypothesis is rejected; otherwise, it indicates a difference
between the methods. Furthermore, to assess the performance between pairwise models,
we introduced the Nemenyi post-hoc test. This test launches a comparison between a
threshold (critical difference) and the difference in average rankings of the performance.
If the ranking difference is lower than the threshold, it is considered that there is no
significant difference in performance between the pairwise models. On the contrary, there
is a significant performance difference between them. The evaluation metric of the Nemenyi
test is MAE.
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Figure 12. Forecasting results for Case B (14 September 2017 00:00:00 to 31 October 2017 23:00:00).

After performing the calculations on 24 datasets, we obtained a p-value of 5.3 × 10−19

for the Friedman test. This is significantly lower than the preset threshold of 0.05, indicating
a significant difference in performance among the seven methods.

Figure 13 displays the results of the Nemenyi post-hoc tests, with a calculated CD value
of 1.84. The results of the Nemenyi tests indicate that there are no significant differences
in the performances of the CNN-LSTM, TFT, LSTM, and BiGRU-CNN. In the case of the
MVMD-TFT, it shows differences with all non-MVMD-based methods. Based on the results
from Tables 4 and 5, our method achieved an average reduction of 69.9% in MAE for
an individually trained CNN-LSTM and BiGRU-CNN, as well as a 67.7% reduction in
MAE for an individually trained LSTM. Although no significant performance differences
were detected for the MVMD-based methods, the proposed method demonstrated the best
performance in the current experiment.

Figure 13. Nemenyi post-hoc test (p-value (calculated by Friedman test) = 5.3 × 10−19).
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One of the important features of the TFT is that it provides a distribution of possible
future outcomes along with point estimates, which is valuable for understanding the
uncertainty associated with each prediction. Given that our model utilizes a quantile set
of (0.1, 0.5, 0.9), the TFT produces a prediction interval of 80%. Figure 14 presents both
the median prediction results and their associated 80% prediction interval in two chosen
buildings where peak values are observed. The results reflect the last 8 days from the
entire test set. The proposed model attains a narrower prediction interval than the original
method and is more likely to encompass peak values.

q-Risk =
2Σi,tQL(yi, ŷi, q)

Σi,t|yi|
(15)

In order to perform a thorough assessment of the quantile forecast, we utilized the P50
loss and P90 loss, as specified in [31] and described in Equation (15). In the context of the
8-day evaluation, the test set comprises a total of 192 data points. Equation (15) is applied
to compute the q-Risk value for each data point in the 1-hour-ahead forecast. Consequently,
the average quantile loss for the 192 points was derived.

Figure 14. Quantile prediction results of the MVMD-TFT and TFT. Case A (R25) (22 January 2018
00:00:00 to 29 January 2018 23:00:00). Case B (R22) (24 October 2017 00:00:00 to 31 October 2017
23:00:00).

Table 6 showcases the average q-Risk value for the forecast of the MVMD-TFT and TFT
across all points in both cases. The results show that our method yields 75.9% lower P90 loss
and 65.8% lower P50 loss on average, providing additional evidence for the effectiveness of
our method.

Although our method has successfully produced accurate predictions in two instances,
it is burdened by substantial time-related limitations that cannot be ignored. This deficiency
is particularly evident in the WOA, where the computational demands of the TFT impose
limitations on the selection of optimal initial parameters for the WOA. Consequently,
the convergence of the WOA is insufficient, with the magnitude of this flaw becoming
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increasingly apparent as the dataset size and model complexity grow. Moreover, our
method incorporates MVMD, which requires substantial time in data preprocessing to
ascertain the most appropriate parameters. The determination of the parameters of the
two cases together is approximately seven days. These limitations underscore the need
for further improvements in our approach to address the substantial time constraints
associated with the optimization process for the TFT and MVMD.

Table 6. Average q-Risk value.

Metric Case A Case B

MVMD-TFT TFT MVMD-TFT TFT
P50 loss 0.104 0.271 0.094 0.315
P90 loss 0.048 0.172 0.043 0.213

4. Conclusions

In this paper, we propose a novel MVMD-WOA-TFT hybrid model for accurate
hourly load consumption forecasting across multiple houses. MVMD is leveraged to
decompose the original load series into multiple IMFs. This enables the extraction of
shared characteristics from various load series, thereby assisting the TFT in comprehend-
ing the underlying patterns and relationships among different load sequences. In order
to select a suitable decomposition level and penalty factors for MVMD, we employed
a method that maximizes the sum of the residual sample entropy, as a higher entropy
signifies a better decomposition by capturing more noise in the residual. Subsequently,
we partitioned the dataset into training, validation, and test sets and performed separate
decompositions on each. The WOA was employed to determine the hyperparameters of
the MVMD-TFT model, improving its overall performance. We used separately trained
LSTM, CNN-LSTM, BiGRU-CNN, MVMD-LSTM, and MVMD-CNN-LSTM models for
performance comparisons. Our approach exhibits competitive performance compared
to MVMD-LSTM and MVMD-CNN-LSTM for the 24 datasets, but it achieved excellent
performance with the non-MVMD method. Our method achieved an average reduction
of 69.9% for CNN-LSTM and BiGRU-CNN, as well as a 67.7% reduction for LSTM in
MAE. We conducted additional evaluations on quantile predictions for the TFT, achieving
an average improvement of 65.8% at 0.5 risk and 75.9% at 0.9 risk. However, it is worth
noting that the three processes (MVMD, WOA, and TFT) involved in our methodology
entail a high computational cost. Additionally, our study only focused on 1-hour-ahead
prediction and utilized fixed lag inputs to examine the prediction accuracy. Research is
warranted to examine the influence of lag inputs and variations in the prediction range
on the performance of the model.
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Abbreviations
The following abbreviations are used in this manuscript:

AdaBoost Adaptive boosting
ADMM Alternating direction method of multipliers
ARIMA Autoregressive integrated moving average
BiGRU Bidirectional Gated recurrent unit network
BiLSTM Bidirectional long short-term memory network
CD Critical Difference
CNN Convolutional neural network
DBSCAN Density-based spatial clustering of applications with noise
EEMD Ensemble empirical mode decomposition
ELM Extreme learning machine
EMD Empirical mode decomposition
EWT Empirical wavelet transform
GRU Gated recurrent unit network
IMF Intrinsic mode function
LSSVM Least squared support vector machine
LSTM Long short-term memory network
MAE Mean absolute error
MAPE Mean absolute percentage error
MedAE Median absolute error
MLR Multiple linear regression
MSE Mean squared error
MVMD Multivariate variational mode decomposition
RNN Recurrent neural network
SVR Support vector regression
TFT Temporal fusion transformer
VMD Variational mode decomposition
VSN Variable selection network
WAPE Weighted average percentage error
XGBoost Extreme gradient boosting
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