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Abstract: Climate change poses a significant threat to humanity. Achieving net-zero emissions is
a key goal in many countries. Among various energy resources, solar power generation is one of
the prominent renewable energy sources. Previous studies have demonstrated that post-processing
techniques such as bias correction can enhance the accuracy of solar power forecasting based on
numerical weather prediction (NWP) models. To improve the post-processing technique, this study
proposes a new day-ahead forecasting framework that integrates weather research and forecasting
solar (WRF-Solar) irradiances and the total solar power generation measurements for five cities
in northern, central, and southern Taiwan. The WRF-Solar irradiances generated by the Taiwan
Central Weather Bureau (CWB) were first subjected to bias correction using the decaying average
(DA) method. Then, the effectiveness of this correction method was verified, which led to an
improvement of 22% in the forecasting capability from the WRF-Solar model. Subsequently, the
WRF-Solar irradiances after bias correction using the DA method were utilized as inputs into the
transformer model to predict the day-ahead total solar power generation. The experimental results
demonstrate that the application of bias-corrected WRF-Solar irradiances enhances the accuracy
of day-ahead solar power forecasts by 15% compared with experiments conducted without bias
correction. These findings highlight the necessity of correcting numerical weather predictions to
improve the accuracy of solar power forecasts.

Keywords: bias correction; solar irradiance prediction; decaying average; solar power forecasting

1. Introduction

Under the concept of reducing global warming and promoting zero-carbon emissions,
the development of new energy sources and energy conservation has become a significant
topic for many countries. Due to limited natural resources, Taiwan currently relies on
imports for 97% of its energy supply. To achieve energy autonomy and diversification,
the primary goal in Taiwan is to develop self-generated energy and decentralized energy
sources. Taiwan is located in the subtropical zone with high solar irradiances, so it is a
suitable area to develop solar power generation.

Solar power generation is highly correlated with solar irradiance, and a numerical
weather prediction (NWP) model to estimate solar irradiance is significant for solar power
forecasting [1]. The most advanced NWP model designed for solar energy is WRF-Solar, a
mesoscale professional meteorological model based on the weather research and forecasting
(WRF) model [2,3]. It is specifically designed to provide resource assessment and solar
power forecasts [4–6]. Although the WRF-Solar model has made numerous improvements
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and optimizations to the parameterization process of WRF irradiances, it does not con-
sider the effect of dynamic aerosol processes on solar irradiance [7]. In other words, an
incomplete understanding of the dynamical laws of weather events would hinder accurate
predictions. Under a clear sky, aerosols directly affect the forecasting accuracy of global
horizontal irradiance (GHI) and direct normal irradiance, making them the largest source of
uncertainty [8]. Therefore, improving the forecasting accuracy of aerosol optical thickness
under clear sky conditions is crucial [9,10]. While the meteorological parameters of a
specific region can be investigated using specialized meteorological instruments, collect-
ing meteorological data worldwide is currently not feasible. Therefore, data-driven and
machine learning (ML) approaches for NWP bias correction have become an important
trend [11].

The bias correction of deterministic predictions by WRF-Solar is a critical aspect that
needs to be addressed, especially to ensure a high accuracy on GHI forecasts. Accurate GHI
predictions are essential for the widespread adoption of grid-connected photovoltaic (PV)
installations. For deterministic forecasting models, two commonly used post-processing
methods for bias correction are model output statistics (MOS) and Kalman filtering. MOS,
initially introduced by the National Weather Service in the United States, aims to reduce
bias in an NWP output model through post-processing [12]. The major concept of MOS is to
represent the bias in NWP forecasts with a regression function. Once a regression function
is fitted, it can be used to predict the bias. To enhance the solar irradiance forecasts made by
NWP models, various regression methods have been employed, such as multivariate linear
regressions with stepwise variable selection [13–15], probability-based distributions [16,17],
and other bias correction techniques. That is, there are numerous options for regression
methods. Many data-driven or ML methods can be combined with regression functions
for bias correction. One approach utilized a clear-sky model with an artificial neural
network to correct the GHI in the integrated forecasting system [18]. Additionally, an
optimization method based on extreme-learning machines was applied to predict the
missing values in a solar irradiance dataset, achieving a high forecasting accuracy [19]. The
ν-support vector regression was utilized to enhance ML-based methods for day-ahead
solar irradiance prediction, and the results showed a great improvement compared with the
Japan Meteorological Agency mesoscale model [20]. The ML methods described so far have
followed the concept of shallow network learning models for correction and prediction.
However, these shallow network models provide poor methods for feature selection, which
cannot handle the high complexity of extensive datasets. Consequently, this drives more
advanced and promising correction and prediction methods.

Deep learning (DL), a subfield of ML, has garnered rapid popularity in recent years
owing to hardware and software advancements. Notably, the self-attention mechanism
of DL enables it to automatically discern and capture long-range dependencies within a
sequence during processing [21]. This empowers DL models to grasp contextual nuances
and intricate patterns within a sequence, rendering it suitable for tasks in natural-language
processing and sequence modeling [22]. As a result, numerous self-attention-based network
models have been further developed to improve the forecasting accuracy of solar irradiance.
Noteworthy examples include the robust self-attention multi-horizon model based on
the transformer model [23], the spatial and temporal attention-based neural network in
conjunction with federated learning techniques [24], and the Informer model [25]. However,
such a self-attention mechanism has drawbacks, including its complexity, large resource
demands, and computational costs, which hinder its scalability and efficiency, especially in
resource-constrained environments.

In contrast to the batch post-processing approach of MOS, Kalman filtering is another
sequential method for post-processing. It has been a significant engineering concept for
various scientific fields, including solar energy applications [26–28]. Among the different
variants of Kalman filtering, the decaying average (DA) method applies the principles
of Kalman filtering and utilizes a simple mathematical approach to calculate the system-
atic bias correction in the model. Up to now, solar energy applications using the DA
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method are few in the literature, although they have been applied in the context of surface
temperature [29,30], daily maximum temperature [31], rainfall [32], and wind speed [33].
Nevertheless, they have been formally implemented in online ensemble forecasts by the Na-
tional Centers for Environmental Prediction and the Meteorological Service of Canada [34].
These studies have demonstrated the success of the DA method to improve NWP forecasts,
rendering them more accurate and aligned with actual forecasting operations. The DA
method provides the advantage of adaptively capturing short-term variations by assigning
greater weights to the recent data, rendering it suitable for real-time applications and
non-stationary data. It does not need substantial historical data for calibration [35]. Due to
its simplicity and reduced risk of overfitting, many works have further enhanced the com-
putational efficiency of the DA method and achieved rapid adaptation to data trends [36].
Some research works have explored its potential applications in the field of renewable
energy [37–39]. Although the DA method has been employed to correct weather forecasts,
it still has a largely unexplored potential to forecast solar power generation.

To resolve the above-mentioned research gaps, this paper proposes a comprehensive
solar power forecasting procedure that integrates NWP correction. The novelty of this
study lies in the development of a DA method based on the Kalman filter; additionally, this
method refines daily raw solar irradiance forecasts obtained by the WRF-Solar forecasting
model developed by the Taiwan Central Weather Bureau (CWB). To validate the efficiency
of the post-processing method, WRF-Solar irradiance forecasts at five cities spanning
different latitudes and longitudes were collected with the aim to verify the applicability of
the DA method across diverse geographical regions. Additionally, this study compared
the performance between the DA method and the transformer model for WRF-Solar bias
correction. In collaboration with PV sites in five cities, the PV power generation data from
local PV sites were also aggregated. The bias-corrected WRF-Solar irradiances were then
combined with the total solar power generation to obtain day-ahead total solar power
deterministic forecasts. The operational viability of this forecasting framework has been
successfully demonstrated in this paper. The content of this paper includes the following
main items:

1. The Pearson correlation analysis was used to select representative meteorological sites
in five cities. These cities are located in northern, central, and southern Taiwan.

2. An analysis of the discrepancy between the WRF-Solar irradiances and the observed
solar irradiances was carried out at the selected meteorological sites in each city.

3. The development of a post-processing algorithm using the DA method was proposed.
It considers WRF-Solar irradiance forecasts as inputs to generate day-ahead bias-
corrected WRF-Solar irradiance forecasts at five cities. This study implemented the
validation and comparison for the outputs of the WRF-Solar model using the DA
method, the original WRF-Solar forecast model, or the transformer model. In addition,
this study utilized diverse performance evaluation metrics, including mean error (ME)
and root-mean-square error (RMSE).

4. The WRF-Solar model, after undergoing post-processing with the DA method, was
combined with the total solar power generation at each city to predict solar power
generation. It aims to generate day-ahead total power generation forecasts. Subse-
quently, these forecasting results were validated and compared against the results
using the original WRF-Solar forecast model and the transformer model with several
performance evaluation metrics, including RMSE, normalized RMSE (nRMSE), mean
absolute error (MAE), mean absolute percentage error (MAPE), and R-squared (R2).

The paper is divided into four sections: Section 1 is the introduction; Section 2 describes
the WRF-Solar prediction model and the two post-processing algorithms; Section 3 presents
the forecasting results and analyses; Section 4 discusses the results of the review; and
Section 5 draws the conclusions.
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2. Methods

The framework of this study is presented in Figure 1 and is divided into three main
parts. In the first part, the WRF-Solar meteorological sites at the five cities were selected
using Pearson correlation analysis. That is, representative WRF-Solar meteorological sites
were subsequently selected at each city based on their correlations with the total solar
power generation. Figure 2 displays the number of WRF-Solar meteorological sites and
solar power sites at each of the five cities. From northern to southern Taiwan, there are
four WRF-Solar meteorological sites in Taoyuan, ten sites in Taichung, seven sites in Tainan,
five sites in Kaohsiung, and nine sites in Pingtung. As for PV power stations, Taoyuan,
Taichung, Tainan, Kaohsiung, and Pingtung include 30, 14, 18, 21, and 14 sites, respectively.
The historical data recorded from the WRF-Solar meteorological sites and PV power stations
cover the period from January to December 2019. The second part of Figure 1 shows that
the representative WRF-Solar irradiances at each city were further corrected for bias using
the DA method. The corrected performance was subsequently compared with that of the
transformer model. The third part of Figure 1 shows that the bias-corrected WRF-Solar
irradiances obtained through the DA method were combined with the total solar power
generation for PV power forecasts. The transformer model was then employed to generate
day-ahead deterministic forecasts. Additionally, the corrected performance was compared
against the day-ahead deterministic forecasts generated by the transformer model using
bias-corrected WRF-Solar irradiances.
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Figure 1. Scheme of the WRF-Solar irradiance bias correction and one-day-ahead solar power
generation forecasting model.

In the second part, the bias-correction method for wind speeds described in our
previous study [33] was used for bias correction for the WRF-Solar irradiances. The
previous study employed the DA method to enhance the WRF ensemble wind speed
forecasts in Taiwan. However, in this study, the weighting coefficients were predefined in
the DA method for the solar power application (these weighting coefficients are introduced
in Section 2.2) and set the training window for WRF-Solar irradiances at approximately
two months. This approach aims to emphasize the weighting of error samples around
the analyzed time. Consequently, in this study, a fixed weighting coefficient of 0.06 was
designed for the DA method, which corresponds to a two-month training period. To
evaluate the adaptability of using the DA method across various geographical regions
and seasons, WRF-Solar irradiances at five cities were collected and validated in spring
(May), summer (August), and winter (December) to evaluate the performance after the
bias-correction technique. The transformer model was used to compare the bias-correction
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performance with the DA method. Therefore, the training period for the transformer model
was set to two months, the same as the DA method.
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In the third part, the training model obtained in the second part with a two-month
period was utilized to predict the total solar power generation. The bias-corrected WRF-
Solar irradiances obtained using the DA method or the transformer model were then used
as inputs into the transformer model to predict day-ahead solar power generation. This
process aims to generate a day-ahead forecast for total solar power generation. Likewise,
the transformer model was employed to forecast day-ahead total solar power generation
by utilizing the bias-corrected WRF-Solar irradiances obtained from the transformer model
itself. The following section introduces the theory of WRF-Solar, the DA method, and the
transformer model.

2.1. Numerical Weather Prediction Modeling Systems–WRF-Solar

In this study, the bias correction of WRF-Solar irradiances and solar power generation
forecasts was performed using the WRF-Solar model developed by Taiwan CWB. The
WRF-Solar model is specialized to provide solar irradiances for various applications. The
WRF-Solar model is based on version 4.3 of the community WRF model [2,3] with one-way
nested domains. The horizontal grid spacing of the coarse and nested domains is equal to 15
and 3 km, respectively (Figure 3), and the vertical levels of the atmosphere are in 52 layers.
The WRF-Solar model employs standardized modules that are designed specifically for
solar energy applications [4–6]. Physical parameterization of the WRF-Solar model includes
the Kain–Fritsch cumulus parameterization with a new trigger function [40], the Goddard
5-class scheme for microphysical parameterization [41], the Yonsei University scheme for
boundary layer parameterization [42], the RRTMG scheme for long/short-wave irradiation
parameterization [43], the Monin–Obukhov scheme for surface parameterization, and the
NOAH soil model with four soil layers [44]. Additionally, dynamical parameters are config-
ured using a Eulerian mass dynamical core, Runge–Kutta third order for time integration,
evaluation of a second-order diffusion term on coordinate surfaces for turbulence and
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mixing, and horizontal Smagorinsky first-order closure. Finally, the model of the config-
ured WRF-Solar generates solar irradiance forecasts initialized at 0000/0600/1200/1800
Coordinated Universal Time (UTC) for each day, with each forecast providing a 120 h
prediction at hourly intervals.
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For the collection of day-ahead WRF-Solar irradiances, the 1200 UTC updated solar
irradiance data from the WRF-Solar model were selected for concatenation, as shown in
Figure 4. Because the initialization of running a WRF-Solar model requires a 6 h preparation
time, the initial 6 h of WRF-Solar irradiances were deleted. Furthermore, because the time
format of the WRF-Solar model used is based on UTC, the time zone needed to be converted
to the Taiwan time zone (UTC + 8). Consequently, the starting time of the collected WRF-
Solar irradiances was set at 2:00 a.m. for each day.
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2.2. DA Bias Correction

The DA method employs an adaptive algorithm, which is a straightforward mathe-
matical method for the bias correction of WRF-Solar irradiances. This method uses both
WRF-Solar irradiances and actual observed solar irradiances to establish the training model.
The application of the DA algorithm involves three main steps: estimation of forecasting
errors, estimation of systematic bias, and bias correction [29,33,34].

Step 1. Calculate the model prediction error (bt) by the difference between the WRF-
Solar irradiances ( ft) and the corresponding observed solar irradiances (o) at the same
time horizon.

bt = ft − o (1)

Step 2. Compute the systematic bias (Bt) utilizing a weight coefficient (w) including the
cumulative systematic bias (bt−1) and prediction error (bt−1).

Bt = (1 − w)× Bt−1 + w × bt−1 (2)

Step 3. Obtain the bias-corrected WRF-Solar irradiances (Ft), which are derived based on
the difference between the WRF-Solar irradiances and the systematic bias.

Ft = ft − Bt (3)

2.3. Transformer Model

The transformer model is an architecture with neural networks initially developed
for natural language translation that has gained widespread applications in various do-
mains [22]. Unlike recursive or convolutional models, the transformer model utilizes an
attention mechanism to capture global information [21]. The model consists of two essen-
tial components, the encoder and the decoder, as shown in Figure 5. The encoder aims
to encode the input sequence. It consists of multiple stacked encoder layers, which are
structurally identical but do not share parameters between layers. Each encoder layer
contains two sub-layers: a fully connected feedforward layer and a multi-head attention
(MHA) layer. The encoder aims to extract key spatial information from WRF-Solar irradi-
ances. Subsequently, this key spatial information is input into the decoder. The decoder
decodes the output sequence from the encoder. Similar to the encoder, it consists of a stack
of N identical decoder layers. The distinction between encoder and decoder is that the
decoder includes a masked MHA layer preceding the MHA layer. The masking prevents
the predicted input from influencing subsequent positions. In this study, the SoftMax
layer that originally appeared in the decoder was removed because this study focused
on deterministic predictions instead of probabilistic predictions [45]. The decoder com-
bines the potential spatial WRF-Solar irradiances from the encoder to predict day-ahead
WRF-Solar irradiance. Furthermore, in this study, the WRF-Solar irradiances corrected
by the DA method or the transformer model were utilized for solar power generation
forecasting via a transformer model. The input of the transformer model encoder was
changed from the uncorrected WRF-Solar irradiances to the corrected WRF-Solar irradi-
ances. Moreover, the corrected WRF-Solar irradiances were further encoded and were
used as the input of the decoder. Finally, the decoder was used to forecast the total power
generation using the corrected WRF-Solar irradiances. In this study, the transformer model
consists of two layers at both encoder and decoder with a dimension of 64 (typical default
value) in the input layer and a multi-head attention (the head number is two). The com-
puter employed in this study was equipped with an Intel Core i9-9900K processor (Intel,
Santa Clara, CA, USA), an NVIDIA RTX 2080Ti GPU (NVIDIA, Santa Clara, CA, USA),
and 64GB of RAM. The transformer model was executed using Python software (Python
3.6) with Keras (version 2.10.0), TensorFlow(version 2.6.2), and Sklearn libraries (version
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0.24.2), where identical hyperparameters were applied across all experiments to maintain a
fair result.
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3. Results
3.1. Pearson Correlation Analysis

The representative meteorological sites at each city were selected based on their
highest correlation with the total solar power generation using Pearson correlation analysis.
The following representative meteorological sites at the five cities were identified: Maobitou
meteorological site for Pingtung county, Meinong meteorological site for Kaohsiung county,
Haoying meteorological site for Tainan county, Datou meteorological site for Taichung
county, and Pingzhen meteorological site for Taoyuan county. The correlation coefficients
between the observed solar irradiances and the total PV power generation at each city
were 0.8539, 0.8823, 0.9019, 0.86, and 0.872, respectively, as illustrated in Figure 6a–e.
Moreover, in this study, the WRF-Solar irradiances at the five cities were further bias-
corrected.



Energies 2024, 17, 88 9 of 17
Energies 2024, 17, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 6. Pearson correlation analysis of WRF-Solar meteorological sites and total solar power gener-
ation in (a) Pingtung, (b) Kaohsiung, (c) Tainan, (d) Taichung, and (e) Taoyuan cities in Taiwan. 

  

Figure 6. Pearson correlation analysis of WRF-Solar meteorological sites and total solar power
generation in (a) Pingtung, (b) Kaohsiung, (c) Tainan, (d) Taichung, and (e) Taoyuan cities in Taiwan.



Energies 2024, 17, 88 10 of 17

3.2. Bias Correction for WRF-Solar Irradiances

It is important to understand the ME and probability density function (PDF) bias
level of the representative WRF-Solar irradiances and the observed solar irradiances at the
five cities, as shown in Figure 7a–j. The results indicate that the WRF-Solar irradiances in
Taoyuan in December are comparable to the observed solar irradiances, with an average
ME of 3.46 W/m2. Additionally, the PDF shows an overestimation for low solar irradiances
and an underestimation for high solar irradiances, as shown in Figure 7i,j. Moreover, both
the ME (Figure 7a,c,e,g,i) and PDF (Figure 7b,d,f,h,j) clearly demonstrate that the generated
WRF-Solar irradiances at the cities of Pingtung, Kaohsiung, Tainan, and Taichung were
consistently overestimated in May, August, and December. This indicates that WRF-Solar
irradiances must be corrected for the forecasting biases.

In this study, the DA method was employed for the bias correction of the WRF-
Solar irradiances, and the performance of its correction is presented in Table 1, which
demonstrates that at the five cities, using the DA method achieved an improvement in the
WRF-Solar irradiances during the three validation months. The RMSE index is reduced
from the uncorrected solar irradiance of 137.91 W/m2 to the corrected solar irradiance of
107.94 W/m2, which causes a reduction in error of 22%. Except for Taoyuan in December,
using the DA method did not result in an improvement. As shown in Table 1, after
the bias correction with the DA method, the forecasting accuracy of solar irradiance is
reduced by 2.5%. This discrepancy could be attributed to the nature of the DA method,
which accumulates systematic errors over the past two months to correct for bias on the
validation date. In cases when the correction bias in the validation month is smaller but the
correction bias in the preceding two months is larger, it could cause an inability to correct
the validation data. However, for most areas and seasons, bias correction using the DA
method does improve the accuracy of solar irradiances from the WRF-Solar.

Table 1. The RMSE and error reduction rate of the WRF-Solar irradiance after bias correction using
methods 1, 2, and 3 in five cities.

City Months
Before

Bias Correction
RMSE (W/m2)

After Bias Correction

DA Method Transformer Model

RMSE
(W/m2)

Reduced
(%)

RMSE
(W/m2)

Reduced
(%)

Pingtung
May 182.09 172.06 5.51 162.16 10.94

August 243.77 237.41 2.61 227.65 6.61
December 143.97 130.83 9.13 112.40 21.93

Kaohsiung
May 227.48 213.58 6.11 212.91 6.41

August 227.45 217.70 4.29 195.51 14.04
December 143.28 122.14 14.75 96.91 32.36

Tainan
May 210.56 201.78 4.17 190.21 9.67

August 204.14 202.98 0.57 202.29 0.91
December 127.47 117.71 7.66 94.86 25.58

Taichung
May 222.96 181.48 18.60 168.39 24.48

August 212.20 195.48 7.88 179.06 15.62
December 137.91 107.94 21.73 102.68 25.55

Taoyuan
May 257.42 205.40 20.21 174.32 32.28

August 247.47 223.16 9.82 191.24 22.72
December 158.39 162.37 −2.51 128.32 18.98

To further investigate the reason for the low accuracy in a particular month in Taoyuan,
this study analyzed the differences between the WRF-Solar irradiances and observed solar
irradiances. Figure 8 shows the bias levels between the WRF-Solar irradiances and observed
solar irradiances, as measured with ME (Figure 8a) and PDF (Figure 8b), in October and
November in Taoyuan. It shows that the WRF-Solar irradiances at 2:00 p.m. and 3:00 p.m.
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in October and November are overestimated, with an average ME of 29.81 W/m2 and
22.80 W/m2 in October and November, respectively, which causes a low accuracy using
the DA method. These observations emphasize the limitations of using the DA method.
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In northern Taiwan, the winter season typically begins around December, leading to
a large influence of the northeast monsoon. As a result, the temperature gradually drops
with the strengthening of the northeast winds. In winter, the average solar irradiance
is reduced. To enhance the effectiveness of the DA bias correction method, future work
will focus on resolving the observed systematic bias at meteorological sites in northern
Taiwan. Therefore, the update on the outputs of the WRF-Solar model will be increased
or the accumulated time of the systematic biases will be reduced. Those strategies aim
to mitigate the impact of previously accumulated systematic biases on the following
forecasts. Furthermore, it is expected that the DA method will be improved by incorporating
additional meteorological variables, such as wind direction, wind speed, temperature, and
humidity, into the training model. In addition, the use of AI algorithms is expected to obtain
a comprehensive relationship between surface solar irradiances and three-dimensional
meteorological variables. Thus, these AI algorithms could provide another appropriate
solution to improve the outputs of the WRF-Solar model.

To make a comparison with the DA method, the bias correction of the WRF-Solar
irradiances was also performed using a transformer model. As shown in Table 1, the
transformer model used mostly outperforms the DA method for the performance of bias
correction. However, at some cities, the DA method outperformed the transformer model
in specific months, such as Kaohsiung in May and Tainan in August. Additionally, in terms
of calculation speed, the DA method operated in 4.4 s, while the transformer model needs
119.4 s. Thus, the runtime cost clearly highlights the advantages of the DA method, aligning
with its simplicity and enhanced computational efficiency [36].

3.3. Solar Power Generation Forecasting

The WRF-Solar irradiances at the five cities, with or without bias correction with the
DA method, were input into the transformer model to predict day-ahead solar power
generation in the validation months. Tables 2 and 3 illustrate that the accuracy of the total
solar power generation forecasts for the three validation months at the five cities can be
effectively improved by 15.5% when the DA method is applied for bias correction. The
exception case appears in Taoyuan, where the accuracy of power generation forecasting
in December is worse than that using uncorrected WRF-Solar irradiances, as indicated in
Table 3. This phenomenon was caused owing to the limitation of the bias correction of
WRF-Solar irradiances, as previously discussed in Section 3.2. That is, the limitation of
the bias correction would affect the accuracy of solar power forecasts. It also reaffirms
the strong positive correlation between the accuracy of WRF-Solar irradiance and PV
power forecasting.

To make a comparison with the solar power forecasts using the DA method, bias-
corrected WRF-Solar irradiances obtained via the transformer model were also employed to
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make one-day-ahead forecasts of total solar power generation. The results in Tables 2 and 3
show an improvement in the accuracy of the WRF-Solar irradiances using the transformer
model. However, even though the WRF-Solar irradiances corrected with the transformer
model are closer to the observed solar irradiances, there is no substantial enhancement in
the total power generation forecasting, because the total power generation was forecasted
based on the observed solar irradiances from the representative meteorological sites rather
than the sites of specific power plants. The solar power plants are located in diverse
geographical areas within the city, while the climatic conditions would be different at
the representative meteorological sites. As a result, there will be estimation errors for
solar irradiances.

Table 2. The one-day-ahead forecast results of total solar power generation in Pingtung, Kaohsiung,
Tainan, and Taichung using WRF-Solar irradiance with and without bias correction.

City Months Methods RMSE (W) nRMSE (%) MAE (W) MAPE (%) R2 (%)

Pingtung

May
Before bias correction 2118.87 13.29 1287.14 8.07 79.44

DA method 1957.19 12.28 1207.37 7.57 82.45
Transformer model 1849.35 11.60 1185.52 7.44 84.33

August
Before bias correction 2227.58 14.65 1692.58 11.13 72.17

DA method 2154.01 14.17 1623.41 11.02 73.98
Transformer model 2118.61 13.93 1611.56 10.68 74.82

December
Before bias correction 1698.62 13.90 1223.60 10.02 75.28

DA method 1604.67 13.14 1178.58 9.65 77.94
Transformer model 1555.35 12.73 1091.10 8.93 79.27

Kaohsiung

May
Before bias correction 4226.87 14.23 2946.49 9.92 78.37

DA method 4100.81 13.81 2725.49 9.18 79.64
Transformer model 3830.50 12.90 2652.42 8.93 82.23

August
Before bias correction 4469.14 15.28 3347.43 11.45 72.23

DA method 4438.45 15.18 2991.87 10.23 72.61
Transformer model 4036.69 13.80 2721.62 9.31 77.34

December
Before bias correction 2677.56 11.32 1735.40 7.34 84.86

DA method 2261.43 9.56 1480.10 6.26 89.20
Transformer model 2082.34 8.80 1454.93 6.15 90.85

Tainan

May
Before bias correction 4193.26 12.42 2715.35 8.04 81.06

DA method 4042.27 11.97 2625.39 7.77 82.40
Transformer model 3338.59 9.89 2477.87 7.34 88.00

August
Before bias correction 4640.92 15.08 3131.87 10.18 73.59

DA method 4414.95 14.34 3064.75 9.96 76.10
Transformer model 3859.47 12.54 2805.88 9.12 81.74

December
Before bias correction 2966.53 11.28 2212.21 8.41 84.21

DA method 2962.36 11.26 2084.70 7.92 84.25
Transformer model 2470.29 9.39 1665.25 6.33 89.05

Taichung

May
Before bias correction 5571.37 15.22 3566.67 9.74 71.32

DA method 5328.13 14.55 3628.38 9.91 73.77
Transformer model 4353.12 11.89 3001.43 8.20 82.49

August
Before bias correction 5857.03 16.21 4538.94 12.57 63.46

DA method 5782.84 16.01 4537.32 12.56 64.38
Transformer model 5563.80 15.40 4233.96 11.72 67.03

December
Before bias correction 3984.67 12.66 2772.05 8.81 81.20

DA method 3652.22 11.60 2643.75 8.40 84.21
Transformer model 3577.11 11.36 2633.85 8.37 84.84
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Table 3. The one-day-ahead forecast results of total solar power generation in Taoyuan using WRF-
Solar irradiance with and without bias correction.

City Months Methods RMSE (W) nRMSE (%) MAE (W) MAPE (%) R2 (%)

Taoyuan

May
Before bias correction 7528.52 15.40 4662.42 9.54 70.84

DA method 6924.99 14.17 4643.39 9.50 75.33
Transformer model 5463.58 11.18 3697.08 7.56 84.64

August
Before bias correction 4941.93 10.33 3531.97 7.38 86.22

DA method 4849.74 10.14 3423.61 7.16 86.73
Transformer model 4243.30 8.87 3346.17 7.00 89.84

December
Before bias correction 4478.30 11.72 3078.46 8.06 68.44

DA method 5320.82 13.93 3833.73 10.04 55.45
Transformer model 4365.33 11.43 2934.81 7.68 70.01

In summary, the use of the WRF-Solar model is effective to estimate total power
generation when WRF-Solar irradiances are bias-corrected successfully using the DA
method. This highlights the necessity of the bias correction technique for WRF-Solar and
reaffirms the viability of the DA method. The primary contribution of this study is to apply
the DA method to bias-correct WRF-Solar irradiances and then use the result of the WRF-
Solar corrections for solar power generation forecasting. It improves on the disadvantages
of the previous literature, which focused only on the bias correction of meteorological
factors without further considering renewable power forecasting.

4. Discussion

This study employed the DA method to correct and refine the output of the WRF-Solar
model and utilized the bias correction of solar irradiances to input the forecasting model for
the day-ahead forecasting of solar power generation. The DA method has demonstrated
its effectiveness in correcting other meteorological parameters such as temperature, wind
speed, etc. [29–33]. However, it is noteworthy that the performance of this method was not
validated for solar irradiance before. Nevertheless, this paper successfully demonstrates
the application of the DA method on the bias correction of the solar irradiances from the
WRF-Solar model, which identifies several gaps in our current knowledge.

Furthermore, the reliability of solar power generation forecasts is attributed to the
WRF-Solar model produced by Taiwan CWB. The model provides valuable solar irradiances
with the highest horizontal resolution of 3 km and a lead time of 120 h for deterministic
forecasts, and the predicted solar irradiances are updated four times daily. Then, the output
from the WRF-Solar model serves as input for the day-ahead forecasting of solar power
generation. This paper explores how the WRF-Solar model can be used to provide useful
and valuable weather forecasts for solar power forecasts in Taiwan.

Regarding the limitations of the DA method, the main constraint comes from its
statistical nature, because the DA method relies on historical data. As a result, it may
exhibit limitations in accurately predicting extreme weather events that could occur in the
future. This is a significant limitation of using the DA method. To deal with short-term
extreme weather events, such as a rapid change in solar irradiances or wind speeds, it is
recommended to use a new NWP model to replace the DA method. This NWP model
can combine its outputs with real-time observations to update the forecast quickly. In
other words, the new NWP model can update the output rapidly and generate a short-
term weather forecast for the next 12 h. Furthermore, utilizing AI-related algorithms can
also provide post-processing products and apply to various weather forecasts. These
AI algorithms can train the forecasting model through a long-term three-dimensional
meteorological dataset and combine NWP forecasts with real-time observations to improve
forecasting accuracy.
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5. Conclusions

In this study, a comprehensive framework for day-ahead solar power generation
forecasts has been proposed. The primary contribution of this paper is to introduce a novel
application using the DA method to correct WRF-Solar irradiances across five distinct
geographic locations and different seasons. Moreover, the corrected WRF-Solar irradiances
were combined with total solar power generation to generate deterministic day-ahead total
solar power forecasting. The aforementioned procedures were compared with a trans-
former model to assess the effectiveness of using the DA method for WRF-Solar irradiance
correction and solar power forecasts. The developed framework has been validated across
five cities in Taiwan, covering diverse geographic regions (north, central, and south) and
seasonal variations (spring, summer, and winter), yielding outstanding results.

The results after bias correction demonstrate that the DA method effectively corrects
the WRF-Solar irradiances, improving the accuracy of WRF-Solar irradiances (with a
22% reduction in error) and reducing computational time from 119.4 s to 4.4 s. Notably,
although the DA method provided acceptable bias corrections in most cases, it could not
fully correct the bias due to its systematic bias accumulation, which presents a limit to using
this method. Nevertheless, the advantage of its simplicity should not be underestimated.
The results of day-ahead solar power generation forecasts show that the bias correction
of WRF-Solar irradiances through the DA method enhances the forecasting accuracy by
15.5%. In conclusion, this study highlights the significance of bias correction in WRF-Solar
irradiances to improve solar power generation forecasts.

Author Contributions: Conceptualization, C.-L.H. and Y.-K.W.; methodology, C.-L.H. and Y.-K.W.;
software, C.-L.H.; validation, Y.-K.W. and Y.-Y.L.; formal analysis, C.-L.H.; investigation, C.-L.H.;
resources, C.-L.H., Y.-K.W., C.-C.T. and J.-S.H.; writing—original draft preparation, C.-L.H., Y.-K.W.,
and Y.-Y.L.; writing—review and editing, Y.-K.W.; supervision, Y.-K.W. and Y.-Y.L.; project adminis-
tration, Y.-K.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work is financially supported by the Ministry of Science and Technology (MOST) of
Taiwan under the grant MOST 108-3116-F-194-001- and the project title: Development of Renewable
Power Forecasting Technique Combing Numerical Weather Prediction and Artificial Intelligence.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

NWP Numerical weather prediction
WRF-Solar Weather research and forecasting solar
WRF Weather research and forecasting
CWB Central Weather Bureau
DA Decaying average
GHI Global horizontal irradiance
PV Photovoltaic
MOS Model output statistics
ML Machine learning
DL Deep learning
ME Mean error
RMSE Root-mean-square error
nRMSE Normalized root-mean-square error
MAE Mean absolute error
MAPE Mean absolute percentage error
R2 R-squared
UTC Coordinated Universal Time
MHA Multi-head attention
PDF Probability density function
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