
Citation: Santamaria-Bonfil, G.;

Arroyo-Figueroa, G.; Zuniga-Garcia,

M.A.; Azcarraga Ramos, C.G.; Bassam,

A. Power Transformer Fault Detection:

A Comparison of Standard Machine

Learning and autoML Approaches.

Energies 2024, 17, 77. https://doi.org/

10.3390/en17010077

Academic Editor: Ahmed Abu-Siada

Received: 25 November 2023

Revised: 8 December 2023

Accepted: 10 December 2023

Published: 22 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Power Transformer Fault Detection: A Comparison of Standard
Machine Learning and autoML Approaches
Guillermo Santamaria-Bonfil 1 , Gustavo Arroyo-Figueroa 2,* , Miguel A. Zuniga-Garcia 3,
Carlos Gustavo Azcarraga Ramos 2 and Ali Bassam 4

1 Data Portfolio Manager Department, BBVA Mexico, Mexico City 06600, Mexico;
guillermo.santamaria@bbva.com

2 Instituto Nacional de Electricidad y Energias Limpias, Cuernavaca 62490, Mexico; carlos.azcarraga@ineel.mx
3 PCI Energy Solutions, Norman, OK 73072, USA; miguel.zugar@gmail.com
4 Facultad de Ingeniería, Universidad Autónoma de Yucatán, Merida 97000, Mexico; baali@correo.uady.mx
* Correspondence: garroyo@ineel.mx; Tel.: +52-7773623820

Abstract: A key component for the performance, availability, and reliability of power grids is the
power transformer. Although power transformers are very reliable assets, the early detection of
incipient degradation mechanisms is very important to preventing failures that may shorten their
residual life. In this work, a comparative analysis of standard machine learning (ML) algorithms (such
as single and ensemble classification algorithms) and automatic machine learning (autoML) classifiers
is presented for the fault diagnosis of power transformers. The goal of this research is to determine
whether fully automated ML approaches are better or worse than traditional ML frameworks that
require a human in the loop (such as a data scientist) to identify transformer faults from dissolved gas
analysis results. The methodology uses a transformer fault database (TDB) gathered from specialized
databases and technical literature. Fault data were processed using the Duval pentagon diagnosis
approach and user–expert knowledge. Parameters from both single and ensemble classifiers were
optimized through standard machine learning procedures. The results showed that the best-suited
algorithm to tackle the problem is a robust, automatic machine learning classifier model, followed by
standard algorithms, such as neural networks and stacking ensembles. These results highlight the
ability of a robust, automatic machine learning model to handle unbalanced power transformer fault
datasets with high accuracy, requiring minimum tuning effort by electrical experts. We also emphasize
that identifying the most probable transformer fault condition will reduce the time required to find
and solve a fault.

Keywords: transformer fault diagnosis; machine learning; automatic machine learning;
power systems

1. Introduction

Power transformers are key components for transmission and distribution grids.
Although transformers are very reliable assets, the early detection of incipient degradation
mechanisms is very important to prevent failures that may shorten their life span [1–3].
The life cycle management of the power transformers is composed of several stages, such
as transformer specifications, erection, commissioning, operation, maintenance, and end-
of-life operations. In particular, for the last two stages, it is of paramount importance to
have suitable tools for assessing a power transformer’s condition. Economic consequences
of a power transformer’s catastrophic failure include (i) costs for the lost transmission of
electricity and (ii) repairmen or substitution costs for the faulted power transformer, which
can vary according to the electrical system power level, substation topology, and technical
characteristics of the transformer. For example, consider the case of lost transmission
capability due to a single-phase transformer failure rated at 230 kV, 33 MVA, located
somewhere in Mexico. The economic impact is composed of (i) the costs of transmission

Energies 2024, 17, 77. https://doi.org/10.3390/en17010077 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17010077
https://doi.org/10.3390/en17010077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4302-4902
https://orcid.org/0000-0003-0764-045X
https://orcid.org/0000-0001-7526-6952
https://doi.org/10.3390/en17010077
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17010077?type=check_update&version=1

Energies 2024, 17, 77 2 of 22

loss, which rise up to USD 6,177,600 (since the cost for loss of transmission is around
2.6 USD/kWh in Mexico), and (ii) the direct costs, including a 72 h affectation window
(firefighting, damaged facilities’ repair, soil remediation operations, reserve transformer
testing and commissioning, and fitting all the substations’ and systems’ prior conditions)
with a direct cost around of USD 1,280,000. Therefore, grid operators and utilities require
tools that allow them to optimize their decision-making processes regarding transformer
repair, refurbishment, or replacement under the umbrella of costing, reliability, and safety
optimization [4–6].

Condition assessment (CA) is the process of identifying markers and indexes to de-
termine and quantify the degradation level of transformer components [1,7,8]. Power
transformer CA strategies include exhaustive electrical and physicochemical testing, online
and/or offline diagnosis techniques, analysis of the operation and maintenance parameters,
and the use of condition-based strategies supported by suitable standards and expert knowl-
edge. In fact, an expert assessment is the most effective but costly and time-consuming CA
strategy. It requires taking transformers offline and the participation of highly qualified
experts to carry out the analysis, increasing the process costs. Thus, utilities are look-
ing forward to more cost-effective CA strategies where few or zero expert interventions
are required.

One of the main steps of a transformer CA is the identification of faults through a
transformer fault diagnosis (TFD) procedure. The TFD focuses on the transformer insulation
system, whose integrity is fully related to transformer reliability [9,10]. The insulating
system is exposed to electrical, mechanical, and thermal stresses. These phenomena would
be considered normal if they were considered during the transformer’s design; otherwise,
they are considered abnormal. Among the abnormal behaviors are emergency overloading,
arc flashes, transient events, and thermal faults, to mention a few [11,12]. The transformer
insulation system has two main components: the insulating fluid (commonly mineral oil)
and the solid insulation (kraft paper, pressboard, and other materials). Oil plays a very
important role in providing highly reliable insulation characteristics and working as an
efficient coolant, removing the heat generated at the core and windings during transformer
operation [13]. Further, insulating oil analysis can provide important information regarding
transformer degradation and behavior at a very low cost, eliminating the need to carry out
expensive offline testing.

Transformer insulating oil is a petroleum-derived liquid that can be based on paraffinic,
naphthenic, naphthenic–aromatic, or aromatic hydrocarbons. No matter its structure,
insulating oil can be decomposed by abnormal stresses (discharges and heating), producing
dissolved byproduct gasses correlated to specific faults. Hence, dissolved gas analysis
(DGA) is a widely studied diagnostic technique for which many tools are already available.
These tools are based on the analysis of each byproduct gas, its concentration, and the
interrelationship between them. Among the most classical methods to diagnose oil samples
are the Rogers ratio, IEC ratio, Dornenburg ratio, key gas method, Duval triangles [2,12–16],
and Duval pentagons [4,17], to mention a few. Most of those methods are based on dissolved
gas ratio intervals that classify transformers into different faults. However, these methods
are prone to misinterpretations near the fault boundaries [15,16]. Furthermore, classical
DGA methods always identify a fault, even when there is not one; thus, expert assessment
is still required to accurately determine if there is a fault or not. On the other hand, coarse
DGA-based fault classification methods have a high accuracy rate but have poor usability,
whereas fine TFD can be used for decision-making, but its accuracy rate is lower [15]. In
general, to decide whether to remove, repair, or replace a transformer in the presence of
thermal faults, the fault severity must be determined [17]; thus, finer TFD is preferred. An
important avenue for TFD methods is machine learning (ML). Databased algorithms have
been proposed to improve TFD performance while avoiding the drawbacks mentioned
earlier. ML methods provide high flexibility: they are able to handle linear and nonlinear
relations, are robust to noise, do not necessarily require taking into account thermodynamic
phenomena, and provide high fault diagnosis performance [18]. ML algorithms that

Energies 2024, 17, 77 3 of 22

have been used for the TFD endeavor can be divided into supervised and unsupervised
approaches. Supervised ML employs different gas-in-oil ratios already diagnosed by
experts using chromatographic results, to build a function that relates those gas ratios with
transformer faults or normal or faulty status. Unsupervised approaches employ dissolved
gas data to cluster the transformers into groups whose gas ratios are similar to each other.
Nevertheless, an expert’s diagnosis is always required to assess the performance of the
models; thus, this study highlights the supervised approach. Most of the ML works applied
to the TFD problem cover one or more of the following steps:

1. ML algorithms: Several single classifiers have been used such as the artificial neu-
ral network (ANN) [1,12,13,15,19]; expert-guided ANN [15,20]; Bayes network [1];
decision tree (DT) [1,13]; extreme learning machine (ELM) [15]; K-nearest neighbors
(KNN) [1,12,13,19]; logical analysis of data (LDA) [21]; logistic (LR) and regularized
(LASSO) regression [13]; probabilistic neural network (PNN) [12,22]; softmax regres-
sion (SR) [15]; and support vector machine (SVM) [13,19]. Ensembles include boosting
and bagging [1,23]; eXtreme gradient boosting (XGBoost) [24]; stacked ANN [2]; and
even state-of-the-art algorithms such as few-shot learning with belief functions [5].

2. Data pre-processing methods: Several data transformations have been used such
as data binarization [21]; key [1,2,5,13,15,22,24] and custom gas ratios [2]; logarith-
mic transformation [1,2,13]; mean subtraction and normalization [2]; standardiza-
tion [1,2,13]; imputation of missing values using simple approaches [25]; dimensional-
ity reduction such as linear discriminant and principal components analyses [12], and
belief functions [5]; feature extraction such as genetic programming [19]; knowledge-
based transformations such as expert knowledge rules [15]; and oil–gas thermody-
namics [2].

3. TFD approach: The TFD problem has been posed as a binary classification (normal or
faulty transformer) [1,2,13,24]; as a multi-class classification with coarse [19,21] and
fine fault types [2,12,15,22,24]; and even diagnosing fault severity [5,12].

4. Classes Imbalance: Several strategies have been used for balancing, such as boot-
strap [19]; re-sampling the minority classes [13,15]; class subsetting [13,15]; and
assigning weight coefficients to the minority class [24].

5. Parameters optimization: Algorithm parameters have been optimized by hand [2]
and through trial and error [12]; exact methods such as grid search (GS) [13,20] and
mixed integer linear programming [21]; Bayesian methods [24]; and metaheuristics
such as the bat algorithm [22] and genetic and mind evolutionary algorithms [15].

6. Model overfitting assessment: The problem of overfitting the TFD classifiers has
been handled through the usage of classical [1,13,20] and stratified cross-validation
(s-CV) [24].

7. TFD Performance: Algorithms’ performance has been determined using the accuracy
percentage [1,2,5,12,13,15,19,21,22], confusion matrix [2,12,19], the area under receiver
operating characteristic (ROC) [1,2,13] and precision–recall (PR) [24] curves, and the
micro and macro F1-measure [24].

Even while many works have delved into the usage of ML algorithms for the TFD
problem, these present one or more shortfalls, such as (i) training and testing their methods
using small datasets; (ii) carrying out comparisons using only standard ML supervised
algorithms; (iii) considering only coarse fault types by setting aside fault severity (not to
mention that none of the reviewed works considered fault severity as defined by the Duval
pentagon method); and (iv) a lack of publicly available data. These issues stand in the way
of us obtaining a clear idea of which sequence of methods and algorithms provides the
best performance for the TFD problem. Also, it makes the reproducibility of the research
results difficult and hinders the deployment of ML solutions to solve the TFD problem of
real-world utilities.

The construction of high-performance ML pipelines, regardless of their application,
requires the involvement of data scientists and domain experts. This allows us to incorpo-
rate domain knowledge into the design of specialized ML pipelines (i.e., the sequence of

Energies 2024, 17, 77 4 of 22

data pre-processing, domain-driven feature selection and engineering, and optimized ML
models for a given problem [26]). However, the construction of specialized ML pipelines
using this approach is long-winded, expensive, complex, iterative, and based on trial
and error. This analysis (and the related works) reveals the difficulty associated with
operational process experts building intelligent models. These power systems experts
can be easily overrun by the selection and combination of ever-growing alternatives of
pre-processing methods, ML algorithms, and their parameter optimization, for the solution
of the TFD problem. Under these circumstances, the probability of obtaining a final ML
pipeline that behaves sub-optimally is higher [26,27]. Hence, there is a growing need to
provide power systems technicians with ML tools that can be used straightforwardly to
solve power systems problems (e.g., TFD). The approaches used for automatically (without
human intervention) and simultaneously obtaining a high-performing combination of data
pre-processing, learning algorithm(s), and a set of hyperparameters are branded automatic
machine learning (autoML) [27,28]. autoML comprises promising approaches that may be
used off the shelf for solving the TFD problem of real-world industries.

Therefore, in this work, we present a deep comparative analysis of a large and super-
vised ML algorithm pool composed of single, ensemble, and autoML classifiers applied
to the TFD problem. The purpose of this review is to compare algorithms’ performance
for the TFD problem under equal experimental settings, by (i) compiling and sharing
a transformer fault database (TDB) of the main dissolved gas data of 821 transformers,
and their corresponding diagnostics, (ii) using single and ensemble ML algorithms, as
well as state-of-the-art autoML frameworks, to solve the TFD problem, and (iii) solving a
real-world TFD multi-classification problem using, for the first time (to the best of authors’
knowledge), Duval pentagons’ fault and severity classes [29]. In doing so, this analysis
improves our comprehension of the ML approaches available for the TFD problem, and
it gives a view of how much automation can we expect for the TFD problem, particularly
when fault severity is taken into consideration.

The structure of this work is organized as follows: The introduction is presented in
the first section. The second section presents a detailed definition of materials and methods
used for comparative analysis of standard ML and autoML algorithms. The third section
outlines the results and discusses the outcomes obtained in the fault diagnosis of power
transformers. The conclusion of this work is shown in the fourth section.

2. Materials and Methods

The complete ML applied in the present work for the multi-class TFD problem is
presented in Figure 1. For comparison, we termed the part of the pipeline corresponding to
single and ensemble classifiers as the standard ML framework, and the part of the pipeline
corresponding to autoML as the autoML framework. Furthermore, we specify a shared
pipeline for both ML approaches. The overall ML system consists of five major sections:

1. Data recollection and labeling. In this step, we transformed dissolved gas-in-oil and
conducted corresponding diagnostics. We double-checked transformers’ diagnostics:
first using the Duval pentagons method to obtain the fault severity (if not available),
and then using the IEEE C57.104-2019 standard and expert validation to identify
normal operating transformers.

2. Initial pre-processing. In this step, we pre-processed gas-in-oil information using sev-
eral methods found in the literature, namely, the replacement of zero measurements,
natural logarithm escalation, and derivation of key gas ratios.

3. Data separation into training (i.e., Xtrain and Ytrain) and testing (i.e., Xtest and Ytest)
datasets. For this splitting, we considered the number of samples in each class, to
avoid leaving classes unrepresented in any of the datasets.

4. Training the ML system:

a. Standard ML framework. In this step, we carried out a second data pre-
processing stage, training, and parameter optimization. We optimized the

Energies 2024, 17, 77 5 of 22

parameters from single and ensemble classifiers using a grid search (GS) and
cross-validation (CV) procedures.

b. AutoML framework. In this step, the code automatically carried out a warm-
start procedure, additional data and feature pre-processing methods, classifier
optimization, and ensemble construction.

5. Measuring the test error using several multi-class performance measures. In this step,
we evaluated the algorithms comprehensively using several multi-class performance
measures such as the κ score, balanced accuracy, and the micro and macro F1-measure.

Energies 2023, 16, x FOR PEER REVIEW 5 of 23

2. Initial pre-processing. In this step, we pre-processed gas-in-oil information using sev-

eral methods found in the literature, namely, the replacement of zero measurements,

natural logarithm escalation, and derivation of key gas ratios.

3. Data separation into training (i.e., Xtrain and Ytrain) and testing (i.e., Xtest and Ytest)

datasets. For this splitting, we considered the number of samples in each class, to

avoid leaving classes unrepresented in any of the datasets.

4. Training the ML system:

a. Standard ML framework. In this step, we carried out a second data pre-pro-

cessing stage, training, and parameter optimization. We optimized the parame-

ters from single and ensemble classifiers using a grid search (GS) and cross-val-

idation (CV) procedures.

b. AutoML framework. In this step, the code automatically carried out a warm-

start procedure, additional data and feature pre-processing methods, classifier

optimization, and ensemble construction.

5. Measuring the test error using several multi-class performance measures. In this

step, we evaluated the algorithms comprehensively using several multi-class per-

formance measures such as the κ score, balanced accuracy, and the micro and macro

F1-measure.

Figure 1. ML methodology developed for the comparison of single, ensemble, and autoML classifi-

ers for the transformer fault classification problem.

Figure 1. ML methodology developed for the comparison of single, ensemble, and autoML classifiers
for the transformer fault classification problem.

2.1. DGA Data

In this work, we constructed a transformer fault database (TDB) comprising 821 sam-
ples using different bibliographic sources. These samples were obtained from a specialized
database and technical literature: from the International Council on Large Electric Systems
(CIGRE), from IEEE [16], technical papers [17,30–34], a CIGRE technical brochure [35], and
expert curation. For each transformer, we collected its five thermal hydrocarbon gases and,
when reported, their corresponding diagnostics. The collected gases were hydrogen (H2),
methane (CH4), ethane (C2H6), ethylene (C2H4), and acetylene (C2H2). When available,
we recovered the associated diagnostics from the bibliographic sources. Otherwise, we
obtained those by means of an analysis method. In this paper, we selected the Duval
pentagons as our analysis method [17,29] since it offers not only fault types but also the

Energies 2024, 17, 77 6 of 22

severity for thermal faults. It is important to note that, in some cases, this analysis method
was also used to confirm the literature-provided diagnostics.

According to [29], the Duval pentagons method first calculates the relative percentage
ratios by dividing the concentration of each gas by the total gas content (TGC). Then, the
five relative percentage gas ratios are plotted in their corresponding axis in the Duval
pentagon, yielding a non-regular five-sided polygon. The centroid of the irregular polygon
provides the first part of the diagnostic by indicating the region of the pentagon where it
is located. The diagnostic faults available (regions) in the first Duval pentagon are partial
discharges (PDs), low and high energy discharges (D1 and D2, respectively), thermal faults
involving temperatures less than 300 ◦C (T1), thermal faults with temperatures ranging
from 300 to 700 ◦C (T2), and thermal faults involving temperatures higher than 700 ◦C.
There is an additional region in the first pentagon called the stray gassing region (S), which
reveals another type of gas generation mechanism. Stray gassing is associated with relative
low temperatures, oxygen presence, and the chemical instability of oil molecules caused by
a previous hydrogen treatment, whose scope is the removal of impurities and undesirable
chemical structures in mineral oils. The second part of the Duval pentagons method allows
the user to refine the diagnostics by providing advanced thermal diagnostic options: high-
temperature thermal faults that occurs in oil only (T3-H), different temperature thermal
faults involving paper carbonization (T1-C, T2-C, and T3-C), and overheating (T1-O).

However, all the available classical TFD methods (including the Duval pentagon
method) always provide a diagnostic, despite gas concentrations perhaps being too low.
To avoid false positives, we used the IEEE C57.104-2019 standard [36] along with expert
experience to tag the corresponding transformers with a normal condition diagnostic in
these cases. The resulting class distribution for the TDB is shown in Table 1.

Table 1. Transformer fault class distribution.

Fault Type Freq. %

Normal condition 270 33
D1 78 10
D2 77 9
PD 23 3
S 83 11
T1-C 4 >1
T1-O 97 16
T2-C 23 3
T3-C 25 3
T3-H 97 12

2.2. Initial Pre-Processing of DGA Data

Before any TFD can be carried out, either with the standard ML or the autoML
framework, the TDB must be initially pre-processed. This pre-processing stage consists of
three steps: (i) the replacement of zero measurements, (ii) the scaling of measurement values
using the natural logarithm (ln) function, and (iii) the derivation of features from dissolved
gas ratios. The main reasons for carrying out an initial data pre-processing stage are two-
fold. On one hand, data pre-processing methods improve the performance of standard
ML frameworks for the TFD problem [1,2,5,13,15,22,24]. On the other hand, autoML
frameworks perform better at ML model selection and hyper-parameter optimization
(HPO) than the feature engineering (i.e., creation) and data pre-processing methods [26,37].
Furthermore, the selected autoML algorithm used in this work does not consider the pre-
processing methods used in the proposed pipeline, nor a feature engineering method that
can derive dissolved gas ratios from TDB sample measurements.

The initial pre-processing of DGA data was as follows: First, we considered gas
measurements with reported values of zero, as that is below the limit of detection of
the chemical procedure analysis. Thus, for the zero measurements, we assumed a small

Energies 2024, 17, 77 7 of 22

constant value for mathematical convenience (i.e., 1), or an even smaller constant for C2H2
(i.e., 0.1). Second, we scaled gas values using the natural logarithm function. This process is
widely suggested for scaling features with positively skewed distributions (i.e., heavy tails),
which improves their normality and reduces their variance [38]. Third, we conducted a
feature engineering process consisting of the estimation of different ratios from transformed
gas values. The relationship between fault types and proportions of dissolved gases in
the insulating system has been exploited in traditional DGA methods [9,24,30]. Therefore,
several relative ratios based on CH4, C2H6, C2H4, C2H2, and H2 were derived. We used
these relative ratios as derived features, which are shown in Table 2. In this table, THC
(total hydrocarbon content) is the sum of hydrocarbon gas contents, whereas TGC (total
gas content) is the total amount of dissolved gas content in the transformer oil.

Table 2. Features derived from dissolved gases.

Feature Name Definition Feature Name Definition

F1 H2 F13 CH4/THC
F2 CH4 F14 C2H2/THC
F3 C2H2 F15 C2H4/THC
F4 C2H4 F16 C2H6/THC
F5 C2H6 F17 CH4/H2
F6 THC = CH4 + C2H2 + C2H4 + C2H6 F18 C2H6/CH4
F7 TGC = H2 + THC F19 C2H4/CH4
F8 H2/TGC F20 C2H2/CH4
F9 CH4/TGC F21 C2H4/C2H6
F10 C2H2/TGC F22 C2H2/C2H6
F11 C2H4/TGC F23 C2H2/C2H4
F12 C2H6/TGC - -

2.3. Splitting Data and Training the ML System

Once data were initially prepared, we split them into training and testing datasets. For
this split, we considered the proportion of the classes, so each fault type was represented
in both datasets, training (Xtrain, Ytrain) and testing (Xtest, Ytest). The proportions used
for splitting the TDB were 70% for training and 30% for testing. Both subsets kept the
same class distribution ratios as in the full TDB, to assess classifiers’ performance with
imbalanced datasets. Afterwards, the ML systems were trained. Before delving into the
details of both ML frameworks (standard and autoML), it is worth mentioning that a
second stage of data pre-processing was considered to avoid carrying out the same data
pre-processing method (i.e., standardization) twice in the autoML approaches.

2.3.1. Standard ML Framework

The standard ML framework follows a classical pipeline: (i) data pre-processing,
(ii) selection of the classifier (either single or ensemble), and (iii) optimization of classifier
parameters (using a GS-CV procedure). To complete the data pre-processing treatment,
we standardized TDB gas measures by subtracting the mean and scaling values by their
variance. Next, we selected a classification algorithm, either a single (ANN, DT, Gaussian
processes (GPs), naive Bayes (NB), KNN, LR, and SVM) or an ensemble algorithm. The
main difference between single and ensemble classifiers is that the first produces a robust
model with a good generalization, whereas the second employs several instances of the
same classifier. Usually, the classifiers composing the ensemble perform slightly better than
a random classifier (e.g., by overfitting), and by using different combining strategies, a good
generalization is attained. Among the ensemble strategies are boosting (bagging classifier
(BC), histogram (HGB) and extreme (XGBoost) gradient boosting), bagging (random forest
(RF)), and stacking (SE). The stacked ensemble is a particular case where two or more
strong classifiers are sequentially chained. For this study, an ANN followed by SVM
was employed.

Energies 2024, 17, 77 8 of 22

Single and ensemble classifiers have been neatly discussed elsewhere; however, for
the sake of completeness, they are briefly detailed in Appendices A.1 and A.2, respectively.
Meanwhile, in Table 3, the parameters employed by single and ensemble classifiers are pre-
sented. The optimal values were estimated using a grid search cross-validation procedure
with k = 5 folds.

Table 3. Fault classification models’ parameters.

Model Parameter Value Range

Activation function SVM
ANN Hidden layer sizes 10–30

L2 regularization Linear, Radial
Learning rate (initial) 0.001–0.4

Base model SVM
C 10–30

BC Kernel Linear, Radial
γ 0.001–0.4

No. of models 10–100

Max. depth 2–20

DT Min. samples per leaf Obj. function 2–5
Gini, Entropy

Split strategy Best

L2 regularization 1–1.5

Learning rate 0.1–0.15
GB Max. iterations 100–200

Max. depth 2–5

GP Kernel RBF, Matern

K-neighbors 2–10
KNN Weight 2–10

p 1–3, 10

LR Penalty L2

NB Variance smoothing log10 (0 to −9)

Class weights Balanced, Balanced Sub-samples
No. of trees 200, 500

RF Max. depth 2, 3, 10
Max. features

√
f eatures

Obj. function Gini, Entropy

First model SVM
C 0.1–8

SE Kernel Linear
Second model NB

Variance smoothing 1 × 10−9

Kernel Linear, Radial
SVM C 0.1, 0.5, 1

γ 1
no. f eatures σ , 1

no. f eatures
ε 0.25–0.4

2.3.2. AutoML Framework

AutoML tools are frameworks whose main purpose is to make ML available for people
who are not ML experts. Among these tools, we selected the auto-Sklearn algorithm, which
is one of the first autoML frameworks and provides robust and expert-competitive results
in several ML tasks [26,28,39]. auto-Sklearn is an algorithm based on the Python scikit-learn
(Sklearn) library [40]. It is employed for building classification and regression pipelines
by searching over single and ensemble ML models. This algorithm explores semi-fixed
structured pipelines by setting an initial fixed set of data cleaning steps. Then, a sequential
model-based algorithm configuration (SMAC) using Bayesian optimization in combination
with a random forest regression allows the selection and tuning of optional pre-processing
and mandatory modeling algorithms. In addition, auto-Sklearn provides parallelization

Energies 2024, 17, 77 9 of 22

features, meta-learning to initialize the optimization procedure, and ensemble learning
through the combination of the best pipelines [26,28,39].

To improve the analysis between standard ML and autoML frameworks, two au-toML
versions are considered, namely, vanilla auto-Sklearn and robust auto-Sklearn models.
The main differences between them are that (i) the vanilla model only considers a single
regression model whereas the robust model employs an ensemble, and (ii) the vanilla
model does not employ the meta-learning warm-start stage to initialize the optimization
procedure, whereas the robust model does. In this sense, the vanilla model serves as a
baseline for the autoML framework. autoML classifiers have been discussed elsewhere;
however, for the sake of completeness, they are detailed in Appendix B.

2.4. Classification Performance Metrics

To compare the performance of the standard ML and the autoML frameworks, we
employed several multi-classification metrics. As mentioned before, several classification
metrics have been employed for the analysis of algorithms’ performance for the TFD prob-
lem (i.e., the accuracy percentage, confusion matrix, the area under the receiver operating
characteristic (AUCROC) and precision–recall (AUCPR) curves, and the micro and macro
F1-measure). However, neither the accuracy percentage nor the AUCROC is sensitive to
class imbalance. Further, neither the AUCROC nor the AUCPR is suitable for analyzing a
multi-classification problem. Therefore, in this work, we employed the confusion matrix
(CM), the balanced accuracy (BA), the F1-measure (F1) using micro and macro averages,
Cohen’s kappa (κ) metric, and Matthews’ correlation coefficient (MCC).

On one hand, the CM is a tool to understand the errors of classifiers in binary, multi-
class, and even multi-label scenarios. On the other hand, the remaining performance
metrics used in this work are obtained from the CM. The selected metrics are useful for
assessing the overall performance of a classifier in a multi-class problem. From these, MCC
and κ (and, in a lesser sense, F1-macro) are more robust than the remaining for assessing
the expected performance of classifiers in the presence of class imbalance.

2.5. Software

We conducted all the experimentation required for TFD ML algorithms’ comparison,
i.e., pre-processing, training, and testing, using the Python programming language in a
Jupyter notebook. We used standard Python packages, such as numpy [41] and pandas [42],
for the initial pre-processing stages. For training the classical and most of the ensemble
ML algorithms, we employed the sklearn [40] package (in the case of xGB, the xgboost [43]
package was used). For the autoML case, we used the autosklearn package [28]. The
computer notebook is available in a GitHub repository.

It is worth noting that, while it would be a good idea to use the MCC and κ as a
cost function for training the algorithms, due to sklearn package limitations, algorithms’
training cost function is restrained to the F1-macro.

3. Results

This section presents the TFD classification results obtained for algorithms of the
standard ML and the autoML frameworks. For each classifier, we calculated five (5)
performance metrics (as described in the above section). Using those metrics, we carried
out a quantitative comparative analysis to determine the best algorithm(s). For a deeper
analysis of the performance of the rest of the algorithms, we carried out a multi-objective
decision-making (MODM) comparison. Afterward, through the CM, we analyzed class
imbalance, false positives, and false negatives of the best-performing algorithm.

3.1. Overall Classifier Performance for the TFD Problem

In Table 4, we present the performance of standard ML and the autoML frameworks’
results for the five quality metrics. We highlight the best performing solutions in bold. It can
be observed that, in general, the best-performing algorithm is the robust auto-Sklearn model

Energies 2024, 17, 77 10 of 22

for the five quality metrics. This model outperformed the rest of the algorithms, particularly
for the F1-macro measure, where the closest competitors (ANN and SE models) attained
approximately 10% lower F1-macro scores. These results show the ability of the robust
auto-Sklearn model to handle an imbalanced TDB, providing the highest classification
performance among all the tested algorithms, needing the minimum tuning effort from
the humans in the loop (i.e., electrical experts carrying out a TFD). Therefore, the robust
auto-Sklearn model seems preferrable as an off-the-shelf solution for the TFD problem.

Table 4. Classifiers’ performance attained on the transformer fault detection problem.

Model BA F1-Micro F1-Macro κ MCC

vanilla auto-Sklearn 0.812 0.866 0.769 0.837 0.837
robust auto-Sklearn 0.893 0.906 0.909 0.885 0.885
ANN 0.840 0.882 0.785 0.856 0.857
BC 0.745 0.858 0.742 0.825 0.826
DT 0.744 0.837 0.695 0.802 0.802
GP 0.728 0.900 0.746 0.875 0.876
HGB 0.723 0.886 0.706 0.860 0.862
KNN 0.765 0.858 0.756 0.823 0.823
LR 0.666 0.823 0.673 0.791 0.792
NB 0.700 0.764 0.650 0.714 0.715
RF 0.717 0.870 0.721 0.840 0.841
SE 0.838 0.886 0.809 0.860 0.861
SVM 0.766 0.882 0.767 0.856 0.857
XGB 0.702 0.861 0.683 0.831 0.833

3.2. Analysis of the Frameworks’ Performance

The above results show that the robust auto-Sklearn model (autoML algorithm) is the
best-performing algorithm in the TFD problem using the TDB. However, it is not clear how
worse the performance levels of the remaining algorithms were in comparison. Also, there
might be cases where using the robust auto-Sklearn model is not possible due to issues
related to model explainability, training computational cost, productizing models, or other
business-related issues raised by utility stakeholders. In such scenarios, it would be useful
to determine if the vanilla auto-Sklearn model (or another single autoML framework such
as auto-WEKA [36]) is better or worse than single/ensemble standard classifiers. When
considering the results for the ANN and SE algorithms, we found that these were better for
the five metrics in comparison to the vanilla auto-Sklearn model. Similarly, other single
and ensemble algorithms (such as SVM and HGB) performed better than the vanilla model
for F1-micro, κ, and MCC. To improve the performance comparison, metric results for each
algorithm were transformed using the vanilla auto-Sklearn result as a baseline, as follows:

Ni(A) = 1 − Mi(A)

Mi(auto Sklearn vainilla)
(1)

where Mi(A) corresponds to the i metric result for algorithm A, Mi(auto-Sklearn vanilla) corre-
sponds to the i metric result for the vanilla auto-Sklearn model, and Ni(A) corresponds to the
baseline transformed value for the i metric and algorithm A. For instance, for BA and ANN,
the baseline transformed value B A(ANN) is obtained, such as 1 − BA(auto−Sklearnvanilla)

BA(ANN)
.

The transformed values can be interpreted as follows: an Ni(A) > 0 value implies that
the performance of the A algorithm is better than the vanilla auto- Sklearn algorithm.
In contrast, if Ni(A) < 0, then the A algorithm’s performance is worse than the vanilla
auto-Sklearn algorithm.

Once metric values were transformed, we carried out an MODM comparison. MODM
deals with problems where two or more performance criteria are used together to make
a decision: in our case, we were looking for an algorithm capable of identifying specific
electric transformer faults, as accurately as possible, in terms of five performance metrics.
In an MODM, model quality is defined by a n-dimensional vector where n corresponds to
the number of metrics used. Hence, an algorithm solving an MODM must consider either a

Energies 2024, 17, 77 11 of 22

way to simplify a vector of quality metrics into a single scalar, or a way to handle multiple
objective functions all at once.

Regarding the methods that solve multiple objective functions, they all use the Pareto
approach (PA) [44]. In the PA, instead of handling the burden of collapsing multiple metrics
into a single value, you instead look to find a set of solutions (e.g., TFD classification
algorithms) that are non-dominated. To define this concept, it is easier first to define the
opposite, i.e., dominance. A solution si is said to dominate a solution sj if si is strictly
better than sj in at least one of the quality metrics ci, i = 1,. . . , n, and equal or better in
the remaining metrics. Formally, this comprises (i) ∃ci|ci(si) > cj(si) and (ii) ∀ci|ci(si) ≥
cj(si) (where ci(si) stands for the quality metric value for solution si) [44]. On the other
hand, two solutions si and sj are said to be non-dominating with respect to each other if
(i) quality metric values for solution si are strictly better than sj in at least one of the ci,
i = 1,. . . , n, and (ii) quality metric values for solution si are strictly worse than sj in at least
one of the quality metrics ci, i = 1,. . . , n. The set of non-dominated solutions is also known
as the Pareto frontier. In Figure 2, the Pareto analysis carried out on the vanilla transformed
quality metrics, excluding the robust auto-Sklearn model, is shown.

Energies 2023, 16, x FOR PEER REVIEW 12 of 23

Figure 2. Models’ fault classification performance.

Observe that the vanilla auto-Sklearn model is shown at the origin (0,0); algo-

rithms in the Pareto frontier are depicted in red, whereas the worst-performing algo-

rithms are displayed in blue. From this figure, note that the SE, ANN, and GP algo-

rithms performed better than the vanilla auto-Sklearn (for BA, the improvements

were 3%, 3%, and −10%, respectively, whereas for κ, the improvements were 3%, 2%,

and 4.5%, respectively). Hence, and without considering the robust auto-Sklearn al-

gorithm, either of these can be selected for the TFD problem. On the other hand,

HGB and SVM, while they performed better for the κ metric than the vanilla auto-

Sklearn (3% and 2%, respectively), could be considered as good as the vanilla

auto-Sklearn model in a Pareto front sense (and, in a lesser sense, the RF case).

The remaining algorithms should be considered to have performed worse than

the vanilla auto-Sklearn model. Specifically, the LR and NB algorithms performed

considerably worse than the vanilla model: for the BA metric, 17% and 14% worse,

and for the κ metric, 5% and 14%, respectively. In summary, single autoML frame-

works provide a good identification of transformer faults with minimal human

intervention; still, standard ML approaches such as ANN, SE, or GP classifiers

would provide better results for the TFD problem.

3.2. Transformers’ Fault Diagnosis in Detail

In accordance with the above results, the overall best-performing algorithm for the

TFD problem is the robust auto-Sklearn (AutoML) algorithm. But how was its perfor-

mance for each transformer fault type? And how did its performance compare against one

of the algorithms belonging to the Pareto frontier such as the SE algorithm? In Figure 3,

we present the confusion matrix for both algorithms: in Figure 3a, the robust auto-Sklearn

is shown, whereas in Figure 3b, the SE is displayed. It can be observed that, in general, for

both algorithms, most fault types were identified with a good (≥80%) to very good (≥90%)

accuracy, except for the following: in (a) for PD and S, with an accuracy of 71% and 78%,

respectively; in (b) for S, T2-C, and T3-C, with an accuracy of 78%, 71%, and 75%, respec-

tively. To examine the regular performance on these fault types, it is useful to recall that

when analyzing the performance of an algorithm using the multi-class CM (see section

Appendix C), rows indicate false negatives (FNs) and columns indicate false positives

(FPs), respectively. Thus, for the case of the robust auto-Sklearn algorithm, PD faults were

misclassified 29% of the time as S fault types; while S faults were misclassified 19% of the

time as T1-O faults and 3.7% of the time as a normal condition. For the case of the SE

algorithm, S faults were misclassified 22% of the time as a T1-O faults; T2-C faults were

misclassified 14% of the time as T1-O and T1-C faults; and T3-C faults were misclassified

Figure 2. Models’ fault classification performance.

Observe that the vanilla auto-Sklearn model is shown at the origin (0,0); algorithms
in the Pareto frontier are depicted in red, whereas the worst-performing algorithms are
displayed in blue. From this figure, note that the SE, ANN, and GP algorithms performed
better than the vanilla auto-Sklearn (for BA, the improvements were 3%, 3%, and −10%,
respectively, whereas for κ, the improvements were 3%, 2%, and 4.5%, respectively). Hence,
and without considering the robust auto-Sklearn algorithm, either of these can be selected
for the TFD problem. On the other hand, HGB and SVM, while they performed better for
the κ metric than the vanilla auto-Sklearn (3% and 2%, respectively), could be considered
as good as the vanilla auto-Sklearn model in a Pareto front sense (and, in a lesser sense,
the RF case). The remaining algorithms should be considered to have performed worse
than the vanilla auto-Sklearn model. Specifically, the LR and NB algorithms performed
considerably worse than the vanilla model: for the BA metric, 17% and 14% worse, and for
the κ metric, 5% and 14%, respectively. In summary, single autoML frameworks provide a
good identification of transformer faults with minimal human intervention; still, standard
ML approaches such as ANN, SE, or GP classifiers would provide better results for the
TFD problem.

3.3. Transformers’ Fault Diagnosis in Detail

In accordance with the above results, the overall best-performing algorithm for the
TFD problem is the robust auto-Sklearn (AutoML) algorithm. But how was its performance
for each transformer fault type? And how did its performance compare against one of

Energies 2024, 17, 77 12 of 22

the algorithms belonging to the Pareto frontier such as the SE algorithm? In Figure 3, we
present the confusion matrix for both algorithms: in Figure 3a, the robust auto-Sklearn
is shown, whereas in Figure 3b, the SE is displayed. It can be observed that, in general,
for both algorithms, most fault types were identified with a good (≥80%) to very good
(≥90%) accuracy, except for the following: in (a) for PD and S, with an accuracy of 71%
and 78%, respectively; in (b) for S, T2-C, and T3-C, with an accuracy of 78%, 71%, and
75%, respectively. To examine the regular performance on these fault types, it is useful
to recall that when analyzing the performance of an algorithm using the multi-class CM
(see section Appendix C), rows indicate false negatives (FNs) and columns indicate false
positives (FPs), respectively. Thus, for the case of the robust auto-Sklearn algorithm, PD
faults were misclassified 29% of the time as S fault types; while S faults were misclassified
19% of the time as T1-O faults and 3.7% of the time as a normal condition. For the case
of the SE algorithm, S faults were misclassified 22% of the time as a T1-O faults; T2-C
faults were misclassified 14% of the time as T1-O and T1-C faults; and T3-C faults were
misclassified 12% of the time as T3-H and S faults. From all these errors, the robust auto-
Sklearn algorithm incurs in the most expensive ones (i.e., classifying a fault as a normal
condition). Further, the misclassification from both algorithms can be attributed to the fault
regions described by these for each fault type. Those do not necessarily match the Duval
pentagon fault regions, which are geometrically contiguous and do not overlap [17]. In
addition, recall that all of these classes, i.e., PD, S, T2-C, and T3-C, are underrepresented
in the TDB (see Table 1). In the light of these findings, we can conclude that samples
misclassified may lay at the class limits, and/or class boundaries found by the algorithms
have a different geometric shape than the one defined by the Duval pentagon. Therefore,
increasing the sample size of imbalanced classes (either real or synthetic samples) should
be useful for improving the boundaries defined in the feature space for each class by
both algorithms. Finally, it is worth noting that both algorithms classified with 100%
accuracy the low thermal faults involving paper carbonization (i.e., T1-C), which is the
most underrepresented class in the TDB.

Energies 2023, 16, x FOR PEER REVIEW 13 of 23

12% of the time as T3-H and S faults. From all these errors, the robust auto-Sklearn algo-

rithm incurs in the most expensive ones (i.e., classifying a fault as a normal condition).

Further, the misclassification from both algorithms can be attributed to the fault regions

described by these for each fault type. Those do not necessarily match the Duval pentagon

fault regions, which are geometrically contiguous and do not overlap [17]. In addition,

recall that all of these classes, i.e., PD, S, T2-C, and T3-C, are underrepresented in the TDB

(see Table 1). In the light of these findings, we can conclude that samples misclassified

may lay at the class limits, and/or class boundaries found by the algorithms have a differ-

ent geometric shape than the one defined by the Duval pentagon. Therefore, increasing

the sample size of imbalanced classes (either real or synthetic samples) should be useful

for improving the boundaries defined in the feature space for each class by both algo-

rithms. Finally, it is worth noting that both algorithms classified with 100% accuracy the

low thermal faults involving paper carbonization (i.e., T1-C), which is the most un-

derrepresented class in the TDB.

(a) (b)

Figure 3. Confusion matrix for the (a) robust auto-Sklearn model and (b) for the stacking ensemble

algorithms.

4. Conclusions

This paper has presented a comprehensive review and comparative analysis of stand-

ard machine learning algorithms (such as single and ensemble classification algorithms)

and two automatic machine learning (autoML) classifiers for the fault diagnosis of power

transformers. The primary objective of this study was to compare the performance of clas-

sical ML classification algorithms, which require human-in-the-loop experts for tuning,

with two autoML approaches that demand minimal human operation. To achieve this,

data of transformer faults were collected from the literature, as well as from databases

from both Mexican and foreign utilities and test laboratories. Subsequently, raw data were

curated, and faults were validated and assigned using both the Duval pentagon method

and expert knowledge. The methodology used for comparison included: (i) several pre-

processing steps for feature engineering and data normalization; (ii) different ML ap-

proaches (single ML and ensemble algorithms were trained and tuned using a GS-CV by

Figure 3. Confusion matrix for the (a) robust auto-Sklearn model and (b) for the stacking ensemble
algorithms.

Energies 2024, 17, 77 13 of 22

4. Conclusions

This paper has presented a comprehensive review and comparative analysis of stan-
dard machine learning algorithms (such as single and ensemble classification algorithms)
and two automatic machine learning (autoML) classifiers for the fault diagnosis of power
transformers. The primary objective of this study was to compare the performance of
classical ML classification algorithms, which require human-in-the-loop experts for tuning,
with two autoML approaches that demand minimal human operation. To achieve this, data
of transformer faults were collected from the literature, as well as from databases from both
Mexican and foreign utilities and test laboratories. Subsequently, raw data were curated,
and faults were validated and assigned using both the Duval pentagon method and expert
knowledge. The methodology used for comparison included: (i) several pre-processing
steps for feature engineering and data normalization; (ii) different ML approaches (single
ML and ensemble algorithms were trained and tuned using a GS-CV by a data scien-
tist, whereas the autoML models were trained and tuned using Bayesian optimization in
combination with a random forest regression with zero human intervention); (iii) several
algorithm performance approaches using global metrics, a Pareto front analysis, and a CM
to have a detailed look into the types of biases algorithms suffer. A key contribution of this
work is that, for the first time (to the best of the authors’ knowledge), it has defined fault
classes using Duval pentagons and severity classes.

Our results showed that the robust auto-Sklearn achieved the best global performance
metrics over standard single and ensemble ML algorithms. On the other hand, the PA
showed that the vanilla autoML approach performed worse than some single (ANN, SVM)
and ensemble (SE, HGB, GP, and RF) ML algorithms. The CM revealed that, while the
robust auto- Sklearn algorithm obtained the highest global performance metric values,
it misclassified some faults as a normal condition. This type of error can have a very
negative impact on power grid performance (blackouts) with high financial costs. The
misclassification can be attributed to the imbalanced TBD. Increasing the sample size of the
imbalanced classes (either real or synthetic samples) should be useful for improving the
boundaries defined in the feature space for each class. In conclusion, the robust auto-Sklearn
model is not only a good off-the-shelf solution for the TFD while handling imbalanced
datasets but also achieved the highest global classification performance scores using the
minimum tuning effort by a human (i.e., electrical experts carrying out a fault diagnosis).
This comparative analysis has extended our comprehension of the ML approaches available
for the TFD problem, and it has given a view of how much automation we can expect for a
real TFD problem, particularly when fault severity is taken into consideration. In future
work, the best models (ensemble SE and robust auto-Sklearn) will be incorporated into
a power transformer condition assessment in a maintenance management system. It is
expected that failure classification indicating the most probable defect will be used to help
engineers reduce the time needed to find and repair incipient faults, which will help to
avoid catastrophic failures and fires.

Author Contributions: Conceptualization, G.S.-B., G.A.-F. and C.G.A.R.; software, G.S.-B. and
M.A.Z.-G.; validation, G.S.-B. and M.A.Z.-G.; investigation, G.A.-F. and C.G.A.R.; data curation,
G.S.-B.; writing—original draft, G.S.-B.; writing—review and editing, G.S.-B., G.A.-F., C.G.A.R.,
M.A.Z.-G. and A.B.; supervision, G.A.-F. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to being compiled from different
sources and validated by power systems experts.

Acknowledgments: The authors would like to thank Roberto Liñan from Instituto Nacional de
Electricidad y Energías Limpias for his comments and reviews.

Energies 2024, 17, 77 14 of 22

Conflicts of Interest: The author G.S.-B. wants to clarify that the presented article contents are all
his own opinions and research lines, and not necessarily the opinions of BBVA México. The author
M.A.Z.-G. wants to clarify that the presented article contents are all his own opinions and research
lines, and not necessarily the opinions of PCI Energy Solutions. The remaining authors declare that
the research was conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Appendix A. Machine Learning Algorithms

Appendix A.1. Single Classifiers

Appendix A.1.1. Artificial Neural Networks

Artificial neural networks (ANNs) are models inspired by the central nervous system,
which are made of interconnected neurons [45]. The calculation of a single-layer perceptron
is performed using the following equation:

y(^X) = g

(
n

∑
i=1

(wi xi

)
+ bias

)
(A1)

where g is the activation function. Most artificial neural networks are composed of three
types of layers of neurons: an input layer, one or more hidden layers, and an output layer.
These are called multi-layer perceptrons (MLPs). The input layer is responsible for receiving
a given input vector and transforming into an output that becomes the input for another
layer. Hidden layers transform the output from a previous layer by means of an activation
function. The output layer produces the final weighted sum.

y(^X) = g

(
n

∑
i=1

(wixi) + bias

)
(A2)

Appendix A.1.2. Decision Trees

A decision tree is a classification method that creates a recursive partition of the
dataset [46]. It consists of nodes that build a tree, which has a node called the “root” that
has no incoming connections, and a set of nodes that have one incoming connection. Nodes
with outgoing connections are called internal nodes and all other nodes (except the root
node) are called leaves or decision nodes. Each internal node splits the dataset into two or
more sub-datasets using a certain condition or criteria of the input variables.

The objective is to construct the following classifier:

Y(X) =
n

∑
i=1

Yixli(X) (A3)

Appendix A.1.3. Gaussian Processes

The Gaussian process classifier is a classification method that assumes the class densi-
ties follow a normal distribution [47]. A Gaussian process is a generalization of a multivari-
ate Gaussian distribution of infinite random variables.

A multivariate Gaussian distribution is defined by the following equation:

N
(

x;µ, ∑
)
=

1

(2π)
d/2 ∑ −1/2exp−

1
2 (x − µ)∑ −1 (x − µ)T (A4)

where x is the vector of random variables, µ is the vector of means, and Σ is the covariance
matrix of all random variables.

A Gaussian process is a random process in which any point t ∈ Rd is assigned to a
random variable Zt such that every (Zt1, Zt2,. . . ,Ztd) is a multivariate Gaussian.

Energies 2024, 17, 77 15 of 22

Appendix A.1.4. K-Nearest Neighbors

K-nearest neighbors (KNN) is one of the most basic and essential classification algo-
rithms in machine learning [48]. It belongs to the domain of supervised learning and finds
intense application in pattern recognition, data mining, and intrusion detection. The KNN
classifier is also an instance-based, non-parametric learning algorithm. Instance-based
learning means that our algorithm does not explicitly learn a model. Instead, it chooses
to memorize the training instances that are later used as “knowledge” for the prediction
phase. Specifically, this means that only when a query is made to our database, that is,
when we ask it to predict a label with an input, will the algorithm use the training instances
to give an answer.

The KNN algorithm assumes that pairs (X1, Y1), (X2, Y2) . . . (Xn, Yn) take values in
the coordinate space Rd, where Xn ∈ Rd and Yn is the label of the element Xn. Then, to
perform a classification y of a new point x ∈ Rd, the KNN uses some distance measure ∥·∥
in Rd such that the dataset of pairs (X(1), Y(1)), (X(2), Y(2)) . . . (X(n), Y(n)) is reordered given
that ∥X(1) − x∥ ≤ ∥X(2) − x∥ . . . ∥X(n) − x∥. The class y is assigned given the maximum
probability of the Y(1) . . . Y(K) estimated, where K is the number of neighbors selected to
make the classification.

Appendix A.1.5. Naive Bayes

In simple terms, it assumes that the presence or absence of a particular characteristic
is not related to the presence or absence of any other characteristic, given the variable
class [49]. For example, a fruit can be considered an apple if it is red, round, and about 7 cm
in diameter. A naive Bayes classifier considers that each of these characteristics contributes
independently to the probability that this fruit is an apple, regardless of the presence or
absence of the other characteristics. This method is based on the Bayes theorem, which is
described as follows:

P(A|R) = P(R|A)P(A)

P(R)
(A5)

The naive Bayes method assumes that the probability of all variables is constant, so
the Bayes theorem can be rewritten as follows:

P(A|R) = P(R).∏ n
i=1P(R|A) (A6)

Appendix A.1.6. Logistic Regression

Regression analysis determines how a variable y is related to one or more other
variables X = x1, x2,. . . , xk. In logistic regression [50], the yis are considered binary variables
and the distribution of yi given X is assumed to follow a Bernoulli distribution (which is a
special case of a binomial distribution), such that

log
(

p(yi = 1|X)

1 − p(yi = 1|X)

)
= β0 +

k

∑
j=1

β jXji (A7)

Of the several methods to estimate the βs, the method of maximum likelihood is one
most commonly used for logistic regression.

Appendix A.1.7. Support Vector Machines

Support vector machines (SVMs) are supervised learning models used for data predic-
tion and classification [51]. This method was first presented in [52] in 1998. Even though
SVMs are commonly used for classification problems where training data are linearly
separable, nonlinear data can be mapped into a high-dimensional feature space with the
help of a kernel function where linear regression can be applied (the hyperplane). The
method builds two bounds with radius epsilon (ϵ) parallel to the hyperplane that covers
the greatest quantity of data, where ϵ defines a margin of tolerance where no penalty is

Energies 2024, 17, 77 16 of 22

given to errors and ϵ is the distance between data not covered by support vectors and
bounds [53]. This is achieved by minimizing the following expression,

y = max
2

∥w∥ (A8)

subject to
w.x + b ≥ 1,

Energies 2023, 16, x FOR PEER REVIEW 16 of 23

≤ ∥X(2) − x∥ . . . ∥X(n) − x∥. The class y is assigned given the maximum probability of the Y(1)
. . . Y(K) estimated, where K is the number of neighbors selected to make the classification.

Appendix A.1.5. Naive Bayes
In simple terms, it assumes that the presence or absence of a particular characteristic

is not related to the presence or absence of any other characteristic, given the variable class
[50]. For example, a fruit can be considered an apple if it is red, round, and about 7 cm in
diameter. A naive Bayes classifier considers that each of these characteristics contributes
independently to the probability that this fruit is an apple, regardless of the presence or
absence of the other characteristics. This method is based on the Bayes theorem, which is
described as follows: 𝑃(𝐴|𝑅) = 𝑃(𝑅|𝐴)𝑃(𝐴)𝑃(𝑅) (A5)

The naive Bayes method assumes that the probability of all variables is constant, so
the Bayes theorem can be rewritten as follows: 𝑃(𝐴|𝑅) = 𝑃(𝑅). 𝑃(𝑅|𝐴) (A6)

Appendix A.1.6. Logistic Regression
Regression analysis determines how a variable y is related to one or more other var-

iables X = x1, x2,..., xk. In logistic regression [51], the yis are considered binary variables and
the distribution of yi given X is assumed to follow a Bernoulli distribution (which is a
special case of a binomial distribution), such that

𝑙𝑜𝑔 𝑝(𝑦 = 1|𝑋)1 − 𝑝(𝑦 = 1|𝑋) = 𝛽 + 𝛽 𝑋 (A7)

Of the several methods to estimate the βs, the method of maximum likelihood is one
most commonly used for logistic regression.

Appendix A.1.7. Support Vector Machines
Support vector machines (SVMs) are supervised learning models used for data pre-

diction and classification [52]. This method was first presented in [53] in 1998. Even though
SVMs are commonly used for classification problems where training data are linearly sep-
arable, nonlinear data can be mapped into a high-dimensional feature space with the help
of a kernel function where linear regression can be applied (the hyperplane). The method
builds two bounds with radius epsilon (ϵ) parallel to the hyperplane that covers the great-
est quantity of data, where ϵ defines a margin of tolerance where no penalty is given to
errors and ϵ is the distance between data not covered by support vectors and bounds [54].
This is achieved by minimizing the following expression, 𝑦 = 𝑚𝑎𝑥 2‖𝑤‖ (A8)

subject to 𝑤. 𝑥 + 𝑏 ≥ 1,⩝ 𝑥 = 𝐶 (A9)𝑤. 𝑥 + 𝑏 ≥ −1,⩝ 𝑥 = 𝐶
Appendix A.2. Ensembles

Ensemble methods are algorithms that improves the accuracy by joining/merging
two or more simpler algorithms. Basically, there are two kinds of ensemble algorithms:

x = C1 (A9)

w.x + b ≥ −1,

Energies 2023, 16, x FOR PEER REVIEW 16 of 23

≤ ∥X(2) − x∥ . . . ∥X(n) − x∥. The class y is assigned given the maximum probability of the Y(1)
. . . Y(K) estimated, where K is the number of neighbors selected to make the classification.

Appendix A.1.5. Naive Bayes
In simple terms, it assumes that the presence or absence of a particular characteristic

is not related to the presence or absence of any other characteristic, given the variable class
[50]. For example, a fruit can be considered an apple if it is red, round, and about 7 cm in
diameter. A naive Bayes classifier considers that each of these characteristics contributes
independently to the probability that this fruit is an apple, regardless of the presence or
absence of the other characteristics. This method is based on the Bayes theorem, which is
described as follows: 𝑃(𝐴|𝑅) = 𝑃(𝑅|𝐴)𝑃(𝐴)𝑃(𝑅) (A5)

The naive Bayes method assumes that the probability of all variables is constant, so
the Bayes theorem can be rewritten as follows: 𝑃(𝐴|𝑅) = 𝑃(𝑅). 𝑃(𝑅|𝐴) (A6)

Appendix A.1.6. Logistic Regression
Regression analysis determines how a variable y is related to one or more other var-

iables X = x1, x2,..., xk. In logistic regression [51], the yis are considered binary variables and
the distribution of yi given X is assumed to follow a Bernoulli distribution (which is a
special case of a binomial distribution), such that

𝑙𝑜𝑔 𝑝(𝑦 = 1|𝑋)1 − 𝑝(𝑦 = 1|𝑋) = 𝛽 + 𝛽 𝑋 (A7)

Of the several methods to estimate the βs, the method of maximum likelihood is one
most commonly used for logistic regression.

Appendix A.1.7. Support Vector Machines
Support vector machines (SVMs) are supervised learning models used for data pre-

diction and classification [52]. This method was first presented in [53] in 1998. Even though
SVMs are commonly used for classification problems where training data are linearly sep-
arable, nonlinear data can be mapped into a high-dimensional feature space with the help
of a kernel function where linear regression can be applied (the hyperplane). The method
builds two bounds with radius epsilon (ϵ) parallel to the hyperplane that covers the great-
est quantity of data, where ϵ defines a margin of tolerance where no penalty is given to
errors and ϵ is the distance between data not covered by support vectors and bounds [54].
This is achieved by minimizing the following expression, 𝑦 = 𝑚𝑎𝑥 2‖𝑤‖ (A8)

subject to 𝑤. 𝑥 + 𝑏 ≥ 1,⩝ 𝑥 = 𝐶 (A9)𝑤. 𝑥 + 𝑏 ≥ −1,⩝ 𝑥 = 𝐶
Appendix A.2. Ensembles

Ensemble methods are algorithms that improves the accuracy by joining/merging
two or more simpler algorithms. Basically, there are two kinds of ensemble algorithms:

x = C2

Appendix A.2. Ensembles

Ensemble methods are algorithms that improves the accuracy by joining/merging two
or more simpler algorithms. Basically, there are two kinds of ensemble algorithms: sequen-
tial and parallel. Sequential ensemble algorithms have the characteristic of maintaining
dependence across the different models generated. On the other hand, parallel ensemble
algorithms look for independence among the different models.

Appendix A.2.1. Random Forest

A random forest is a parallel type of ensemble algorithm [54]. A random forest is a
combination of decision trees so that each tree analyzes only a random segment of the data,
with the same distribution for each of them. The essential idea is to average many noisy
but approximately unbiased models, and thereby reduce variance.

Appendix A.2.2. Bagging Classifier

A bagging classifier is a parallel ensemble algorithm. This algorithm is very similar to
the random forest [55]. It takes several samples of the data with the same distribution, to
train different models using a variety of methods. The final classifier makes a prediction by
combining the predictions of all other models.

Appendix A.2.3. Gradient Boosting

Gradient boosting is a sequential ensemble algorithm [56]. Gradient boosting has two
important characteristics: weak models and a differentiable loss function. This algorithm
uses weak models as an optimization parameter and it decides to add or remove models
depending on the gradient value of the loss function.

Appendix A.2.4. Stacking Ensemble

The stacking ensemble is a sequential algorithm [57]. It uses a meta learning algorithm
to learn how to best combine the predictions of two or more basic machine learning
algorithms. The predictions of the basic machine learning algorithms are used to create a
second training set. This second training set is used to train the meta learning algorithm.

Appendix B. AutoML Algorithms

In accordance with [26], an ML pipeline h: X → Y involves the computational, intensive,
repetitive, sequential combination of algorithms, which maps any given observation, i.e., x
∈ X, into a discrete (e.g., class) or continuous value, i.e., y ∈ Y.

To define an ML pipeline, i.e., h, let us first define its components. The set of specific
algorithms, e.g., data pre-processing, feature selection, and classification, is defined as
A = {A1, A2,. . . , An}. For each algorithm Ai, a configuration vector of hyperparameters
is defined as λ(i) ∈ ΛA(i). Algorithms of A are connected with each other in accordance
with a structure g. Such a structure is defined as a directed acyclic graph (DAG) where
nodes represent algorithms and edges represent the data flow. The structure has implicit
constraints (e.g., an imputation algorithm must precede a classification one), and thus, it
belongs to a set of valid pipeline structures G; its cardinality (i.e., number of consecutive

Energies 2024, 17, 77 17 of 22

sequential algorithms) is given by |g|. Therefore, an ML pipeline is formally given by
P(g, A, λ), where g ∈ G stands for the structure of the valid pipeline, the vector A ∈ A|g|

stands for the algorithms selected for each node, and the vector λ ∈ ΛA stands for the
hyperparameters for each of the selected algorithms in the pipeline.

Therefore, given a problem defined by the i.i.d. samples D = {(x1, y1),. . . , (xm, ym)}
drawn from the joint probability distribution P (X, Y), an ML pipeline is created by finding
the structure, algorithms, and their corresponding hyperparameters, which minimizes the
empirical pipeline performance (EPP) R̂, such as

R̂
(

Pg,A,λ, D
)
=

1
m

m

∑
i

L(h(Xi), Yi), (A10)

where h(xi) is the predicted output of the pipeline P , and L is a loss function. Furthermore,
to avoid overfitting P , cross-validation is considered. Hence, D is split into k disjointed
folds, that is, {Dvalid

(1), . . . , Dvalid
(k)} and { Dtrain

(1),. . . , Dtrain
(k)}. By rewriting Equation (A10)

to include these, the final objective function is obtained:

(
Pg,A,λ

)
€

arg min
gϵG, A ∈ A|g|, λ ∈ Λ

1
k

k

∑
i

R̂
(

P
g,A,λ,D(t)

train
, D(t)

valid

)
(A11)

To minimize the cost function presented in Equation (A11), three sub-problems must
be addressed altogether: the (i) structure search; the (ii) algorithm selection; and (iii)
algorithm hyperparameter optimization (HPO). On the one hand, in a recent survey [26],
it was stated that most of the autoML frameworks avoid solving the structure search by
following a best-practice fixed pipeline structure. This approach removes the burden of
determining the graph structure g in Equation (A11). On the other hand, the algorithm’s
selection and its HPO are simultaneously determined by solving the combined algorithm
selection and hyperparameter optimization (CASH) problem [26–28]. Solving the CASH
problem is similar to solving Equation (A11). If the pipeline structure g is fixed, i.e., |g| =
1, the CASH problem is defined as follows:

(A, λ) ∗ arg min
A ∈ A, λ ∈ A

R
(

Pg,A,λ,D, D
)

(A12)

To simultaneously consider which sequence of algorithms to use and their correspond-
ing hyperparameters, the λr vector is defined. This allows one to map the sequence of
algorithms into the Λ configuration space, such that

Λ = ΛA(1)x . . .ΛA(n)x λr.

In consequence, the CASH minimization problem is stated as follows:

λ ∗ ∈
arg minR(p g,λ,D,D

)
.

λ ∈ Λ
(A13)

Equation (A13) is a mixed-integer nonlinear optimization problem. Its solution in-
volves finding algorithms’ numerical or categorical hyperparameters, which are mandatory
or conditional (whose values depend on the selection of other hyperparameters) [26].

To solve all of these numerical cruxes, several autoML frameworks based on standard
ML and ensembles [26,39], as well as neural networks’ deep learning frameworks [58],
have been proposed. Due to the infancy of the autoML area, recent reviews reveal that
most of the available autoML tools obtain competitive, but similar, results across several
ML tasks [26,37].

Energies 2024, 17, 77 18 of 22

Appendix C. Performance Measures

Appendix C.1. Confusion Matrix

A confusion matrix (CM) is employed to assess a classifier’s performance by compar-
ing predictions against true class labels. In this way, several performance measurements
can be obtained [59–61]. Most CM-derived performance metrics are devised for binary
classification problems, and only a few are available for a multi-class problem [61].

The confusion matrices for the binary and the multi-class problems are presented in
Figure A1. TP stands for true positive, FP stands for false positive, TN stands for true
negative, and FN stands for false negative. Thus, columns represent classifiers’ predictions,
whereas rows represent the true classes. The CM element at row i and column j (i.e., Ci,j)
provides the frequency of the predicted class j for the actual class i.

In the case of a binary classification problem, the CM is given by a 2 × 2 matrix. In the
case of a multi-class problem, the matrix is given by N different class labels ci|i = 1, 2,. . . ,
N; thus, the CM is of size N × N.

Energies 2023, 16, x FOR PEER REVIEW 19 of 23

Figure A1. (a) CM for a binary classification problem, and (b) CM for a multi-classification problem.

TP stands for true positive, TN stands for true negative, FP stands for false positive, and FN stands

for false negative. Observe that in the multi-class case, only C2 is being shown.

Appendix C.2. Precision and Recall

Two performance measures are obtained from the confusion matrix of a binary clas-

sification problem, namely precision (Prec) and recall (Rec):

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (A14)

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (A15)

Loosely speaking, precision quantifies a classifier’s discrimination ability for separat-

ing between the classes, whereas recall quantifies a classifier’s ability to identify the sam-

ples of a given class in the dataset.

Micro and Macro Averages for Multi-Class

To use these metrics in a multi-classification problem, one must choose macro or mi-

cro averaging. In the case of the former, the metric is calculated for each class and then

averaged (i.e., treating all classes equally). In the case of the latter, the contribution of each

class is aggregated before computing the average metric, putting more weight on the most

populous classes. Formally, if we define Preci and Reci as the precision and recall obtained

for class i ∈ N, respectively, then the macro and micro Prec and Rec are defined as follows:

 𝑃𝑟𝑒𝑐𝑚𝑎𝑐𝑟𝑜 =
1

𝑁
∑ 𝑃𝑟𝑒𝑐𝑖

𝑁

𝑖=1

 (A16)

𝑅𝑒𝑐𝑚𝑎𝑐𝑟𝑜 =
1

𝑁
∑ 𝑅𝑒𝑐𝑖

𝑁

𝑖=1

 (A17)

 𝑃𝑟𝑒𝑐𝑚𝑖𝑐𝑟𝑜 =
∑ 𝑇𝑃𝑖

𝑁
𝑖=1

∑ 𝑁
𝑖=1 𝑇𝑃𝑖 + 𝐹𝑃𝑖

 (A18)

Figure A1. (a) CM for a binary classification problem, and (b) CM for a multi-classification problem.
TP stands for true positive, TN stands for true negative, FP stands for false positive, and FN stands
for false negative. Observe that in the multi-class case, only C2 is being shown.

Appendix C.2. Precision and Recall

Two performance measures are obtained from the confusion matrix of a binary classi-
fication problem, namely precision (Prec) and recall (Rec):

Prec =
TP

TP + FP
(A14)

Rec =
TP

TP + FN
(A15)

Loosely speaking, precision quantifies a classifier’s discrimination ability for sepa-
rating between the classes, whereas recall quantifies a classifier’s ability to identify the
samples of a given class in the dataset.

Micro and Macro Averages for Multi-Class

To use these metrics in a multi-classification problem, one must choose macro or
micro averaging. In the case of the former, the metric is calculated for each class and then

Energies 2024, 17, 77 19 of 22

averaged (i.e., treating all classes equally). In the case of the latter, the contribution of each
class is aggregated before computing the average metric, putting more weight on the most
populous classes. Formally, if we define Preci and Reci as the precision and recall obtained
for class i ∈ N, respectively, then the macro and micro Prec and Rec are defined as follows:

Precmacro =
1
N

N

∑
i=1

Preci (A16)

Recmacro =
1
N

N

∑
i=1

Reci (A17)

Precmicro =
∑ N

i=1 TPi

∑ N
i=1 TPi + FPi

(A18)

Recmicro =
∑N

i=1 TPi

∑N
i=1 TPi + FNi

(A19)

where N is the number of available classes.

Appendix C.3. Balanced Accuracy

BA is one of the most common multi-class performance measures used when class
imbalance is present. It is obtained as follows:

BA =
1
N

N

∑
i=1

Reci, (A20)

where Reci stands for the recall obtained for class i ∈ N. Hence, the BA is the same as the
Recmacro [60]. This function takes values between BA ∈ [0, 1], where a perfect classifier
attains BA = 1, while BA = 0 is obtained by a classifier always predicting the wrong class.

Appendix C.4. F1-Measure

Another metric obtained from Equations (A14) and (A15) is the F1-score. This assesses
a model’s performance using the harmonic mean of the precision and recall measures. As
in the case of Prec and Rec, in the multi-class setting, this is obtained via macro or micro
averaging. Thus, the F1-score for both averaging approaches is defined as follows:

F1macro = 2.
Recmacro.Precmacro

Recmacro.Precmacro (A21)

F1micro = 2.
Recmicro.Precmicro

Recmicro.Precmicro (A22)

In both cases, the F1-function takes values between F1 ∈ [0, 1]. More specifically, in the
case of Equation (A21), high values indicate that the algorithm has a good performance in
all the classes, whereas low values indicate that all classes are predicted poorly. In contrast,
Equation (A22) gives more importance to populous classes, neglecting errors in classes
with few samples [60]. Consequently, F1macro is a better metric than F1micro for assessing the
performance of classifiers in the presence of class imbalance.

Appendix C.5. Matthews’ Correlation Coefficient

A more recent metric, which is more robust to class imbalance, is the MCC. This can
be formally defined as follows:

MCC =
cxs − ∑N

i=1 pixti√(
s2 − ∑ N

i=1 p2
i
)(

s2 − ∑ N
i=1t2

i
) (A23)

Energies 2024, 17, 77 20 of 22

where c = ΣN
i = 1 TPi corresponds to the TP for class i, s is the total number of samples,

pi = TPi + FPi is the sum of times the classifier predicted class i (either correctly or incorrectly
classified), and ti = TPi + FNi is the total number of samples for which class i appears in the
dataset.

MCC values ranged from MCC ∈ [−1, 1]. For higher positive values (MCC ≈ 1), the
MCC indicates a strong positive correlation between predictions and the true labels. On the
contrary, large negative values (MCC < 0) indicate that the classifier identifies the classes but
systematically predicts them wrong (rather as consequence of an implementation problem).
If the classifier is randomly guessing, there will be no correlation between predictions and
true labels; hence, the MCC is (≈0). Another virtue of the MCC is that it is sensitive to
classes imbalance; hence, it is good for measuring a classifier’s performance when such a
feature is present in the dataset [60].

Appendix C.6. Cohen’s Kappa

The last performance measure is κ. This metric was initially devised as a statistical
hypothesis test for quantifying the level of agreement between two raters on a nominal
scale [60,62]. This metric has been extended for binary and multi-classification problems.
In the case of the latter, the κ function is defined as follows:

K =
cxs − ∑N

i=1 pixti

s2 − ∑ N
i=1 pixti

(A24)

where, similar to the MCC metric, c = ∑ N
i=1TPi corresponds to the TP for class i, s is

the total number of samples, pi = TPi + FPi is the sum of times the classifier predicted
class i (either correctly or incorrectly classified), and ti = TPi + FNi is the total number
of samples for which class i appears in the dataset. Thus, both the MCC and the κ are
highly related, providing slightly larger values for κ in comparison to the MCC. Cohen’s
kappa value ranges from κ ∈ [−1, 1], where κ = 1 points to a perfect agreement between
classifier predictions and true labels, κ = 0 points to random agreement attained due to the
independence between predictions and the actual labels, and κ < 0 points to the classifier
performing worse than a random classifier. Some key advantages of κ are that (i) it measures
the dependency between model predictions and the true class distribution; (ii) it is useful
for assessing classifiers’ performance when class imbalance is present; and (iii) it can be
used to compare classifiers’ performance on two different datasets (e.g., two TFD datasets
with different faults and/or severity details).

References
1. Senoussaoui, M.E.A.; Brahami, M.I.; Fofana, I. Combining and comparing various machine learning algorithms to improve

dissolved gas analysis interpretation. IET Gener. Transm. Distrib. 2018, 12, 3673–3679. [CrossRef]
2. Taha, I.B.; Dessouky, S.S.; Ghoneim, S.S. Transformer fault types and severity class prediction based on neural pattern-recognition

techniques. Electr. Power Syst. Res. 2020, 191, 106899. [CrossRef]
3. Baker, E.; Nese, S.V.; Dursun, E. Hybrid Condition Monitoring System for Power Transformer Fault Diagnosis. Energies 2023, 16,

1151. [CrossRef]
4. Velasquez, R.M.A.; Lara, J.V.M. Root cause analysis improved with machine learning for failure analysis in power transformers.

Eng. Fail. Anal. 2020, 115, 104684. [CrossRef]
5. Xu, Y.; Li, Y.; Wang, Y.; Zhong, D.; Zhang, G. Improved few-shot learning method for transformer fault diagnosis based on

approximation space and belief functions. Expert Syst. Appl. 2021, 167, 114105. [CrossRef]
6. Duque, J.F.P.; Martinez, M.T.V.; Hurtado, A.P.; Carrasco, E.M.; Sancho, B.L.; Krommydas, K.F.; Plakas, K.A.; Karavas, C.G.;

Kurashvili, A.S.; Dikaiakos, C.N.; et al. Inter-Area Oscillation Study of the Greek Power System Using an Automatic Toolbox. In
Proceedings of the IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Espoo, Finland, 18–21 October 2021;
pp. 1–6.

7. Arias, R.; Mejia, J. Health index for transformer condition assessment. IEEE Lat. Am. Trans. 2018, 16, 2843–2849. [CrossRef]
8. Ghoneim, S.S.M.; Taha, I.B.M. Comparative study of full and reduced feature scenarios for health index computation of power

transformers. IEEE Access 2020, 8, 181326–181339. [CrossRef]
9. Rogers, R. IEEE and IEC Codes to Interpret Incipient Faults in Transformers, Using Gas in Oil Analysis. IEEE Trans. Electr. Insul.

1978, 13, 349–354. [CrossRef]

https://doi.org/10.1049/iet-gtd.2018.0059
https://doi.org/10.1016/j.epsr.2020.106899
https://doi.org/10.3390/en16031151
https://doi.org/10.1016/j.engfailanal.2020.104684
https://doi.org/10.1016/j.eswa.2020.114105
https://doi.org/10.1109/TLA.2018.8804247
https://doi.org/10.1109/ACCESS.2020.3028689
https://doi.org/10.1109/TEI.1978.298141

Energies 2024, 17, 77 21 of 22

10. CIGRE. Transformer Reliability Surveys; CIGRE Technical Brochure 642; WW.G. A2.; CIGRE: Paris, France, 2015.
11. Bartley, W. Analysis of transformer failures. In Proceedings of the International Association OF Engineering Insurers 36th Annual

Conference, Stockholm, Sweden, 15–17 September 2003; pp. 1–12.
12. Nagpal, T.; Brar, Y.S. Artificial neural network approaches for fault classification: Comparison and performance. Neural Comput.

Appl. 2014, 25, 1863–1870. [CrossRef]
13. Mirowski, P.; Lecun, Y. Statistical machine learning and dissolved gas analysis: A review. IEEE Trans. Power Deliv. 2012, 27,

1791–1799. [CrossRef]
14. Golarz, J. Understanding Dissolved Gas Analysis (DGA) techniques and interpretations. In Proceedings of the IEEE Power

Engineering Society Transmission and Distribution Conference, Dallas, TX, USA, 3–5 May 2016.
15. Wu, Q.; Zhang, H. A novel expertise-guided machine learning model for internal fault state diagnosis of power transformers.

Sustainability 2019, 11, 1562. [CrossRef]
16. Li, E.; Wang, L.; Song, B. Fault diagnosis of power transformers with membership degree. IEEE Access 2019, 7, 28791–28798.

[CrossRef]
17. Cheim, L.; Duval, M.; Haider, S. Combined duval pentagons: A simplified approach. Energies 2020, 13, 2859. [CrossRef]
18. Wang, J.; Zhang, X.; Zhang, F.; Wan, J.; Kou, L.; Ke, W. Review on evolution of intelligent algorithms for transformer condition

assessment. Front. Energy Res. 2022, 10, 904109. [CrossRef]
19. Shintemirov, A.; Tang, W.; Wu, Q.H. Power transformer fault classification based on dissolved gas analysis by implementing

bootstrap and genetic programming. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2009, 39, 69–79. [CrossRef]
20. Wu, X.; Wang, P.; Wang, L.; Xu, Y.; Zhao, Z. Transformer combination weighting evaluation model based on bp neural network.

In Proceedings of the Genetic and Evolutionary Computing. ICGEC 2021. Lecture Notes in Electrical Engineering, Jilin, China,
21–23 October 2022.

21. Mortada, M.A.; Yacout, S.; Lakis, A. Fault diagnosis in power transformers using multi-class logical analysis of data. J. Intell.
Manuf. 2014, 25, 1429–1439. [CrossRef]

22. Yang, X.; Chen, W.; Li, A.; Yang, C.; Xie, Z.; Dong, H. BA-PNN-based methods for power transformer fault diagnosis. Av. Eng.
Inform. 2019, 39, 178–185. [CrossRef]

23. AI, K.; PV, M.; SA, E.; VZ, M.; AM, B. Romanov AM. Data Mining Applied to Decision Support Systems for Power Transformers’
Health Diagnostics. Mathematics 2022, 10, 2486.

24. Zhang, D.; Li, C.; Shahidehpour, M.; Wu, Q.; Zhou, B.; Zhang, C. A bi-level machine learning method for fault diagnosis of
oil-immersed transformers with feature explainability. Int. J. Electr. Power Energy Syst. 2022, 134, 107356. [CrossRef]

25. Cheim, L. Machine Learning Tools in Support of Transformer Diagnostics; CIGRE: Paris, France, 2018; pp. A2–A206.
26. Zöller, M.-A.; Huber, M.F. Benchmark and Survey of Automated Machine Learning Frameworks. J. Artif. Intell. Res. 2021, 70,

409–472. [CrossRef]
27. Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined selection and hyperparameter optimization

of classification algorithms. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Chicago, IL, USA, 11–14 August 2013; Part F128815. pp. 847–855.

28. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Efficient and Robust Automated Machine Learning.
In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12
December 2015; pp. 2962–2970.

29. Duval, M.; Lamarre, L. The Duval pentagon-a new complementary tool for the interpretation of dissolved gas analysis in
transformers. IEEE Electr. Insul. Mag. 2014, 30, 9–12.

30. Jakob, F.; Dukarm, J.J. Thermodynamic estimation of transformer fault severity. IEEE Trans. Power Deliv. 2015, 30, 1941–1948.
[CrossRef]

31. Dukarm, J.; Jakob, F. Thermodynamic estimation of transformer fault severity. In Proceedings of the 2016 IEEE/PES Transmission
and Distribution Conference and Exposition (T&D), Dallas, TX, USA, 3–5 May 2016. [CrossRef]

32. Londono, S.M.P.; Cadena, J.A.; Cadena, J.M. Aplicacion de redes neuronales probabilısticas en la deteccion de fallas incipientes en
transformadores. Sci. Et Tech. 2008, 2, 48–53.

33. Ranga, C.; Chandel, A.K.; Chandel, R. Condition assessment of power transformers based on multi-attributes using fuzzy logic.
IET Sci. Meas. Technol. 2017, 11, 983–990. [CrossRef]

34. Mharakurwa, E.T.; Goboza, R. Multiparameter-based fuzzy logic health index assessment for oil-immersed power transformers.
Adv. Fuzzy Syst. 2019, 2019, 2647157. [CrossRef]

35. CIGRE TB 761 Condition Assessment of Power Transformers; CIGRE: Paris, France, 2019.
36. IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers; IEEE: New York, NY, USA, 2019.
37. Truong, A.; Walters, A.; Goodsitt, J.; Hines, K.; Bruss, C.B.; Farivar, R. Towards automated machine learning: Evaluation and

comparison of AutoML approaches and tools. In Proceedings of the IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; pp. 1471–1479.

38. Osborne, J. Notes on the use of data transformations, Practical assessment. Res. Eval. 2002, 8, 6.
39. Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; Hutter, F. Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning. J.

Mach. Learn. Res. 2020, 23, 11936–11996.

https://doi.org/10.1007/s00521-014-1677-y
https://doi.org/10.1109/TPWRD.2012.2197868
https://doi.org/10.3390/su11061562
https://doi.org/10.1109/ACCESS.2019.2902299
https://doi.org/10.3390/en13112859
https://doi.org/10.3389/fenrg.2022.904109
https://doi.org/10.1109/TSMCC.2008.2007253
https://doi.org/10.1007/s10845-013-0750-1
https://doi.org/10.1016/j.aei.2019.01.001
https://doi.org/10.1016/j.ijepes.2021.107356
https://doi.org/10.1613/jair.1.11854
https://doi.org/10.1109/TPWRD.2015.2415767
https://doi.org/10.1109/TDC.2016.7519962
https://doi.org/10.1049/iet-smt.2016.0497
https://doi.org/10.1155/2019/2647157

Energies 2024, 17, 77 22 of 22

40. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

41. Oliphant, T.E. A Guide to NumPy; Trelgol Publishing: New York, NY, USA, 2006; Volume 1.
42. McKinney, W. pandas: A foundational python library for data analysis and statistics. In Proceedings of the Workshop Python for

High Performance and Scientific Computing, Tsukuba, Japan, 1–3 June 2011; pp. 1–9.
43. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’16, ACM, New York, NY, USA, 13–17 August 2016; pp. 785–794.
44. Freitas, A.A. A critical review of multi-objective optimization in data mining. ACM SIGKDD Explor. Newsl. 2004, 6, 77–86.

[CrossRef]
45. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, Springer Series in Statistics; Springer: New York, NY, USA,

2001.
46. Rokach, L.; Maimon, O.Z. Data Mining with Decision Trees: Theory and Applications; World Scientific: Singapore, 2007; Volume 69.
47. Matthews, A.G.D.G.; Rowland, M.; Hron, J.; Turner, R.E. Gaussian process behaviour in wide deep neural networks. Int. Conf.

Learn. Represent 2018, 4, 77–86.
48. Mitchell, T.M.; Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997.
49. Shobha, G.; Rangaswamy, S.; Chapter; Gudivada, V.N.; Rao, C. Computational Analysis and Understanding of Natural Languages:

Principles, Methods and Applications, Vol. 38 of Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 197–228.
50. Benjamini, Y.; Leshno, M. Statistical methods for data mining. In Data Mining and Knowledge Discovery Handbook; Springer:

Berlin/Heidelberg, Germany, 2005; pp. 565–587.
51. Scholkopf, B.; Smola, A.J.; Bach, F. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT

Press: Cambridge, MA, USA, 2002.
52. Vapnik, V.N. Statistical Learning Theory; Wiley-Interscience: Hoboken, NJ, USA, 1998.
53. Gunn, S.R. Support vector machines for classification and regression. Analyst 1998, 135, 230–267.
54. Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [CrossRef]
55. Sutton, C.D. Classification and regression trees, bagging, and boosting. Handb. Stat. 2005, 24, 303–329.
56. Friedman, J.H. Stochastic gradient boosting; Computational statistics & data analysis. Comput. Stat. Data Anal. 2002, 38, 367–378.
57. Moon, J.; Jung, S.; Rew, J.; Rho, S.; Hwang, E. Combination of short-term load forecasting models based on a stacking ensemble

approach. Energy Build. 2020, 216, 109921. [CrossRef]
58. He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art, Knowledge-Based Systems 212 (Dl). arXiv 2021,

arXiv:1908.00709.
59. Kautz, T.; Eskofier, B.M.; Pasluosta, C.F. Generic performance measure for multiclass-classifiers. Pattern Recognit. 2017, 68, 111–125.

[CrossRef]
60. Grandini, M.; Bagli, E.; Visani, G. Metrics for multi-class classification: An overview. arXiv 2020, arXiv:2008.05756.
61. Markoulidakis, I.; Rallis, I.; Georgoulas, I.; Kopsiaftis, G.; Doulamis, A.; Doulamis, N. Multiclass confusion matrix reduction

method and its application on net promoter score classification problem. Technologies 2021, 9, 81. [CrossRef]
62. Warrens, M.J. Five ways to look at cohen’s kappa. J. Psychol. Psychother. 2015, 5, 1. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/1046456.1046467
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1016/j.enbuild.2020.109921
https://doi.org/10.1016/j.patcog.2017.03.008
https://doi.org/10.3390/technologies9040081
https://doi.org/10.4172/2161-0487.1000197

	Introduction
	Materials and Methods
	DGA Data
	Initial Pre-Processing of DGA Data
	Splitting Data and Training the ML System
	Standard ML Framework
	AutoML Framework

	Classification Performance Metrics
	Software

	Results
	Overall Classifier Performance for the TFD Problem
	Analysis of the Frameworks’ Performance
	Transformers’ Fault Diagnosis in Detail

	Conclusions
	Appendix A
	Single Classifiers
	Artificial Neural Networks
	Decision Trees
	Gaussian Processes
	K-Nearest Neighbors
	Naive Bayes
	Logistic Regression
	Support Vector Machines

	Ensembles
	Random Forest
	Bagging Classifier
	Gradient Boosting
	Stacking Ensemble

	Appendix B
	Appendix C
	Confusion Matrix
	Precision and Recall
	Balanced Accuracy
	F1-Measure
	Matthews’ Correlation Coefficient
	Cohen’s Kappa

	References

