
Citation: Li, C.; Kim, G.-W. Improved

State-of-Charge Estimation of

Lithium-Ion Battery for Electric

Vehicles Using Parameter Estimation

and Multi-Innovation Adaptive

Robust Unscented Kalman Filter.

Energies 2024, 17, 272. https://

doi.org/10.3390/en17010272

Academic Editor: Massimo Guarnieri

Received: 14 November 2023

Revised: 16 December 2023

Accepted: 21 December 2023

Published: 4 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Improved State-of-Charge Estimation of Lithium-Ion Battery for
Electric Vehicles Using Parameter Estimation and
Multi-Innovation Adaptive Robust Unscented Kalman Filter
Cheng Li and Gi-Woo Kim *

Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea
* Correspondence: gwkim@inha.ac.kr

Abstract: In this study, an improved adaptive robust unscented Kalman Filter (ARUKF) is proposed
for an accurate state-of-charge (SOC) estimation of battery management system (BMS) in electric vehi-
cles (EV). The extended Kalman Filter (EKF) algorithm is first used to achieve online identification of
the model parameters. Subsequently, the identified parameters obtained from the EKF are processed
to obtain the SOC of the batteries using a multi-innovation adaptive robust unscented Kalman filter
(MIARUKF), developed by the ARUKF based on the principle of multi-innovation. Co-estimation
of parameters and SOC is ultimately achieved. The co-estimation algorithm EKF-MIARUKF uses a
multi-timescale framework with model parameters estimated on a slow timescale and the SOC esti-
mated on a fast timescale. The EKF-MIARUKF integrates the advantages of multiple Kalman filters
and eliminates the disadvantages of a single Kalman filter. The proposed algorithm outperforms
other algorithms in terms of accuracy because the average root mean square error (RMSE) and the
mean absolute error (MAE) of the SOC estimation were the smallest under three dynamic conditions.

Keywords: state of charge; adaptive extended Kalman filter; multi-innovation; adaptive robust
unscented Kalman filter; online parameter identification; multiscale time framework

1. Introduction

To attain energy sustainability and minimize the reliance on fossil fuels, the devel-
opment and exploitation of renewable energy sources have been improving worldwide.
Owing to the rapid development of battery energy storage technology, lithium-ion bat-
teries are widely used in EV owing to their excellent energy density and long service
life [1,2]. However, harsh operating conditions, such as high temperatures and overloads,
cause batteries to be incorrectly charged and discharged, degrading their performance
and decreasing their lifespan [3]. Therefore, a battery energy management system (BMS)
comprising several modules has been designed to maintain and control the battery oper-
ation. The SOC, as a key parameter of the BMS, is used to estimate the distance traveled
by EVs and prevent batteries from overcharging or over discharging [4] to extend the
battery lifespan. Generally, the SOC of EVs cannot be measured directly, and high-precision
instruments are expensive and unsuitable for integration into EVs. Therefore, the theory
and application of SOC estimation are important in the field of EVs [5].

In recent years, several methods have been proposed for SOC estimation, which can be
categorized into open-loop, machine-learning, and model-based methods. The open circuit
voltage (OCV)–based lookup table method based on the Ampere-hour integral method [6]
comprises two basic open-loop methods. The common lookup table method is simple and
implemented using an OCV-SOC fitting function. This method is not suitable for rapid
SOC estimation because the Li-ion battery must be left standing for several hours before the
voltage reaches a steady state. Moreover, the battery is affected by the temperature when
the vehicle is running. Xing et al. [7] introduced a method based on temperature modeling
combined with an OCV-SOC-temperature table, with few parameters. They presented the
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interference of estimation results at different temperatures and improved the computational
efficiency. The Ampere-time integration method, which has a simple structure and is
realized through the integration of accumulated inflow and outflow currents with time, is
widely used in BMS. However, it is susceptible to measurement accumulation errors and
initial SOC. Yang et al. [8] improved the Ampere-time integration method by modeling
lithium ions in electrode particles, which considers the relationship between the change in
lithium-ion concentration in the electrode material and the capacity.

In addition, machine learning (ML) is a data-driven method for estimating the SOC
using measurable signals such as current, voltage, and temperature. Three popular ML
methods exist for SOC estimation: deep neural network (DNN), feed-forward neural
network (FFNN), and support vector machine (SVM). The main method for increasing the
robustness of a DNN involves adding Gaussian noise to the training data measured under
various working conditions. To this end, Chemali et al. [9] proposed a novel approach for
SOC estimation using training data generated by applying drive-cycle loads at various
ambient temperatures. How et al. [10] proposed a DNN model based on a different number
of layers to estimate the SOC by training data from multiple driving cycles. Although FFNN
also requires training data, in contrast to DNN, FFNN has no feedback, and the data always
flow in one direction. Chen et al. [11] proposed a new method to estimate SOC based
on an improved FFNN model by training multiple datasets. Hannan et al. [12] proposed
the SOC estimation method based on the mapping relationship between measurement
data. Unlike models trained using neural network methods, SVM methods require a much
smaller training set. Anton et al. [13] proposed a SOC estimation method that imports the
measurement parameters into an SVM model containing a radial basis function to train
the dataset. In summary, all these ML methods are based on training multiple datasets
to estimate the SOC, and the training of the datasets requires significant computational
resources. More importantly, these measurements were collected previously, ignoring the
effects of changes in operating conditions and changes in the internal parameters of the
battery after many uses of the battery.

The complete process of the model-based approach is divided into two steps: battery
modeling and algorithm implementation. The battery modeling stage entails the selection of
an appropriate battery model. Battery models are classified into three main categories: data-
driven model (DDM), electrochemical model (EM), and equivalent circuit model (ECM).
DDM, also known as black box models, characterize the external features of a battery
through learning algorithms, without the need to understand the internal properties of the
battery. DDM often depends on ECM and EM. Wang et al. [14] proposed a model based on
a combination of Nth-order ECM and EM to estimate the SOC. The EM was derived from
the chemical reactions of the battery. Zhang et al. [15] proposed an electrochemical model
using electrochemical bilayers and solid–electrolyte interfaces. The need for such high-
precision modeling also increases the complexity of the model structure. Therefore, ECMs
based on the modular integration of electrical components have also been widely adopted.
ECM is based on electrical components integrated into a system model by combining
modules. Compared with DDM and EM, ECM requires fewer computational resources,
primarily utilizing only external dynamic electrical characteristics, such as resistors and
capacitor banks, and is highly compatible with embedded system applications [16]. The
complexities of ECM are categorized from low into high in the order of single-, double-,
and multiple-order classifications [17]. Although multiorder ECM has higher accuracy, the
number of ECM parameters to be identified increases accordingly as the model complexity
increases. Therefore, it is important to select an appropriate ECM for combination with
algorithms.

The algorithm implementation phase first requires the determination of the unknown
model parameters. Zhu et al. [18] generated fixed parameter values by fitting the SOC-OCV
curves using the least-squares method in conjunction with the physical properties of the
battery. SOC estimation was then performed using fixed parameter values. In contrast to
the above methods, the use of the recursive least squares enables the design of time-varying
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adaptive parameter estimators [19,20] that are capable of online parameter estimation.
Xiong et al. [21] proposed a dual EKF to improve the computation efficiency of the es-
timation results, which is capable of estimating the state and parameters of the system
on multiple timescales, considering the effect of temperature. Guo et al. [22] proposed a
dual EKF parameter adaptive estimator to estimate the OCV by estimating the OCV fitting
parameters and ultimately realizing parameter adaptation to estimate the SOC. In addition,
Panda et al. [23] proposed a method for real-time modal identification of eigen pertur-
bations for vibrating structures, which is computationally efficient, provides an effective
online identification framework, and improves the speed of online parameter identification.
Bhowmik et al. [24] proposed a novel reference-free method for real-time identification of
structural modal parameters using recursive typical correlation analysis and first-order
eigen perturbation techniques. Compared with the Kalman filter, although the eigen per-
turbation technique has a great advantage in terms of computational efficiency [25], online
identification of battery parameters based on real-time eigen perturbation can be chal-
lenging, and its direct application to identify battery parameters may not be easy. This is
because it requires a comprehensive understanding of the relationship between eigenvalue
perturbation and battery parameters. In addition, upon determining the model parameters,
it is necessary to select an algorithm to estimate the SOC. The Kalman filter family of algo-
rithms is widely used for SOC estimation; however, it does not perform well in nonlinear
systems. Thus, an adaptive unscented Kalman filter [26,27] was proposed that uses an
unscented transformation instead of linearization to reduce the error generated when the
function is linearized, subsequently improving the accuracy. In addition, an ARUKF was
proposed [28], which enhances the robustness of the algorithm by H∞ filtering. To further
improve the accuracy of the algorithm in estimating SOC, the MIARUKF based on the
principle of multiple innovations was designed, which not only adjusts the noise covariance
to improve adaptability but also incorporates a weighting factor in each innovation point
based on the multi-innovation principle to minimize the cumulative effect of historical
disturbances.

The accuracy of the parameters influenced the SOC estimation results. However,
it is impossible to eliminate noise from sensor signals, which reduces the accuracy of
the parameters. Therefore, it is important to reduce the influence of this inaccuracy. To
date, most studies have not identified parameters or have performed separate parameter
identification. This is because batteries are affected by the temperature and multiple cycles
of charging and discharging, resulting in parameters that are calculated individually in
advance and cannot be applied in the next SOC estimation. To solve this problem, a co-
estimation of the parameters and SOC is required. Therefore, the objective of this study is
to perform a co-estimation of the parameters and SOC based on the current and voltage
data of the measured battery. In this paper, a co-estimation estimation method based on
the fusion of the EKF and MIARUKF algorithms is proposed to realize the co-estimation
of battery parameters and the SOC of EVs, which is the core technology for guaranteeing
the safety of EVs, as depicted in Figure 1. The co-estimation algorithm EKF-MIARUKF is
divided into two components: parameter identification based on EKF and SOC estimation
based on MIARUKF. The EKF algorithm is employed to identify the model parameters
using real-time current and voltage measurements. The MIARUKF algorithm estimates
the SOC based on the identified parameter values and the measured current and voltage
values. The co-estimation algorithm EKF-MIARUKF uses a multiscale framework with
time separation, where the slow timescale estimates the battery model parameters and the
fast timescale estimates the SOC. This approach is more adaptable, is less error-constrained,
and improves estimation efficiency over methods that perform independent parameter
identification [18]. The MIARUKF algorithm integrates the advantages of multiple Kalman
filters and eliminates the disadvantages of a single Kalman filter. The algorithm has the
advantages of reducing error perturbation, adaptive system, and measurement noise and
has enhanced robustness at the same time. The experimental results were compared
using the DST (dynamic stress test), UDDS (Urban Dynamometer Driving Schedule), and
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NEDC (New European Driving Cycle) under three dynamic conditions to demonstrate the
accuracy of the algorithm. In addition, simulated noise was introduced under dynamic
conditions to evaluate the robustness of the proposed method against sensor noises.
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Figure 1. Block diagram of the model-based SOC estimation algorithm.

This paper is organized as follows: Section 2 describes the battery model and parameter
identification process, as well as the discrete-time state-space model of the system using the
EKF-MIARUKF algorithm with multiple timescales. Section 3 presents the SOC estimation
algorithm MIARUKF. Section 4 presents the results of the experiments performed in this
study, the results of the parameter estimation, and a discussion including a robustness
analysis. The main conclusions are summarized in Section 5.

2. Battery Model and Parameter Identification

To reduce computational burden and improve SOC estimation accuracy, a multi-
timescale framework was designed to co-estimate SOC and battery parameters because
battery parameters are typically slowly changed, while battery states are rapidly changed.
The discrete-time state-space equations are constructed via a multiscale approach, where
the macro scale predicts the battery parameters in the system and the micro scale predicts
the state of the system. The nonlinear state-space model of the system is then expressed as{

xk,l+1 = f (xk,l , θk,uk,l) + ωk,l , θk+1 = θk + ρk
yk,l = g(xk,l , θk,uk,l) + νk,l

(1)

where xk,l is the time tk,l = tk,0 + l × T(1 ≤ l ≤ L) system state matrix; T is a fixed time
interval between two neighboring measurement points; k is a metric for the macroscale
state; l is a metric for the microscale state; uk,l is the exogenous input matrix at moment tk,l ;
yk,l is the system observation matrix; ωk,l and ρk denote the state and process noise matrices,
respectively; vk,l denotes the measurement noise matrix; θk indicates the parameter matrix
at the k th macroscale and θk = θk,0:L−1. Note that L represents the level of separation on
the timescale and xk = xk−1,L. Our goal is to estimate the system state x and parameter θ
from noisy observation y after defining the system.

2.1. Battery Model

The Thevenin ECM for the lithium-ion battery model is described in detail in [17]. To
achieve a balance between the accuracy and complexity of the battery model, a second-
order RC model was used to simulate battery dynamics in this study. The second-order
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RC is divided into five parts, including the open-circuit voltage Eo(z), ohmic resistor R0,
resistor-capacitor network, terminal voltage Vo, and operating current I. The symbols R1
and R2 in the resistor-capacitor network represent the polarization resistance; C1 and C2
represent the polarization capacitance; the corresponding V1 and V2 represent the voltages
of these two networks. The battery was modeled according to Kirchhoff’s theorem, as
shown in Equations (2) and (3):

State equation: 
dV1
dt = − 1

R1C1
V1 +

1
C1

I
dV2
dt = − 1

R2C2
V2 +

1
C2

I
dSOC

dt = − 1
Q I

, (2)

Output equation:
Vo = Eo(SOC)− R0 I − V1 − V2 (3)

where Q denotes the nominal capacity of the battery. SOC represents the ratio of the remaining
capacity of the battery to its rated capacity, which is expressed using Equation (4) as

SOCt = SOC0 −
1
Q

∫ t

0
Idt (4)

where I and SOCt denote the current and the SOC at time t, respectively. From Equation (2),
we can reformulate the following:

V1
k,l

V2
k,l

SOCk,l

 =

1 − Ts
R1C1

0 0
0 1 − Ts

R2C2
0

0 0 1




V1
k,l−1

V2
k,l−1

SOCk,l−1

+


Ts
C1
Ts
C2

− Ts
Q

Ik,l−1 (5)

The state transition and measurement equations can be obtained using Equation (6).
xk,l+1 = f (xk,l , θk, uk,l) =

 1 − Ts
R1C1

0 0
0 1 − Ts

R2C2
0

0 0 1

xk,l +


Ts
C1
Ts
C2

− Ts
Q

uk,l

yk,l = g(xk,l , θk, uk,l) = Eo
k,l(SOC)− R0uk,l − V1

k,l − V2
k,l

(6)

where 
xk,l =

[
V1

k,l V2
k,l SOCk,l

]T

θk =
[

R0 R1 R2 C1 C2 Q
]T

k
yk,l = Vo

k,l
uk,l = Ik,l

(7)

where Vo
k,l and Ik,l denote the battery voltage and current measured at time tk,l ; V1

k,l and
V2

k,l represents the voltages of these two networks at time tk,l ; SOCk,l denotes the SOC at
time tk,l . Furthermore, the Cθ

k calculation process requires the determination of the total
derivative of the measurement function for the parameters. The computational procedure
is described in detail in [21]. From Equation (6), the system state matrix and observation
matrix are obtained as follows:

Ak−1,l−1 =


1 − Ts

R1C1
0 0

0 1 − Ts
R2C2

0

0 0 1

 , Bk−1,l−1 =


Ts
C1
Ts
C2

− Ts
Qn

 (8)
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Cx
k−1,l = [−1,−1,

∂Eo
k−1(SOC)

∂SOCk−1,l
] (9)

Cθ
k =

[
−ik,0 0 0 0 0

∂Eo
k−1(SOC)
∂SOCk,0

∂SOCk,0
∂Q̂−

k

]
+Cx

k,0

[
∂ f (x̂k−1,L−1,θ̂−k ,uk−1,L−1)

∂θ̂−k
+

∂ f (x̂k−1,L−1,θ̂−k ,uk−1,L−1)
∂x̂k−1,L−1

dx̂k−1,L−1
dθ̂−k

] (10)

2.2. Online Parameter Identification of Battery Model

The parameters of the ECM are easily affected by factors such as the operating tem-
perature, battery charge state, and aging degree; therefore, it is important to identify these
parameters in real-time. To estimate the battery parameters, including R0, R1, R2, C1, C2,
and Q, we adopted the EKF method [21] combined with online measurement data.

2.2.1. The Initial Values and Nonlinear Function

The hybrid pulse power characterization method was used to test the battery model
parameters. One cycle of battery charging and discharging comprises three periods. During
the charging period, the battery was first charged at a constant current of 0.5 C (1.5 A) until
the voltage reached its cutoff voltage of 4.2 V, and then it was charged at a constant voltage
of 4.2 V until the current reached its cutoff current of 0.05 C (0.15 A) to fill the battery.
Subsequently, it was left for 2 h for the resting period. During the discharging period,
the battery was discharged at a constant current of 1 C (3 A), left to rest for 2 h, and then
discharged again at the equivalent current. Each time the SOC decreased by 5% until it was
fully discharged. The initial values of these parameters are listed in Table 1. These initial
values were obtained by parameter identification of the instantaneous voltage waveforms
recorded in real-time using the least squares method [18]. The relationship between the
OCV and SOC was obtained from the voltage waveforms of the pulse-discharge experiment.
A seventh-order polynomial was used to accurately fit the measured data, as shown in
Equation (11).

EO(SOC) = 76.8489SOC7 − 273.2551SOC6+389.1130SOC5 − 286.6882SOC4

+119.2722SOC3 − 29.5698SOC2 + 5.5458SOC + 2.8792
(11)

Table 1. Identified parameters of the battery model.

R0 R1 R2 C1 C2

0.1660 Ω 0.0189 Ω 0.0322 Ω 2.2948 kF 57.1452 kF

2.2.2. EKF-Based Online Parameter Estimation

The EKF provides an efficient approximation of likelihood estimation for nonlinear
state discretization. A multiscale dual EKF was used for the macroscopic and microscopic
prediction of system parameters and system states, respectively [21]. This approach reduces
the computational cost of the BMS. Unlike the multiscale dual EKF, we use a single EKF
with the designed MIARUKF algorithm to make macroscopic and microscopic predictions
of the system parameters and system state, respectively. This co-estimation algorithm EKF-
MIARUKF is multiscale and presented in Table 2. Steps 1 and 5 estimate the parameters
using the EKF algorithm, and steps 2–4 estimate the SOC using the MIARUKF algorithm,
as described in Section 3. From Table 2, θ0 and Pθ

0 are the initial values of the parameters
and parameter covariance, respectively; x0,0 and Px

0,0 are the initial values of the system
state and covariance, respectively; Qθ

0 and Rθ
0 are the initial values of the covariance of the

parameter-estimated process noise and measurement noise, respectively; Qx
0,0 and Rx

0,0 are
the initial values of the covariance of the SOC-estimated process noise and measurement
noise, respectively; Kθ

k is the Kalman gain of the parameter.
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Table 2. Co-estimation algorithm EKF-MIARUKF.

Initialization

(12)

θ0 = E(θ0), Pθ
0 = E

[(
θ0 − θ̂0

)(
θ0 − θ̂0

)T
]
, x0,0 = E[x0,0], Px

0,0 = E
[
(x0,0 − x̂0,0)(x0,0 − x̂0,0)

T
]

Qθ
0 = E

[
(ρ0 − ρ̂0)(ρ0 − ρ̂0)

T
]
, Qx

0,0 = E
[
(ω0,0 − ω̂0,0)(ω0,0 − ω̂0,0)

T
]

Rθ
0 = E

[
(ν0 − ν̂0)(ν0 − ν̂0)

T
]
, Rx

0,0 = E
[
(ν0,0 − ν̂0,0)(ν0,0 − ν̂0,0)

T
]

For k ∈ {1, · · · , ∞}, calculation:
Step 1 Macroscale EKF parameter filter θ̂−k time update equation

(13)θ̂−k = θ̂k−1, Pθ−
k = Pθ

k−1 + Qθ
k−1

For k ∈ {1, · · · , ∞}, compute state filters at each micro scale
Step 2 Microscale MIARUKF filter state time and measurement update equations
Equations (17)–(33)
Step 3 For time-series calculation l = 1 : L(l → L), L is set to 60 s
Equations (17)–(33)
Step 4 Timescale transform

(14)x̂k,0 = x̂k−1,L, Px
k,0 = Px

k−1,L, yk,0 = yk−1,L, uk,0 = uk−1,L
For k ∈ {1, · · · , ∞}, calculation:
Step 5 Macroscale EKF parametric filter θ̂k update equation

(15)

Kθ
k = Pθ−

k

(
Cθ

k

)T
[

Cθ
k Pθ−

k

(
Cθ

k

)T
+ Rθ

k

]
θ̂k = θ̂−k + Kθ

k
[
yk,0 − g

(
x̂k,0, θ̂−k , uk,0

)]
Pθ

k =
(

I − Kθ
k Cθ

k

)
Pθ−

k

where Cx
k−1,l =

∂g(x,θ̂−k ,uk−1,l)
∂x

∣∣∣∣
x
= x̂−k−1,l , Cθ

k =
dg(x̂k,0,θ,uk,0)

dθ

∣∣∣
θ=θ̂−k

(16)

3. SOC Estimation
3.1. Overview

In this study, we combined the ARUKF with multi-innovation based on the principle
of multi-innovation, which is MIARUKF, where the ARUKF is the combination of a robust
unscented Kalman filter (RUKF) [28] and the adaptation process in the adaptive extended
Kalman filtering [29]. However, a multi-innovation iterative process contains multiple
steps of prediction information, resulting in the possibility that the accumulation of old
data interferes with the results when there is a measurement error [30]. To overcome this
problem, Liu et al. [31] proposed a multi-innovation adaptive extended Kalman filtering to
regulate the correction effect of old data by adding different weighting factors to different
innovations. The MIARUKF algorithm is summarized as follows:

Obtain Sigma point at time step k − 1, l − 1:
x0

k−1,l−1 = x̂k−1,l−1

xi
k−1,l−1 = x̂k−1,l−1 +

√
(n + λ′)Px

k−1,l−1, i = 1, 2, . . . , n

xi
k−1,l−1 = x̂k−1,l−1 −

√
(n + λ′)Px

k−1,l−1, i = n + 1, n + 2, . . . , 2n

(17)

where n denotes the length of the state vector and λ′ can be calculated as

λ′ = α2(n + h)− n, (18)

where α is the scale parameter, α ∈ [0, 1] is used to control the distribution of sigma points,
and h is also a scale parameter. In this paper, the α is 0.01, and h is 0. The weights of the
mean and covariance are calculated as follows: W0

m = λ′
n+λ′ , Wi

m = 1
2(n+λ′) , i = 1, 2 . . . 2n

W0
c = λ′

n+λ′ + 1 − α2 + β, Wi
c =

1
2(n+λ′) , i = 1, 2 . . . 2n

(19)
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• where Wm and Wc represent the weights for calculating the mean and covariance,
respectively, and β ≥ 0 is a nonnegative term, and, in this study, the Gaussian random
variable β is set to 2.

• Update the a priori state value x̂−k−1,l and the system variance prediction Pxx
k−1,l :

x̂−k−1,l =
2n
∑

i=0
Wi

mxi
k−1,l−1

Pxx
k−1,l =

2n
∑

i=0
Wi

c(xi
k−1,l−1 − x̂−k−1,l)(xi

k−1,l−1 − x̂−k−1,l)
T
+ Qx

k−1,l−1

(20)

where Qx
k−1,l−1 represents the system noise covariance matrix.

• Update observation ŷk−1,l and observation variance prediction Pyy
k−1,l :

ŷk−1,l =
2n
∑

i=0
Wi

myi
k−1,l−1

Pyy
k−1,l =

2n
∑

i=0
Wi

c(yi
k−1,l−1 − ŷk−1,l)(y

i
k−1,l−1 − ŷk−1,l)

T
+ Rx

k−1,l−1

(21)

where Rx
k−1,l−1 represents the process noise covariance matrix.

• Update covariance Pxy
k−1,l , Kalman gain Kx

k−1,l and state error covariance Px
k−1,l :

Pxy
k−1,l =

2n
∑

i=0
Wi

c(xi
k−1,l−1 − x̂−k−1,l)(y

i
k−1,l−1 − ŷk−1,l)

T

Kx
k−1,l = Pxy

k−1,l

(
Pxy

k−1,l

)−1

Px
k−1,l = Pxx

k−1,l −
[

Pxy
k−1,l Pxx

k−1,l

]
(R)−1

[
Pxy

k−1,l Pxx
k−1,l

]T

(22)

where

R =

[
Rx

k−1,l−1 0
0 −γI

]
+

[
Hk,l−1

I

]
P−

K

[
HT

k,l−1 I
]
=

Rx
k−1,l−1 + Pyy

k−1,l

(
Pxy

k−1,l

)T

Pxy
k−1,l −γ2 I + Pxx

k−1,l

, (23)

Selection factor γ is set to 3, and I is the unit matrix.

• Multi-Innovation Status Measurement Update:

x̂k−1,l = x̂−k−1,l +
b

∑
i=1

λiKk,l−iek,l−i+1, (24)

where b denotes the length of the innovation. The weights at different moments are
represented by Equation (25), which ensures the maximum weight at the current
moment.

λ1 ≥ (λ2 + λ3 + . . . λb) (25)

The effect of the cumulative interference was reduced by adding different weighting
factors to the gain at different time intervals to play the role of correcting the old data. The
performance of MIARUKF is at least better than that of ARUKF with different weights,
as follows: {

λ1 = 1
λ2 = λ3 = . . . λb = a

b−1 , 0 ≤ a ≤ 1 (26)

where the adjustable coefficient a is 0.9.
Although good algorithmic results can be obtained by adding an appropriate number

of multiple innovations to the MIARUKF, the performance of the algorithm deteriorates
when too many innovations are incorporated. To ensure the excellent performance of
MIARUKF, the innovation length must be constrained.
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• Update adaptive process noise covariance matrix Q̂x
k−1,l and measurement noise

covariance matrix R̂x
k−1,l :

Q̂x
k−1,l = Kx

k−1,l N̂(dk−1,l)Kx
k−1,l

T (27)

R̂x
k−1,l = N̂(ek−1,l) + Cx

k−1,l P
x
k−1,lC

x
k−1,l

T (28)

Innovation at moment tk−1,l is dk−1,l , which is the difference between the actual
observation yk−1,l and predicted observation ŷd

k−1,l :

dk−1,l = yk−1,l − ŷd
k−1,l (29)

where
ŷd

k−1,l = ŷk−1,l (30)

The residual at moment tk−1,l is ek−1,l , which is the difference between the actual
observation yk−1,l and estimated observation ŷe

k−1,l :

ek−1,l = yk−1,l − ŷe
k−1,l (31)

where
ŷe

k−1,l =
[
1 1 0

]
x̂k−1,l + R0uk−1,l + Eo

k,l(SOC) (32)

Assuming that dk−1,l is ergodic, the real-time estimated variance of innovation can be
obtained based on the windowing method as (33):

N̂(dk−1,l) =


l−1

l N̂(dk−1,l−1) +
1
l dk−1,ldk−1,l

T l ≤ W

1
W

l
∑

i=l−W+1
didi

T l > W
(33)

where W denotes the length of the sliding data window.

3.2. Implementation of the Co-Estimation Algorithm

The multiscale co-estimation algorithm EKF-MIARUKF uses a five-step estimation, as
shown in Figure 2.
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1. At each macroscale level, the EKF performs a temporal update and computes a priori
parameter estimates θ̂−k and error covariances Pθ−

k using Equation (13). The battery
capacity was updated along with the battery model parameters.

2. After the temporal update of the macroscopic EKF, state estimation and measurement
updates of the microscopic MIARUKF were performed at each microscale using θ̂−k .
The a priori state estimation x̂−k−1,l and its error covariance Pxx

k−1,l , the a posteriori state
estimation x̂k−1,l and its error covariance Px

k−1,l , the adaptive process noise covariance
Q̂x

k−1,l , and the adaptive measurement noise covariance R̂x
k−1,l were computed from

Equations (17)–(33).
3. After a posteriori estimation was completed, we compared the microscale l and

timescale separation level L. If microscale l does not reach L, the state estimate x̂k−1,l is
passed to step 2 and used as the initial value at time tk−1,L before the state estimation is
performed. If l reaches L, the a posteriori state estimate x̂k−1,L and its error covariance
Px

k−1,L, adaptive process noise covariance Q̂x
k−1,L, and adaptive measurement noise

covariance R̂x
k−1,L can be updated using Equations (17)–(33) for the next macro time.

4. Update all microscopic timescales according to Equation (14); for example, x̂k−1,L = x̂k,0.
In simpler terms, the estimates at tk−1,L are ready to be updated for parameter and
next-state estimations.

5. After state estimation, the macroscopic EKF performs measurement updating, where
the posterior estimate θ̂k and covariance Pθ

k are computed from Equation (15).

4. Experimental Validation and Discussion

An experimental prototype testbed was established to experimentally validate the
proposed co-estimation algorithm. Based on a high-precision test platform, a compact-size
lithium-ion battery [32] (model: 18650-30Q) was used for the initial experiment. Its nominal
voltage was 4.2 V, and its nominal capacity was 3 Ah. A single-cell battery was used
as a testbed. The experimental set-up comprises a temperature chamber, computer, and
battery test system (BTS-4000) for current (0–6 A) and voltage (0–5 V). The voltage and
current errors were limited to 0.1%. Experimental data, including charging and discharging
currents, as well as output voltages, were collected and stored at 0.1 s intervals by a
computer connected to the BTS-4000. The process of data acquisition was: first, the battery
was placed in a temperature chamber (25 ◦C) and connected; then the battery was fully
charged and left to stand for two hours using the constant current and constant voltage
mode through the host computer; then the dynamic condition file was imported through
the host computer and the protection voltage was set to 2.5 V; and finally the charging and
discharging battery device was run; at the end of the experiment the data was imported to
the computer connected to the host computer. Note that the experiments were performed
under fully charged conditions, and the designed SOC estimation method was evaluated
based on the experimental data of different operating conditions. A block diagram of the
experimental bench is shown in Figure 3.

4.1. Dynamic Condition Testing

To evaluate the performance of the proposed algorithm under various dynamic driving
conditions, an SOC estimation experiment was performed under driving cycles. Because
the inadequate representativeness of driving cycles is one significant factor leading to
the discrepancy, three driving cycles, UDDS, DST, and NEDC, were used to represent
the real-world driving conditions and were widely used in the automotive industry to
evaluate the performance associated with vehicle’s dynamic conditions. The single-cycle
speed profiles for the three driving cycles are shown in Figure 4a. We used a simulation
software (Version: ADVISOR 2003) to generate three corresponding motor current curves
based on this criterion, as shown in Figure 4b. Note that our motor current curves are the
result of equal scaling down based on the current that the battery can provide because the
power source in this experiment is a single lithium-ion battery, which is unable to provide
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the current output (i.e., electrical load) under real working conditions. The battery test
equipment controls the battery through a single-cycle condition file to carry out multiple
cycles of charging and discharging and stops working when the battery capacity drops from
full capacity to the cut-off voltage. Figures 5–7 present the results of online identification of
the model parameters under these three working conditions. The trends in the parameter
identification results under different working conditions appear to be similar. In addition,
the small fluctuations in the early stage parameters R0, R1, R2, C1, C2, and Q are owing to
the use of hybrid pulse power characterization experiments to determine the initial values
of the model parameters.
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The SOC under various cycles was estimated based on the identified model parame-
ters. In this study, the designed EKF-MIARUKF algorithm was compared with the SOC
estimation results of the MIARUKF, ARUKF, and RUKF algorithms, as shown in Figure 8a–c.
Notably, algorithms MIARUKF, ARUKF, and RUKF use fixed parameter values computed
in advance. For a more comprehensive comparison of the estimation accuracy of the dif-
ferent algorithms, we calculated the RMSE between the estimated and true SOC. RMSE is
shown by Equation (34). To further demonstrate the advantages of the proposed algorithm,
we calculated the MAE between the estimated SOC and the true SOC. The MAE is shown
in Equation (35).

RMSE(k) =

√√√√1
k

k

∑
i=1

(x(i)− x̂(i))2 (34)

MAE(k) =
∑k

i=1|x(i)− x̂(i)|
k

(35)

where k, x(i), and x̂(i) represent the time instant, true SOC, and estimated SOC, respectively.
The RMSE results are presented in Figure 8d. The MAE for different algorithms are
compared and summarized in Table 3. By comparing the SOC estimates with the true
values, it is evident that the designed EKF-MIARUKF algorithm estimates the SOC more
accurately than the other current algorithms. Therefore, the adaptive algorithm shows
better SOC estimation performance than the non-adaptive algorithm.
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Table 3. MAE for different algorithms.

Variance UDDS DST NEDC

EKF-MIARUKF 0.0019 0.0024 0.0038
MIARUKF 0.0065 0.0042 0.0064

ARUKF 0.0100 0.0059 0.0077
RUKF 0.0109 0.0073 0.0091

4.2. Robustness Analysis

In practical applications, the sensor information in automobiles is contaminated by
electrical noise. Therefore, we examine the effect of electrical noise (i.e., different variances)
on the performance of SOC estimation algorithms. This is confirmed by adding random
Gaussian white noise to the measured current and voltage data. The white Gaussian
random noise used here was categorized into three cases—case 1, case 2, and case 3—with
contamination levels ranging from low to high. The measured current and voltage data
of case 1 are added with Gaussian white noise in Figure 9a (σ2 = 0.05) and (d) (σ2 = 0.02),
the measured current and voltage data of case 2 are added with Gaussian white noise in
Figure 9b (σ2 = 0.10) and (e) (σ2 = 0.03), and the measured current and voltage data of case 3
are added with Gaussian white noise in Figure 9c (σ2 = 0.15) and (f) (σ2 = 0.05), respectively.
As shown in Figure 10a,d, after adding different noises to the experimental data under the
UDDS cycle, the EKF-MIARUKF algorithm still maintains a high estimation accuracy, with
a small change in the value of mean root mean square error (MRMSE).
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The identical noise was added for the DST and NEDC cycles. As shown in Figure 10b–d,
the SOC estimation results of the algorithm show little fluctuation, and the RMSE results
are similar when subjected to noise interference under different dynamic conditions. To
further investigate the performance with the addition of noise, the relative error of the
nominal MRMSE (i.e., the normalized performance measure) was calculated quantitatively
as follows:

Relative Error =
MRMSEPerturbed − MRMSENominal

MRMSENominal
(36)
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The relative errors of the estimated and nominal values for the three cases are listed in
Table 4, Table 5, and Table 6, respectively. The results show that the estimated performance
and nominal values are similar for the different cases.

Table 4. Comparison of MRMSE for different Gaussian random noises under the UDDS cycle.

Variance MRMSE Relative Error to Nominal

nominal 0.0025 -
Case 1 0.0023 0.08
Case 2 0.0028 0.12
Case 3 0.0028 0.12

Table 5. Comparison of MRMSE for different Gaussian random noises under the DST cycle.

Variance MRMSE Relative Error to Nominal

nominal 0.0029 -
Case 1 0.0026 0.10
Case 2 0.0031 0.07
Case 3 0.0032 0.10

Table 6. Comparison of MRMSE for different Gaussian random noises under the NEDC cycle.

Variance MRMSE Relative Error to Nominal

nominal 0.0040 -
Case 1 0.0039 0.03
Case 2 0.0046 0.15
Case 3 0.0047 0.18

5. Conclusions

In this study, a co-estimation method EKF-MIARUKF for parameter and SOC estima-
tion based on multiple timescales was successfully developed. The second-order Thevenin
ECM method was utilized to characterize the externals of the LIB, and the EKF was em-
ployed to estimate various parameters of the ECM online and thus the influence of fixed
parameters on the SOC estimation results. The designed MIARUKF algorithm is a reliable
SOC estimator that not only adjusts the noise covariance to improve adaptability but also
incorporates a weighting factor in each innovation point based on the multi-innovation
principle to minimize the cumulative effect of historical disturbances. Coordinating the
time variation of the EKF and MIARUKF through the multi-timescale framework reduces
the computational effort while obtaining accurate parameters. To validate the proposed
multi-timescale EKF-MIARUKF method, experiments with various automotive operating
conditions were conducted and the SOC prediction accuracy of different algorithms was
judged by RMSE and MAE. The SOC estimation accuracy of the designed algorithm was
higher than other algorithms. The robustness of the algorithm was evaluated by adding cur-
rent and voltage noise to the experimental data. The results show that the EKF-MIARUKF
algorithm is robust to interference. This research contributes to the development of an EV
BMS system that improves the efficiency of energy use through accurate SOC estimation,
which in turn improves EV range and battery lifespan. At the same time, the development
of this technology will not only improve the performance of EVs themselves but also reduce
carbon emissions and promote the development of renewable energy.

Notably, the temperature inside and around the battery in a real driving environment
varies, but the experiments in this work were conducted at a constant room temperature
(25 ◦C), ignoring the effects of other temperatures. Moreover, the battery has a lifetime,
and the battery capacity will decrease after the battery undergoes multiple charging and
discharging; the battery aging tests and the estimation of the results after battery aging
were not performed in this work. Future research will focus on two issues: (1) the accuracy
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of the algorithm estimation at other temperatures and (2) the accuracy of the algorithm
estimation after battery aging. Accordingly, three plans are proposed to address these
two issues: (1) to conduct experiments in low and high-temperature environments; (2) to
conduct experiments in environments with a certain range of temperature variations; and
(3) to conduct battery aging tests.

Author Contributions: G.-W.K. as the principal investigator takes the primary responsibility for this
research. C.L. performed the experiments and analyzed. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by an INHA UNIVERSITY Research Grant.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author upon reasonable request.

Acknowledgments: The authors thank the Core Facility Center for Sustainable Energy (Inha Univer-
sity) for providing the measurement instruments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hu, X.; Yuan, H.; Zou, C.; Li, Z.; Zhang, L. Co-estimation of state of charge and state of health for lithium-ion batteries based on

fractional-order calculus. IEEE Trans. Veh. Technol. 2018, 67, 10319–10329. [CrossRef]
2. Takami, N.; Inagaki, H.; Tatebayashi, Y.; Saruwatari, H.; Honda, K.; Egusa, S. High-power and long-life lithium-ion batteries using

lithium titanium oxide anode for automotive and stationary power applications. J. Power Sources 2013, 244, 469–475. [CrossRef]
3. Hoque, M.; Hannan, M.; Mohamed, A.; Ayob, A. Battery charge equalization controller in electric vehicle applications: A review.

Renew. Sustain. Energy Rev. 2017, 75, 1363–1385. [CrossRef]
4. Cheng, K.W.E.; Divakar, B.; Wu, H.; Ding, K.; Ho, H.F. Battery-management system (BMS) and SOC development for electrical

vehicles. IEEE Trans. Veh. Technol. 2010, 60, 76–88. [CrossRef]
5. Waag, W.; Fleischer, C.; Sauer, D.U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid

vehicles. J. Power Sources 2014, 258, 321–339. [CrossRef]
6. Ng, K.S.; Moo, C.-S.; Chen, Y.-P.; Hsieh, Y.-C. Enhanced coulomb counting method for estimating state-of-charge and state-of-

health of lithium-ion batteries. Appl. Energy 2009, 86, 1506–1511. [CrossRef]
7. Xing, Y.; He, W.; Pecht, M.; Tsui, K.L. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various

ambient temperatures. Appl. Energy 2014, 113, 106–115. [CrossRef]
8. Yang, N.; Zhang, X.; Li, G. State of charge estimation for pulse discharge of a LiFePO4 battery by a revised Ah counting.

Electrochim. Acta 2015, 151, 63–71. [CrossRef]
9. Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Emadi, A. State-of-charge estimation of Li-ion batteries using deep neural networks: A

machine learning approach. J. Power Sources 2018, 400, 242–255. [CrossRef]
10. How, D.N.; Hannan, M.A.; Lipu, M.S.H.; Sahari, K.S.; Ker, P.J.; Muttaqi, K.M. State-of-charge estimation of li-ion battery in electric

vehicles: A deep neural network approach. IEEE Trans. Ind. Appl. 2020, 56, 5565–5574. [CrossRef]
11. Chen, C.; Xiong, R.; Yang, R.; Shen, W.; Sun, F. State-of-charge estimation of lithium-ion battery using an improved neural network

model and extended Kalman filter. J. Clean. Prod. 2019, 234, 1153–1164. [CrossRef]
12. Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Saad, M.H.; Ayob, A. Neural network approach for estimating state of charge of

lithium-ion battery using backtracking search algorithm. IEEE Access 2018, 6, 10069–10079. [CrossRef]
13. Anton, J.C.A.; Nieto, P.J.G.; Viejo, C.B.; Vilán, J.A.V. Support vector machines used to estimate the battery state of charge.

IEEE Trans. Power Electron. 2013, 28, 5919–5926. [CrossRef]
14. Wang, Y.; Yang, D.; Zhang, X.; Chen, Z. Probability based remaining capacity estimation using data-driven and neural network

model. J. Power Sources 2016, 315, 199–208. [CrossRef]
15. Zhang, Q.; Wang, D.; Yang, B.; Cui, X.; Li, X. Electrochemical model of lithium-ion battery for wide frequency range applications.

Electrochim. Acta 2020, 343, 136094. [CrossRef]
16. Nejad, S.; Gladwin, D.; Stone, D. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of

lithium-ion battery states. J. Power Sources 2016, 316, 183–196. [CrossRef]
17. Plett, G.L. Battery Management Systems, Volume I: Battery Modeling; Artech House: Norwood, MA, USA, 2015.
18. Zhu, Q.; Xiong, N.; Yang, M.-L.; Huang, R.-S.; Hu, G.-D. State of charge estimation for lithium-ion battery based on nonlinear

observer: An H∞ method. Energies 2017, 10, 679. [CrossRef]
19. Yang, H.; Sun, X.; An, Y.; Zhang, X.; Wei, T.; Ma, Y. Online parameters identification and state of charge estimation for lithium-ion

capacitor based on improved Cubature Kalman filter. J. Energy Storage 2019, 24, 100810. [CrossRef]
20. Li, X.; Wang, Z.; Zhang, L. Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles. Energy 2019,

174, 33–44. [CrossRef]

https://doi.org/10.1109/TVT.2018.2865664
https://doi.org/10.1016/j.jpowsour.2012.11.055
https://doi.org/10.1016/j.rser.2016.11.126
https://doi.org/10.1109/TVT.2010.2089647
https://doi.org/10.1016/j.jpowsour.2014.02.064
https://doi.org/10.1016/j.apenergy.2008.11.021
https://doi.org/10.1016/j.apenergy.2013.07.008
https://doi.org/10.1016/j.electacta.2014.11.011
https://doi.org/10.1016/j.jpowsour.2018.06.104
https://doi.org/10.1109/TIA.2020.3004294
https://doi.org/10.1016/j.jclepro.2019.06.273
https://doi.org/10.1109/ACCESS.2018.2797976
https://doi.org/10.1109/TPEL.2013.2243918
https://doi.org/10.1016/j.jpowsour.2016.03.054
https://doi.org/10.1016/j.electacta.2020.136094
https://doi.org/10.1016/j.jpowsour.2016.03.042
https://doi.org/10.3390/en10050679
https://doi.org/10.1016/j.est.2019.100810
https://doi.org/10.1016/j.energy.2019.02.147


Energies 2024, 17, 272 18 of 18

21. Xiong, R.; Sun, F.; Chen, Z.; He, H. A data-driven multi-scale extended Kalman filtering based parameter and state estimation
approach of lithium-ion polymer battery in electric vehicles. Appl. Energy 2014, 113, 463–476. [CrossRef]

22. Guo, F.; Hu, G.; Xiang, S.; Zhou, P.; Hong, R.; Xiong, N. A multi-scale parameter adaptive method for state of charge and
parameter estimation of lithium-ion batteries using dual Kalman filters. Energy 2019, 178, 79–88. [CrossRef]

23. Panda, S.; Tripura, T.; Hazra, B. First-order error-adapted eigen perturbation for real-time modal identification of vibrating
structures. J. Vib. Acoust. 2021, 143, 051001. [CrossRef]

24. Bhowmik, B.; Tripura, T.; Hazra, B.; Pakrashi, V. Real time structural modal identification using recursive canonical correlation
analysis and application towards online structural damage detection. J. Sound Vib. 2020, 468, 115101. [CrossRef]

25. Bhowmik, B.; Tripura, T.; Hazra, B.; Pakrashi, V. First-order eigen-perturbation techniques for real-time damage detection of
vibrating systems: Theory and applications. Appl. Mech. Rev. 2019, 71, 060801. [CrossRef]

26. Sun, F.; Hu, X.; Zou, Y.; Li, S. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for
electric vehicles. Energy 2011, 36, 3531–3540. [CrossRef]

27. Zhang, S.; Guo, X.; Zhang, X. An improved adaptive unscented Kalman filtering for state of charge online estimation of lithium-ion
battery. J. Energy Storage 2020, 32, 101980. [CrossRef]

28. Havangi, R. Adaptive robust unscented Kalman filter with recursive least square for state of charge estimation of batteries. Electr.
Eng. 2022, 104, 1001–1017. [CrossRef]

29. Liu, Y.; Huangfu, Y.; Xu, J.; Zhao, D.; Xu, L.; Xie, M. State-of-charge co-estimation of Li-ion battery based on on-line adaptive
extended Kalman filter carrier tracking algorithm. In Proceedings of the IEEE Industrial Electronics Society, 44nd Annual
Conference (IECON 2018), Washington, DC, USA, 21–23 October 2018; pp. 1940–1945.

30. Xie, S.; Chen, D.; Chu, X.; Liu, C. Identification of ship response model based on improved multi-innovation extended Kalman
filter. J. Harbin Eng. Univ. 2018, 39, 282–289.

31. Liu, Z.; Dang, X.; Jing, B. A novel open circuit voltage based state of charge estimation for lithium-ion battery by multi-innovation
Kalman filter. IEEE Access 2019, 7, 49432–49447. [CrossRef]

32. Panchal, S.; Mathew, M.; Fraser, R.; Fowler, M. Electrochemical thermal modeling and experimental measurements of 18650
cylindrical lithium-ion battery during discharge cycle for an EV. Appl. Therm. Eng. 2018, 135, 123–132. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.apenergy.2013.07.061
https://doi.org/10.1016/j.energy.2019.04.126
https://doi.org/10.1115/1.4049268
https://doi.org/10.1016/j.jsv.2019.115101
https://doi.org/10.1115/1.4044287
https://doi.org/10.1016/j.energy.2011.03.059
https://doi.org/10.1016/j.est.2020.101980
https://doi.org/10.1007/s00202-021-01358-7
https://doi.org/10.1109/ACCESS.2019.2910882
https://doi.org/10.1016/j.applthermaleng.2018.02.046

	Introduction 
	Battery Model and Parameter Identification 
	Battery Model 
	Online Parameter Identification of Battery Model 
	The Initial Values and Nonlinear Function 
	EKF-Based Online Parameter Estimation 


	SOC Estimation 
	Overview 
	Implementation of the Co-Estimation Algorithm 

	Experimental Validation and Discussion 
	Dynamic Condition Testing 
	Robustness Analysis 

	Conclusions 
	References

