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Abstract: Building geometry design decisions are important for energy efficiency and daylight
performance. Sensitivity analysis, coupled with optimization, is an important approach to investigate
and optimize building geometry in the early design stage. Incorporating skylights is an important
daylighting strategy in commercial buildings; however, skylight-to-floor ratio (SFR) is often the
only design variable evaluated in precedent studies. More design variables related to skylight
geometry, clerestory geometry, skylight material, and building geometry need to be evaluated. This
study investigates the skylight design of a 2000-square-meter commercial building. Eighteen design
variables are evaluated according to their influence on building energy and daylight performance.
One-at-a-time (OAT), linear regression, and Morris sensitivity analysis approaches are utilized to
identify the most influential variables. Seven of the twelve building geometry variables and two of
the six building material variables are considered as important. Then, a multi-objective optimization
with genetic algorithms is processed to find out the optimal design solution. The three objectives
are energy use intensity (EUI), daylight autonomy (DA), and daylight uniformity (DU). After the
optimization, five candidate design options are picked from the Pareto front. Discussions are made
on the features of these designs, and one design is selected as the optimal solution.

Keywords: green buildings; daylighting; energy efficiency; sensitivity analysis; optimization; skylight

1. Introduction

Building geometry has a great impact on a building’s energy demand and daylight
availability. Daylight is important for a building’s energy efficiency, occupant comfort,
health, mood, and productivity. The early design stage is when the most building geometry
design decisions are made; thus, it has the most potential for designers to make energy-
efficient design decisions. However, currently, most energy modeling work happens in
a later design stage, where no significant changes can be made to the building geometry
design. Also, building geometry is usually significantly simplified in building energy
models, which makes the influence of building geometry design unknown. Sensitivity
analysis in the early design stage is an important tool to identify the key variables in
building energy models, and it enables architects to receive timely feedback on how the
building geometry design is correlated with the energy performance. Understanding the
importance of building geometry variables could also stimulate the appropriate simplifi-
cation of building geometry in building energy models, which leads to a more accurate
building energy model and more chances for energy efficiency.

Sensitivity analysis has been widely applied in building performance analysis through-
out the design process. Input variables evaluated in sensitivity analysis include urban-level
design parameters, building-level design parameters, building envelope, ventilation and
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infiltration, HVAC and other mechanical systems, occupant behavior, economic factors,
etc. [1]. Building-level design is also called building geometry design or building shape
design. Researchers have found that building geometry design variables are usually highly
sensitive and have a great influence on the energy performance compared to other variables.
For example, Li et al. [2] found that building orientation, window-to-wall ratio (WWR),
and skylight-to-roof ratio are all highly sensitive in the 29 variables. Bre et al. [3] found that
the azimuth of the building ranks 3rd and the window area fraction ranks 8th among the
21 variables. Hemsath and Alagheband Bandhosseini [4] found that building geometric
variations are as sensitive as certain material aspects related to building energy; WWR
ranks 1st among 11 variables in four cities and stacking ranks 1st in two cities. However,
building geometry design variables were not extensively evaluated in previous studies.
Recent studies on sensitivity analysis and optimization of building performance with a
consideration of building geometry variables are listed in Table 1. Very few studies are
specifically dedicated to the analysis of building geometry variables.

Only limited building geometry variables are considered in building energy analysis,
such as the number of floors, orientation, aspect ratio, window size, the position of the
window, window orientation, and WWR [1,5–7]. However, it is usually unrealistic for
some variables to be changed, or the room for adjustment is limited. For example, the
building orientation variable is problematic, because it is usually impossible to rotate a
whole building after the building design is finished, considering the site restrictions, the
traffic flow, and the design aesthetics. It is necessary to explore the mass and the shape of
the building from the very beginning of the design stage. While the mass of the building is
determined, design variations need to be made on top of that. The WWR design variable
is also not reasonable. First, a higher WWR is preferred by the occupants because of the
view and the daylight factors. Sometimes, designers would like to sacrifice building energy
performance for more view. The WWR is usually fixed, or possible variation is limited after
the design decisions are made by the architects. Second, with the WWR fixed, the shape
and the location of the window could significantly influence the building performance
considering the different lighting energy savings from different daylight distributions.
Therefore, it is not ideal to treat the WWR as a variable in the energy simulation process.
Similarly, a simple skylight-to-floor ratio (SFR) would not be enough, since a single SFR
could not be enough for providing guidelines about the layout, the size, and the material of
the skylight. Therefore, it is reasonable to propose that more detailed and specific building
geometry design variables be discussed.

Table 1. Building geometry variables studied in previous studies.

Reference
Number of

Design
Variables

Building Geometry Design
Variables Objectives Study Type Sensitivity Analysis

Methods

Ioannou and
Itard, 2015 [5] 10 Orientation

Annual heating energy
consumption, predicted mean

vote comfort index

Sensitivity
analysis Regression method

Hemsath and
Alagheband

Bandhosseini,
2015 [4]

11
Window-to-wall ratio (WWR),

stacking, orientation, eave,
roof aspect ratio

Annual energy use Sensitivity
analysis

One-at-a-time (OAT)
method, Morris

method

Bre et al., 2016
[3] 21

Windows area fraction,
window area fraction for

natural ventilation, window
shading size, azimuth of the

building

Thermal discomfort degree hours,
energy consumption of air

conditioners

Sensitivity
analysis,

optimization
Morris method

Mangkuto
et al., 2016 [6] 3 Window size, orientation,

wall reflectance

Average daylight factor, average
uniformity, daylight autonomy

(DA), useful daylight illuminance
(UDI), simplified daylight glare
probability, total annual lighting

energy demand

Sensitivity
analysis,

optimization
Regression method
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Table 1. Cont.

Reference
Number of

Design
Variables

Building Geometry Design
Variables Objectives Study Type Sensitivity Analysis

Methods

Chen and Yang,
2018 [8] 10

Building orientation, external
obstruction angle, overhang

projection fraction,
window-to-ground ratio

Lighting energy demand, cooling
energy demand, heating energy

demand

Sensitivity
analysis,

optimization

Fourier amplitude
sensitivity test (FAST)

method

Delgarm et al.,
2018 [7] 11

Building orientation, window
size, overhang tilt angle,

overhang depth

Annual cooling energy, annual
heating energy, annual lighting

energy, total building energy
consumption

Sensitivity
analysis

OAT method,
variance-based

sensitivity analysis

Li et al., 2018
[2] 29 Building orientation, WWR,

skylight-to-roof ratio
Annual energy consumption,

winter thermal discomfort

Sensitivity
analysis,

optimization

Regression method,
Morris method, FAST

method, OAT
method

Gagnon et al.,
2018 [9] 30

WWR for each façade
orientation, length of the

building
orientation of the building

Annual energy consumption,
peak power demand, number of

discomfort hour

Sensitivity
analysis

Regression method,
Sobol method

Salimzadeh
et al., 2020 [10] 2 Photovoltaic (PV) tilt angle,

PV pan Annual cumulative radiation Sensitivity
analysis OAT method

Ebrahimi-
Moghadam

et al., 2020 [11]
3

Angle of light shelves, depth
of light shelves, number of

light shelves

Thermal comfort, building energy
consumption

Sensitivity
analysis,

optimization
OAT method

Yip et al., 2021
[12] 9

Orientation, plan shape,
building integrated

photovoltaics/thermal
(BIPV/T) tilt angle,

east/west/south/north
WWR

Annual net energy use intensity Sensitivity
analysis

Analysis of variance
(ANOVA) method,

Sobol method

Huo et al., 2021
[13] 16

Shape factor,
east/west/south/north

WWR, shading orientation,
slat angle, space-to-length

ratio, slat arrangement

Building cooling demand
Sensitivity
analysis,

prediction
Sensitivity index (SI)

Zhu et al., 2022
[14] 11

Building aspect ratio, number
of floors,

east/west/south/north
WWR

Peak cooling load, peak heating
load, annual cooling demand

annual heating demand

Uncertainty
analysis,

sensitivity
analysis

Meta-modeling
method, regression

method

The optimization of building form and geometry has been investigated by many re-
searchers [15–19], but they mostly focused on the optimization result. Without a sensitivity
analysis, the relationship between variables and simulation results is not discussed, and
the importance of variables is not compared.

The studies that coupled sensitivity analysis and optimization include [2,8,20–22].
Sensitivity analysis is before the optimization process to identify the key design variables so
that the optimization problem can be simplified and the time can be significantly reduced,
and then an optimization process is performed to locate the best combination of design
variables for the best energy performance.

This study aims to fully explore the potential and importance of building geometry
variables, specifically skylight design variables, through sensitivity analysis and optimiza-
tion. A skylight is a common daylighting strategy; however, SFR is often the only design
variable evaluated in precedent building performance optimization studies. This study
investigates variables including the dimension of the skylights and the clerestory windows,
the shape, number, and layout of skylights, and the building geometry. Properties of
skylight materials are also evaluated to be compared to the influence of building geometry
variables. Three different sensitivity analysis methods are applied to prioritize the design
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variables considering both daylight and energy performance. Then, important design
variables will be evaluated in the consequent optimization study.

2. Methodology
2.1. Research Framework

The main platform of this research is the 3D modeling software Rhino (Version 7)
and its parametric design plug-in Grasshopper. The energy modeling tools are Ladybug
(Version 0.0.65) and Honeybee (Version 0.0.62), which are plug-ins for Grasshopper. The
simulation engines are EnergyPlus (Version 8.5) and Radiance (Version 5.0). In grasshopper,
the input of 18 design variables can vary independently, and the change in the design
variable will result in a corresponding change in the energy model and daylighting and
energy simulation result. The data of the simulation input and output are recorded in
an Excel file for analysis. A detailed explanation of the simulation tools and simulation
process can be found in the authors’ previous study [23].

The research framework is illustrated in Figure 1. After this simulation setup is
prepared, three sensitivity analysis methods are used to prioritize the design variables.
The three methods are the local method, linear regression method, and Morris method.
The sensitivity analysis used will determine how the input of the design variables is
sampled. Nine variables, i.e., half of the total variables, will be selected for the optimization
phase through the evaluation of the results of the three methods for both daylighting and
energy performance.
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In the optimization phase, multi-objective optimization is performed. The three objec-
tives are energy use intensity (EUI), daylight autonomy (DA), and daylight uniformity (DU),
which represent the building energy efficiency, daylight availability, and the distribution
of daylight. The optimization engine will automatically generate an initial population for
simulation, and it will evaluate how the input of design variables are related to the perfor-
mance of the three objectives and then generate another population for better performance.
This process will continue until a threshold is met, or the simulation is manually terminated.
After the optimization is terminated, the Pareto front method is used to determine the
optimal design solutions. One optimal design solution is selected, and features of the
optimal design solutions are discussed.

2.2. Building Description

The case study’s building is a single-story commercial building located in Atlanta,
Georgia (Figure 2). Daylight is provided by both skylights and clerestory windows. The
skylights are raised from the roof plane, and the footprint of each skylight is a square shape.
There are 10 clerestory windows on the four facades. There are 12 building geometry design
variables. Figure 2a shows the southeast isometric view of the building, and Figure 2b
shows the enlargement of its southeast corner. Design variables include the building depth
(v1), the distance between skylights and roof perimeter (v2), the side length of skylights
(v3), number of skylights (v4), monitor height (v5), monitor tilt angle (v6), the height of
south (v7), north (v8), and east/west windows (v9), and the width of the south (v10), north
(v11), and east/west windows (v12). All the design variables that are visible in the two
figures are marked. The top borders of the clerestory windows are fixed; the height of
the clerestory windows depends on the location of the bottom border. Fixed parameters
include the ceiling height, which is 6 m, and the size of the building, which is 2000 square
meters. The skylight dimension varies between 0.25 and 2.25 square meters. The number of
skylights varies from 16 to 90. Considering the skylight number and the skylight dimension,
the SFR varies from 0.02% to 10.125%.
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There are 6 building material variables, i.e., skylight transmittance (v13), window
transmittance (v14), skylight translucence (v15), window translucence (v16), skylight U
value (v17), and window U value (v18). The visible transmittance and solar heat gain
coefficient (SHGC) are usually two independent variables. However, they usually have
very close values, except for windows with low-e coatings. To simplify the research
question, in this study, these two variables are consolidated as one variable—transmittance,
to depict the percentage of solar radiation, including the visible light, passing through a
window. Translucence measures how the light passes through glass. When the translucence
is 0, it means the glass is clear, and all the light passes through the glass specularly. When
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the translucence is 1, it means the glass is frosted, and all the light passes through the
glass diffusely. Translucent glass (or frosted glass, diffused glass) is becoming popular
in the industry as a skylight material. The purpose of the inclusion of this variable is to
test if translucent glass performs better than clear glass and if it is important compared to
other variables.

The description and the range of the variables are explained in Table 2. The range
of each variable is normalized to the range of 0 to 1, and it changes by 0.1. Each variable
can vary independently, but it needs to be noticed that the value of one variable could
influence the range of the other variables. For example, the building depth could influence
the maximum number of skylights and the width of clerestory windows.

Table 2. Design variables.

Variable Short Name
Range

Unit
Min Max

Building
geometry and
fenestration

Building depth v1 30 66.7 m

Distance between skylights and
roof perimeter v2 0.5 8 m

Side length of the skylights v3 0.5 1.5 m

Number of skylights v4 16 90

Monitor height v5 0.1 1 m

Monitor tilt angle v6 30◦ south 30◦ north Degree

Height of south windows v7 0.1 2 m

Height of north windows v8 0.1 2 m

Height of east and west windows v9 0.1 2 m

Width of south windows v10 0 (2000/Building depth)/10 m

Width of north windows v11 0 (2000/Building depth)/10 m

Width of east and west windows v12 0 Building depth/10 m

Building
material

Skylight transmittance v13 0.1 0.8

Window transmittance v14 0.1 0.8

Skylight translucence v15 0 * 1 *

Window translucence v16 0 * 1 *

Skylight U value v17 0.2 6 W/(m2·K)

Window U value v18 0.2 6 W/(m2·K)

* 0 indicates clear glass; 1 indicates 100% diffused glass.

2.3. Daylight and Energy Modeling

As discussed in the research framework session, the platform for the whole sensitivity
analysis and optimization process is Rhino and Grasshopper with Ladybug and Honeybee
plug-ins. The energy model created with Ladybug and Honeybee is exported to Radiance
for daylighting simulation and to EnergyPlus for energy simulation. The simulation result
is imported into Grasshopper for analysis. The energy model is built with U.S. Department
of Energy’s commercial reference buildings template. The building type is a supermarket,
and the climate zone is 3A.

Thirty daylight sensors are spaced on a grid at a height of 0.76 m above the floor. The
daylighting and energy model information is the same as the authors’ previous study [23];
therefore, it will not be discussed in full detail. The main settings such as the loads,
schedules, building envelope materials, HVAC system, and construction quality are not
changed from the template, except for those chosen as design variables. The EnergyPlus
and Radiance building envelope materials are listed in Tables 3 and 4.
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Table 3. Building material thermal properties.

Representative City and
Climate Zone Construction Construction Name in OpenStudio Library U-Value

W/(m2·K)

Atlanta (Climate zone 3A)

Roof ASHRAE 90.1-2004 ExtRoof IEAD ClimateZone 1–4 0.40

Exterior Wall ASHRAE 90.1-2004 ExtWall Mass ClimateZone 3–4 0.97

Exterior Floor ExtSlabCarpet 4 in ClimateZone 1–8 5.62

Table 4. Building material optical properties.

Construction Material Type Values

Shading Radiance opaque material Reflectance: 0.8

Interior Wall Radiance opaque material Reflectance: 0.5

Interior Ceiling Radiance opaque material Reflectance: 0.8

Interior Floor Radiance opaque material Reflectance: 0.2

2.4. Simulation Output

Both daylighting and energy performance are evaluated in the optimization processes.
Annual heating, cooling, and lighting loads are included in the energy simulation output.
Equipment load is not included as it is fixed. The energy efficiency indicator used is EUI,
which expresses the energy demand of a building relative to its size. It is calculated by
taking the quotient of a building’s yearly energy demand by its total floor area. The unit
for EUI is kWh/m2/yr.

Differences between daylighting performance metrics have been discussed by many
researchers [6,24,25]. One of the most commonly used dynamic daylight metrics is DA.
DA is calculated as the percentage of time during a year that the illuminance at the sensor
location is above the threshold, which is usually defined as 300 lux. For useful daylight
illuminance (UDI), both a lower threshold and an upper threshold are defined. The purpose
of an upper threshold is to minimize the glaring possibility. However, the daylighting
method of this study is skylight and clerestory windows, which are above the field of view
of occupants. Therefore, there is no need to consider the glare issues and upper threshold.

SDA is also a frequently used daylighting metric. SDA evaluates the percentage of
sensors throughout the space that meets a specific lighting threshold, such as DA 300 for
at least 50% of the time. SDA is not appropriate for this study because the daylight
distribution in the space is relatively even because of the skylight. Usually, the daylight
availability at each sensor is similar. For the common threshold DA 300, 50%, there are lots
of design options that can achieve SDA 100%. If the threshold is raised, the majority of the
design options will have SDA 0%. So, SDA is not sensitive enough to tell the difference
between designs.

Based on the above discussion, the daylighting metric is decided to be DA. The
illuminance threshold in this study is 500 lux since the illuminance requirement for retail
buildings is higher. So, the DA at each sensor point is the percentage of annual daytime
hours when the daylight illumination level exceeds 500 lux. The final DA is calculated as
the average for all sensor points. Even though there is no upper threshold for daylight
performance, design options with too much sunlight exposure will be eliminated through
the energy performance metric.

DU is another metric to be evaluated, which is used to determine if the daylight
distribution is uniform. In this study, the DA value is the average DA value at all sensor
points, but a lot of information is lost when an average calculation is performed. For
example, design with uniform daylight distribution and design with a mix of extremely
high and low daylight distribution could result in the same average DA value. Therefore, it
is necessary to further utilize the data and analyze the uniformity of the daylight. DU is
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calculated in many other previous studies [26–28]. DU is traditionally calculated as the ratio
of the minimum illuminance to the average illuminance over the specified task areas [29].
Another similar metric is daylight diversity [29], which is the ratio of the minimum to
the maximum illuminance over the core area. However, there are problems with these
traditional methods. First, they are point-in-time methods, like daylight factor, which
means it only evaluates the daylight performance of one moment throughout the year.
Second, taking only the maximum, minimum, and average values could not evaluate how
the illuminance values vary in the middle. Therefore, in this study, the DU is defined as the
standard deviation of DA at each sensor point.

In brief, the three performance objectives are EUI, DA, and DU. For an optimal design
with balanced performance, it should have a low EUI, a high DA, and a low DU, as it
indicates lower energy demand, high daylight availability, and even daylight distribution.

3. Sensitivity Analysis

Sensitivity analysis methods can be generally divided into local [2,4,7,10,11,30] and
global approaches. Local sensitivity analysis aims to analyze the effects of local changes
in a parameter. It focuses on a single variable’s behavior while other variables remain
the same. The typical methodology for local sensitivity analysis is one-at-a-time (OAT) or
one-factor-at-a-time (OFAT). It is easy to establish the relationship between the variables
and the results, and it does not require much computational power. However, it only
explores the variation in results around a single point or a base case, and the interactions of
other design parameters are not considered [31].

Global sensitivity analysis aims to evaluate the entire parameter space. It varies all
model inputs simultaneously, and the sensitivities are calculated over the entire range of
each model input. Global sensitivity analysis is often preferred, but it could be computa-
tionally expensive. Typical global sensitivity analysis includes regression method [2,5,6,9],
screening-based approach [2–4], and variance-based approach [2,7,9,32].

Choosing the appropriate sensitivity analysis methods is important to obtain results ac-
curately and efficiently. The results of different sensitivity analysis methods can be different.
Yang et al. [33] suggested that in building energy assessment, at least two fundamentally
different sensitivity analysis methods should be performed to achieve robust results.
Three sensitivity analysis methods are selected in this study, i.e., the OAT method, linear
regression method, and Morris method (screening-based approach). The variance-based
approach is suitable for complex non-linear problems [31], but it is very computationally
expensive and hence not included in this study.

3.1. OAT Method

The OAT method analyzes the effect of one parameter at a time while keeping all the
other parameters fixed. The effect of each design variable on the building performance
is evaluated in turn. In building energy analysis, the term ‘influence coefficient’ (IC) is
commonly used [30,34]. IC is essentially the ratio of percentage change in output to the
percentage change in input. The IC is calculated as:

IC =
change in output
change in input

=
∂OP
∂IP

≈ ∆OP
∆IP

(1)

where OP represents the simulation output, and IP represents the input. Since the partial
derivative is difficult to obtain, the ratio of output and input difference is usually used
instead. The IC can be expressed in various forms, and one of the variations, ‘sensitivity
index’ (SI), is utilized to calculate how much each design variable contributes to the output
variation over its entire range [4,35]. A standard value for all design variables is selected as
a control, which in this study is the medium value in the range. Then, two extreme values
are selected on both sides of the standard value. For the evaluation of each design variable,
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the simulation will run twice with the variable set to the minimum and the maximum
values, while all the other variables are fixed at the standard value. The SI is calculated as:

SI =
Emax − Emin

Emax
100% (2)

where Emax and Emin represent the simulation output when the variable is changed to the
minimum or the maximum value. The percentage change in output is used instead of
absolute change, and the percentage change in input is removed from the SI since it is the
same for all variables.

A larger SI means this design variable has more influence on the building perfor-
mance and is considered to be more important. However, it should be noted that if the
relationship between the input and the output is non-linear, the sensitivity will vary from
point to point [34]. Both the SI values for daylighting (DA) and energy performance (EUI)
are calculated and shown in Figure 3. From Figure 3, we can see that overall daylight
(DA) fluctuates more than energy (EUI) as the variables change from the minimum to
maximum values. Design variables usually have opposite effects on the daylight and
energy performance, which is expected as more daylight would reduce the lighting energy
required. For daylight performance, the most influential variables for daylight performance
are v14 window transmittance, v3 side length of the skylight, v12 width of east and west
windows, and v9 height of east and west windows. The most influential variables for
energy performance are v3 side length of the skylight and v4 number of skylights.
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3.2. Linear Regression

Linear regression is an approach for modeling the relationship between two variables
by fitting a linear equation to the data. In building energy performance analysis, the
regression method is one of the most widely used methods, because this method is relatively
straightforward and easy to perform [31]. In this study, multiple linear regression is used
to evaluate the effect of the design variables on the building performance indicators.
The output variable is denoted by yi, and the input variables are demoted by xi. This
relationship between the input and output variables is modeled as below:

yi = β0 + β1xi1 + β2xi2 + . . . + β18xi18 + εii = 1, 2, 3, . . . , n (3)

where εi is the error variable, and β1, β2, . . ., β18 are regression coefficients. The regression
coefficients are then standardized using the variance of the model output V(y i) and the
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variance of the input V(x i) to make the regression coefficients comparable. The results are
called the standard regression coefficients (SRCs):

β′
i =

βiV(x i)

V(y i)
(4)

The standardized rank regression coefficient (SRRC) is the rank transformation of SRC.
The calculation of SRC requires the assumption of a linear relationship between input and
output, while SRRC can be used for non-linear but monotonic relationships. As SRRC has
fewer restrictions on the data, it is selected as the sensitivity analysis metric for the linear
regression method. Same as SRC, the absolute value of the SRRC represents the importance
of a variable. The larger the value is, the more influence the variable has on the output. A
positive value corresponds to a high, positive influence of the input, while a negative value
corresponds to a negative influence of the input.

The SRRC values for DA and EUI are shown in Figure 4. Figures 3 and 4 show very
similar patterns, only the fluctuation in daylight is not as significant as that in Figure 3.
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3.3. Morris Method

The Morris method [36] is a type of OAT design experiment, but it is still a global
sensitivity analysis method because the input variables vary over the entire domain. The
Morris method is an efficient screening method. Due to its low computing cost, it is ideally
suited for situations with a large number of input variables, and it is valuable to identify
the non-influential parameters of a model.

The Morris method is based on repetitions of OAT design with a sequential variation
in the inputs. In each OAT design, the variation in the model output due to the change in
input parameter is called elementary effect (EE) [36]. The EE of a model y = y(x1,. . .,xk)
with input parameters xi is defined as below:

EEi =
y(x1, x2, . . . , xi−1, xi + ∆, xi+1, . . . , xk)− y(x1, x2, . . . , xk)

∆
(5)

In this study, we adopted r = 6 repetitions considering the computation cost, so that
there are 6 EEs calculated for each input variable (k = 18). The total number of simulations
is r(k + 1) = 114.

For each parameter, two sensitivity indices are obtained. The first index µ is the mean
value of the absolute values of the EEs, which is used to determine if the design parameter
is important. The second index σ is the standard deviation of the EEs, which is used to
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detect the interactions of xi with other parameters and its non-linear effects. µ and σ are
calculated as below:

µ =
r

∑
i=1

|EEi|/r (6)

σ =

√
r

∑
i=1

|EEi − µ|/r (7)

The Morris method sensitivity analysis results for DA and EUI are shown in Figure 5a,b.
Each graph is a plot of µ against σ, where µ is on the x-axis and σ is on the y-axis. A larger
µ value represents that the parameter is more important. A larger σ value shows that
the parameter has more non-linear effects and/or it has more correlations with other
parameters. A small σ value means that the parameter mainly has a linear impact on
the objective.
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From the plot, we can find that for daylight performance, the most important variables
are v14 window transmittance, v1 building depth, and v12 width of east and west windows.
For energy performance, the most important variables are v1 building depth, v3 side length
of the skylight, v13 skylight transmittance, and v10 width of south windows. Most of
the points are on the line between the top right and the bottom left corners, which means
that those variables have both linear and non-linear/correlated impacts. The location
of the two points in Figure 5b is quite interesting. V18 window U value has a medium
µ value but a very large σ value, which means that most of the parameters’ impact is
non-linear/correlated. It makes sense as the impact of the U value must be correlated with
the dimension of the window. The v3 side length of the skylight has a large µ but has a
medium σ value, which means most of its impact is linear.

3.4. Summary of the Sensitivity Analysis Results

Since daylight and energy performance need to be evaluated simultaneously in the
optimization process, the influence of the variables on both performance metrics should be
considered. The rank of the variables for daylight and energy performance for the three
sensitivity analysis methods are listed in Table 5.

It can be found that the local and linear regression methods generate similar results,
especially since the top two ranked variables are the same. The Morris method generates
some different results. For example, variable 1 ranks second for daylight and ranks first for
energy. However, it has relatively low rankings in the other two methods.
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Table 5. Ranking of design variables based on three methods and the final ranking.

Ranking
OAT Linear Regression Morris Method

Final Ranking
Daylight Energy Daylight Energy Daylight Energy

1 v14 v3 v14 v3 v14 v1 v3
2 v3 v4 v3 v4 v1 v3 v12
3 v12 v13 v9 v5 v12 v13 v14
4 v9 v12 v4 v13 v7 v10 v9
5 v4 v5 v12 v14 v9 v12 v13
6 v13 v14 v10 v9 v10 v9 v4
7 v7 v9 v7 v12 v3 v18 v10
8 v10 v1 v13 v7 v16 v6 v1
9 v5 v18 v5 v6 v2 v5 v5
10 v16 v2 v6 v1 v8 v2 v7
11 v11 v8 v16 v17 v13 v15 v6
12 v8 v6 v15 v10 v4 v7 v2
13 v6 v10 v11 v18 v11 v8 v16
14 v2 v11 v1 v16 v6 v14 v8
15 v15 v17 v17 v2 v15 v11 v18
16 v1 v16 v18 v11 v5 v4 v11
17 v17 v15 v8 v15 v17 v16 v15
18 v18 v7 v2 v8 v18 v17 v17

To select the variables for the optimization study, a weight is applied to each variable
according to its rank. The variable that ranks first receives the weight of 18; the variable
that ranks second receives the weight of 17, etc. After adding up all the weight of each
variable, the final rank of the variables is shown in the last column of Table 5. The top nine
variables are going to be selected. The monitor height (v5) ranks ninth according to this
ranking method. However, it is easy to predict that a higher monitor would contribute to
higher EUI since it increases the volume of the building. A higher monitor would also be
likely to reduce the DA since it is likely to prevent direct sunlight into the space.

The authors decided that v7 the height of the south windows would be more appropri-
ate in the optimization study. Some design variables are in pairs, such as the side length of
light and the number of the skylight, the height of the windows, and the width of windows.
A balance between the pair of variables usually can be found. Therefore, it is reasonable
to include v7, since v10 width of the south windows is already included. It is interesting
to investigate how the height and width of the south clerestory windows would work
together, and which combination would contribute to the best design option. Therefore,
the final variables selected are v3, v12, v14, v9, v13, v4, v10, v1, and v7.

From the ranking of the importance of design variables, there are the following findings:

1. The dimensions of the skylights and the dimensions of the east and west windows
show the most importance.

2. The dimensions of the north windows rank in the middle, while the dimensions of the
north windows rank relatively low.

3. The number of skylights ranks sixth, while all the other variables about the details
of the skylights show less importance. The distance between the skylight and roof
perimeter does not significantly affect the daylight performance.

4. Building depth ranks in the middle. It has more influence on energy than daylight.
5. Out of all the building material variables, the transmittance of windows and skylights

shows the most importance. U values and translucence values both rank at the bottom.
Window transmittance has more influence on daylight than energy. It ranks first for
daylight in all three methods.

4. Optimization

After the sensitivity analysis, the nine most important variables are selected for the
optimization process, and the other variables are fixed at the median value of its range.
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Three optimization objectives are investigated, i.e., DA, EUI, and DU. The optimization
process uses the Grasshopper platform. Ladybug and Honeybee [37] are used for day-
light and energy modeling. The optimization engine is Octopus (Version 0.4) [38], and
the optimization algorithm used is the genetic algorithm. A detailed explanation of the
optimization process can be found in a previous study [23]. The total number of simulations
is 500, and the total simulation time is about 48 h.

To test if the inclusion of DU as an optimization objective is effective, a second opti-
mization study with only DA and EUI as objectives is also performed, with other settings
remaining the same. Results show that the addition of DU as an objective can effectively
eliminate the situation of uneven daylight distribution, such as too much daylight around
the perimeter or too much daylight in the south. The daylight variation in the designs in
the optimization with two objectives is overall much larger than the optimization with
three objectives. Also, the DA and EUI performance of the optimized designs with three
objectives is slightly better than the optimization with two objectives. Therefore, it can be
concluded that DU is an important building performance metric, and it is beneficial to be
included in optimization studies.

5. Results

The plot of all the data points is shown in a 3D graph in Figure 6d. Figure 6a–c shows
the 2D plot of data points. The Pareto front is a set of solutions, which cannot be improved
without sacrificing at least one other objective. As identifying the Pareto front in a 3D
graph is not straightforward, a 2D plot is used instead. DA and EUI are the most important
objectives; therefore, Figure 6a, the plot of DA against EUI, is used to determine the optimal
designs on the Pareto front. The Pareto front is the curve near the bottom left corner of the
graph. Five design options on the curve are selected for further investigation, which are
marked in yellow circles. These five options are candidates for the optimal solution. The
geometry of the five solutions is shown in Figure 7. The values of their variables and the
performance results can be found in Table 6. Out of the five solutions, option 1 has the best
energy performance, option 5 has the best daylight performance, and the other options are
in between.

Table 6. Design variable values of the 5 options.

Option 1 Option 2 Option 3 Option 4 Option 5

v1: Building depth (m) 41.0 41.0 37.3 66.7 66.7
v3: Side length of the skylights (m) 1.4 1.4 1.4 1.4 1.5

v4: Number of skylights 30 63 70 72 98
v7: Height of south windows (m) 0.7 0.9 0.9 1.1 1.8

v9: Height of east and west windows (m) 1.2 1.1 1.1 1.1 1.4
v10: Width of south windows (m) 2.9 1.5 3.2 1.2 1.2

v12: Width of east and west windows (m) 0.9 0.9 1.5 6.5 6.5
v13: Skylight transmittance 0.7 0.7 0.7 0.5 0.5
v14: Window transmittance 0.7 0.7 0.7 0.7 0.5

DA (%) 48.5 56.1 61.1 64.5 67.7
EUI (kWh/m2/yr) 106.0 110.6 113.1 117.6 126.3

DU 5.9 2.0 1.5 2.3 1.5

Out of the five design options, as the daylight performance becomes better, the building
geometry becomes slimmer, and the number of skylights increases. Options 4 and 5 both
have very good DA values and have very slim building footprints. They are very wide in
the east and west direction and narrow in the north and south direction. They also have
very big clerestory windows in the east and west. In the other optimization with only DA
and EUI as objectives, the same shape is found in the designs with the best DA. A possible
reason is that the daylight availability in the north is the weakest no matter how large the
windows are, so in order to maximize the daylight availability throughout the building, it
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tends to find designs with short north façades, thus long east and west facades. However,
energy performance is sacrificed with this building shape, so options 4 and 5 are not ideal.

Option 1 has the best energy performance, but the daylight distribution is not as even
as options 2 and 3. Options 2 and 3 are quite similar in geometry and performance. Option
2 has slightly less daylight availability, less energy loads, and less daylight uniformity. The
authors decided that energy performance is the most important objective; thus, option 2 is
selected as the optimal solution.

The optimal design option has a building width-to-depth ratio of 1.19. There are
63 skylights, and the skylight dimensions are 1.4 m by 1.4 m. The SFR is 6.2%. The south
clerestory window dimensions are 1.54 m by 0.86 m, and the WWR is 4.5%. The east/west
clerestory window dimensions are 0.94 m by 1.05 m, and the WWR is 4.0%. The north
clerestory window dimensions are 2.44 m by 1.05 m, and the WWR is 8.8%. Both the
skylight transmittance and window transmittance are 0.66.
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2, DA = 56.1, EUI = 110.6, DU = 2.0; (c) Option 3, DA = 61.1, EUI = 113.1, DU = 1.5; (d) Option 4,
DA = 64.5, EUI = 117.6, DU = 2.3; (e) Option 5, DA = 67.7, EUI = 126.3, DU = 1.5.

6. Conclusions

This study proposes an approach to finding the optimal design solution for daylight
and energy performance in the early design stage. The case study’s building is a commercial
building with skylights and clerestory windows. There are 18 design variables investigated
including the building shape, dimensions, layout, and materials of the skylights and
clerestory windows. Sensitivity analysis is used to identify the key design variables before
the optimization to simplify the optimization problem. Since different sensitivity analyses
tend to obtain different results, to make the results more reliable, three sensitivity analysis
methods—the OAT method, linear regression method, and Morris method—are used.
Combining the results of the three methods, nine design variables are considered important.
In order of importance, the selected variables are sorted as follows: side length of the
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skylights, width of east and west windows, window transmittance, height of east and west
windows, skylight transmittance, number of skylights, width of south windows, building
depth, and height of south windows.

After the selection of design variables, a multi-objective optimization is performed
using the genetic algorithm. The three optimization objectives are DA, EUI, and DU. After
the simulation of 500 design options, five design solutions are selected from the Pareto
front. Then, through a thorough comparison of the five solutions, one design is selected
as the final solution. The optimal design has a SFR of 6.2%. Its south WWR is 4.5%, its
east/west WWR is 4.0%, and its north WWR is 8.8%.

The research also found that the inclusion of DU as an optimization objective can
effectively eliminate the situation of uneven daylight distribution and can find overall
better design options. UD in this study is calculated as the standard deviation of the DA
values at each sensor. Future research could explore and compare different metrics to
accurately assess the uniformity of daylight distribution.

The research findings are applicable to commercial buildings with similar design
constraints and objectives. Moreover, the research methodology, combining sensitivity
analysis with multi-objective optimization, offers a versatile framework that can be applied
to a wide variety of buildings in the early design stage aiming for improved daylight and
energy efficiency.
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Abbreviations

ANOVA Analysis of variance
BIPV/T Building integrated photovoltaics/thermal
DA Daylight autonomy
DU Daylight uniformity
EE Elementary effect
EUI Energy use intensity
FAST Fourier amplitude sensitivity test
IC Influence coefficient
OAT One-at-a-time
OFAT One-factor-at-a-time
PV Photovoltaic
SFR Skylight-to-floor ratio
SI Sensitivity index
SHGC Solar heat gain coefficient
SRC Standard regression coefficient
SRRC Standardized rank regression coefficient
UDI Useful daylight illuminance
WWR Window-to-wall ratio
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