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Abstract: Photovoltaic (PV) arrays are often affected by partial shading (PS), which can significantly
reduce their power output. Dynamic reconfiguration is a promising technique for mitigating the
negative effects of PS by adjusting the electrical connections of the PV modules in real-time. This paper
introduces a hierarchical-based switching block scheme for the dynamic reconfiguration of PV arrays
under PS conditions. With the aim of mitigating the negative impact of PS on PV arrays, the proposed
system employs a low complexity and easily scalable architecture, making it well-suited for practical
applications. Comparative assessments against conventional configurations such as bridge-linked
(BL), total-cross-tied (TCT), and series–parallel (SP) reveal superior energy harvesting efficiency for
the proposed system under various shading conditions. The hierarchical switching block architecture,
featuring multiple levels of switching blocks, enables efficient and flexible reconfiguration of the PV
array, even in the presence of complex shading patterns. Through extensive simulations, the system
consistently outperforms conventional configurations by adapting effectively to changing shading
patterns and optimizing the PV array’s output. The proposed switching block (SB) reconfiguration
technique significantly outperforms existing methods like TCT, Sudoku, dynamic proposals, and
Magic Square in terms of both power generation (up to 42.52% increase) and efficiency (up to 42.13%
improvement) under diverse partial shading conditions. The proposed hierarchical-based switching
block scheme thus presents a promising solution for enhancing the dynamic reconfiguration of PV
arrays under PS conditions, offering a balance between low complexity, scalability, and superior
energy harvesting efficiency for practical applications in the realm of solar energy.

Keywords: PV array; partial shading; switching block; dynamic reconfiguration; maximum power
point tracker; mismatch loss

1. Introduction

The escalating environmental concerns coupled with the ever-growing global energy
demands have spurred a surge in interest in renewable energy sources, with solar energy
emerging as a leading contender [1]. Photovoltaic (PV) panels, designed to convert solar
energy into electrical power, represent a pivotal technology in this sustainable energy
landscape. With the rising need for clean and sustainable energy, PV arrays have garnered
popularity and widespread applicability, positioning solar energy as a viable alternative to
conventional energy sources [2].

PV modules are commonly interconnected in both series and parallel configurations,
with each arrangement providing unique advantages to enhance the efficiency and adapt-
ability of the PV array [3].

Despite the importance of PV arrays in the field of solar energy generation, their
efficiency faces a formidable challenge in the form of partial shading (PS). This phenomenon,
caused by factors such as passing clouds or nearby structures, disrupts uniform sunlight
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exposure across the array, leading to disparate power outputs among PV modules [4]. Such
discrepancies result in a substantial reduction in overall energy harvest and highlight the
limitations of traditional fixed-configuration PV systems. Additionally, PS results in certain
PV modules receiving less irradiance than others, leading to changes in their electrical
characteristics. The variation in electrical parts among PV modules can significantly reduce
the overall output power of the entire PV array and lead to the formation of localized hot
spots [5].

Bypass diodes play a critical role in the protection of each PV module within an array.
Typically connected across each module, these diodes safeguard against potential damage
caused by shading or other operational issues. However, the implementation of bypass
diodes introduces a characteristic phenomenon wherein multiple peaks appear in the
Power–Voltage (P–V) characteristics of the PV array. This effect can impact the overall
performance and efficiency of the system [6].

The influence of PS on power loss in a PV array is a multifaceted phenomenon
influenced by various factors beyond shading conditions alone. In addition to the intensity
and duration of shading, considerations such as the configuration and orientation of PV
modules, interconnection modes (e.g., bridge-linked (BL), series–parallel (SP), and total-
cross-tied (TCT) [7], the presence of bypass diodes, and overall system design contribute
significantly to the overall performance under shaded conditions. It has been found that
the TCT topology is better than other configurations for efficiency in minimizing mismatch
losses (MLs) and enhancing reliability under shading [8]. Despite the advantages of TCT
in reducing MLs, it is noteworthy that existing interconnection schemes, including TCT,
still fall short of fully maximizing the output power [9]. Ongoing research aims to further
optimize interconnection strategies to address this limitation and improve the overall
efficiency of PV arrays under PS conditions.

To address the challenges in solar energy generation through PV arrays, reconfig-
uration has been proposed [10,11]. Reconfiguration involves adjusting the connections
between PV modules to optimize energy output under varying conditions, such as PS. This
adaptive approach aims to mitigate the effects of shading and improve overall performance
by efficiently redistributing electrical currents within the array [12].

In general, PV arrays undergo reconfiguration through two main approaches, cate-
gorized as dynamic and static techniques [13]. In static techniques, the arrangement of
PV modules within the array is changed without affecting electrical connections. This is
performed to mitigate the effects of shading and improve overall power output. Unlike dy-
namic techniques, static methods do not necessitate sensors or switching matrices [14,15]. In
contrast, dynamic techniques, which are more popular, entail modifying the electrical con-
nections between PV modules in the array in real-time based on the amount of irradiance.
The goal of this dynamic technique is to maximize the system’s power production [16].

The dynamic method often incorporates a monitoring system designed to collect
and correlate energy production, weather information, and performance data for PV
arrays [17]. These systems allow the detection of faults but are not effective in estimating
PV power decline in lower-scale PV systems [18]. Making changes to the PV array by
inserting or removing PV modules necessitates significant modifications to the control
system equipment and the heuristic algorithms employed. In the case of a large-scale PV
system, the dynamic configuration demands sensors, a switching matrix, and algorithms,
thereby amplifying complexity. This becomes economically unfeasible for small-scale PV
systems [19]. Therefore, heuristic algorithms, including the Genetic Algorithm (GA) [20],
Grasshopper Optimization Algorithm [21], Particle Swarm Optimization Algorithm [22],
Rao Optimization, and Social Mimic Optimization Algorithm [23], have been employed
for PV array reconfiguration. These techniques establish suitable mathematical models for
irradiance equalization, allowing flexible balancing of the irradiance among PV modules.
Still, their enormous computational burdens can increase as the PV array scales up [9].

Therefore, in this paper, a hierarchical PV array structure is proposed that is con-
structed from an elemental two PV panel building block equipped with an automatic
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switch to dynamically reconfigure the connection in response to the imposed PS condition.
In addition to its effectiveness in harvesting solar energy, the proposed PV array addresses
the control-related complexities and scalability inherent in current dynamic reconfiguration
(DR) methods.

Through a comprehensive exploration of the proposed system, this research seeks to
contribute to the development of DR as a viable strategy to overcome challenges in solar
power generation.

The paper is organized into the following sections: Section 2 presents the related
works. The proposed reconfiguration scheme is described in Section 3. Section 4 presents
the simulation findings and discussion. The paper concludes in Section 5.

2. Similar Works

PS is a common occurrence in PV arrays, significantly impacting power output. This
phenomenon arises when obstructions, such as trees, buildings, or even passing clouds, cast
shadows on some PV modules, reducing their power generation. The resulting mismatch
in power output between shaded and unshaded modules can lead to significant energy
losses, potentially decreasing the overall efficiency of the PV system.

To address the challenge of PS, various mitigation techniques have been proposed,
each offering unique solutions to optimize power extraction under non-uniform irradiance
conditions. These techniques can be broadly categorized into three main approaches: DR,
novel circuit designs, and optimization algorithms.

DR methods aim to dynamically adjust the connections between PV modules to
optimize power output under PS. This approach involves actively switching between
different array configurations to bypass shaded modules and maximize energy generation.
One notable example is the Automatic Switch Block (ASB) method, introduced in [24],
which dynamically adjusts panel connections without a controlling algorithm, achieving
over 12% power improvement compared to existing methods. Another promising technique
is the L-shaped propagated array configuration method presented in [25], effectively
analyzing various shading patterns and outperforming other configurations in terms of
power output and efficiency.

Novel circuit designs offer promising alternatives to traditional reconfiguration meth-
ods by providing innovative ways to harvest PV power under PS conditions. An example is
the optical dielectric circuit introduced in [26], which operates in two modes, decentralized
control and power voltage tracking, to dynamically harvest PV power. This system in-
creases average power harnessed by 25.26% compared to conventional array configurations,
demonstrating the potential of novel circuit designs in mitigating PS effects.

In [27], a PV generator (PVG) system with a rated power of 1621 kW at standard test
conditions (STC) is designed and evaluated using simulations. The system employs a DC–
DC boost converter for the Maximum Power Point Tracker (MPPT). The proposed MPPT
algorithm demonstrates robust performance under extreme conditions, including irradiance
variations and a wide range of temperatures. The designed PVG system exhibits good
agreement between analytical and simulation results, achieving a maximum efficiency of
approximately 99%. These results indicate that the PVG system is an effective and efficient
solution for generating solar power under diverse operating conditions.

A novel MPPT algorithm significantly improves convergence speed and dynamic
efficiency compared to conventional approaches by incorporating a conduction mode iden-
tification mechanism and implementing a large voltage step to mitigate the discontinuous
conduction mode (DCM) operation presented in [28]. In addition, a new high-gain DC-DC
boost converter with a minimized number of components achieves high DC voltage gain
without compromising efficiency and utilizes smaller passive components compared to
similar designs. The proposed MPPT algorithm and DC–DC boost converter demonstrate
promising performance and are suitable for various practical applications.

Optimization algorithms play a crucial role in enhancing the performance of PV
systems under PS conditions by optimizing various parameters, such as switching con-
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figurations and control strategies. The Salp Swarm Algorithm (SSA) integrated into the
SSA–MPPT technique presented in [29] demonstrates superior tracking speed and accuracy
compared to other metaheuristics, achieving an average efficiency of almost 99% across
different environmental conditions. Another promising optimization algorithm is the GA,
utilized in [30] to minimize the number of sensors and switches in reconfigurable systems
while optimizing array columns under different shading conditions.

In addition to these primary approaches, advanced electronic switching techniques
hold the potential to further enhance the ASB system, as explored in [31]. Multi-Objective
Grey Wolf Optimizer (MOGWO), proposed in [32], effectively addresses mismatch power
loss in shaded PV systems by optimizing the switching matrix structure. The Coyote
Optimization Algorithm (COA), presented in [33], serves as a novel metaheuristic technique
for optimizing the reconfiguration of partially shaded PV arrays, significantly enhancing
the extraction of Global Maximum Power (GMP) from a 9 × 9 PV array across various
shading patterns.

Furthermore, the GA employed in [34] demonstrates significant efficiency gains com-
pared to static configurations when used to reconfigure a PV array, reducing implementa-
tion complexity and cost by requiring only two sensors to measure the energy generated
by the PV array. The wind driven optimization (WDO) algorithm, presented in [35], pro-
vides a robust global MPPT technique for PV systems under non-uniform solar irradiance.
WDO outperforms other optimization tools, achieving an efficiency rating of 99.44% while
maintaining a high success rate and low standard deviation. Finally, the Salp Swarm
Optimization (SSO) algorithm, introduced in [36], enhances the tracking capabilities of the
MPP controller for MPPT in the presence of PS conditions. The SSO technique consistently
outperforms existing methods in terms of power conversion efficiency, robustness, and
tracking time. SSO can track global maxima (GM) within a remarkable time range of
0.1–0.35 s, exhibiting a speed advantage of 20–30% compared to alternative techniques.
Under diverse operating conditions, the SSO technique yields an average power increase
of 5% over other bio-inspired algorithms and achieves an impressive 8–46% improvement
compared to conventional Perturb and Observe (P and O) methods.

DR techniques have emerged as a promising approach to mitigate the negative impact
of PS on PV arrays [37]. However, scaling up these techniques to large-scale PV arrays
poses significant challenges due to the increasing complexity and cost associated with
managing a large number of modules and switches [38,39]. To address these challenges,
researchers are exploring novel DR methods that utilize auxiliary modules [40], relay-based
switching schemes [31], or modular building blocks [24] to reduce the number of switches
and simplify system design. These approaches aim to achieve scalability while maintaining
performance and cost-effectiveness [24,31,40].

3. Proposed Reconfiguration Scheme

A controller-based dynamic system was developed, featuring solar panels intercon-
nected in a hierarchical structure. Each pair of solar cell units is linked via relays within
a single entity known as the switching block (SB), which dictates the connection type
among the panels depending on the diverse shading conditions that can affect the solar
panel. The system’s design allows for easy and suitable expansion when incorporating
additional solar modules, adapting to the shading conditions impacting the solar units.
The SBs are arranged in a tiered level, with each level interconnected via additional SBs
to form a comprehensive system. At the initial level, every two cells are linked directly
through a single SB. The first level SBs are then connected to the second level blocks, which
in turn link to the third level, and so forth until it concludes in an integrated hierarchical
structure. The final block, known as the “load block”, completes the system. This results in
a hierarchical diagram that facilitates the effortless addition of new blocks, eliminating the
need for a complete system redesign or rewiring each time.

The SB, as depicted in Figure 1, is composed of two relays, each straightaway connected
to a PV panel. This block has the ability to alter the connection type between the two panels,
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such as parallel or series, based on the shading percentage on the panel. The relay control
process is handled by a microcontroller, which receives signals from a unit known as the
solar irradiance sensor cell (SISC). This small, 5 volt solar cell is installed adjacent to the
primary PV panel to measure solar irradiation levels. It is calibrated with the PV panel to
match voltage changes under different shading conditions. Relays are adjusted from the
normally closed state to the normally open state based on the solar radiation level reading.
In this case, the decision will be based on a predetermined threshold value, such as 50% of
the maximum generated power.
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Figure 1. Switching block.

The operation of the proposed system is as follows. Under normal conditions, when
both PV panels receive roughly equal solar radiation without any shading, the relays stay
in their default state, which is normally a closed position. In this state, the two panels are
connected in parallel; for example, V1 equals V2, where V1 and V2 represent the output
voltages of the two PV panels. The switching block’s output voltage and current are
illustrated in Table 1.

Table 1. The action mechanism of the SB block.

Shading Status C1 C2 Output Voltage Output Current

PV1 PV2

NO shading NO shading 0 0 V1//V2 I1 + I2

NO shading Shading 0 1 V1 I1

Shading NO shading 1 0 V2 I2

Shading Shading 1 1 V1 + V2 I1//I2

However, if one of the PV panels is shaded, it will generate a lower output voltage
than the other, falling below the threshold value. The relay attached to the shaded solar
panel will then switch to the normally open position, disconnecting the shaded panel.
Even when a shaded panel is detached from the array, it continues to generate an electrical
current, which is drained through the relays. This prevents the shaded panel from acting
as an electrical load on the unshaded panel, thereby avoiding voltage surges and power
loss across the other panels that could potentially cause damage. Moreover, PS can elevate
the temperatures of shaded solar cells, accelerating their aging process. In the event that
both PV panels are shaded, their output voltage will drop below the preset threshold.

The relays will then switch to the normally open position, connecting the panels in
series. While this increases the overall output voltage, it can help maintain the output
current. For instance, I1 equals I2, where I1 and I2 represent the output currents of the
two PV panels. Table 1 effectively illustrates the behavior of the SB block under various
operating conditions.



Energies 2024, 17, 181 6 of 19

Where Ci, i ∈ {1,2}, stands for the control function executed by the microcontroller. If
Ci = 0, then the relay is normally closed. If Ci = 1, the relay is normally open.

The suggested system incorporates blocking diodes for each solar cell panel to avert
reverse currents from flowing into shaded or low-voltage solar cells. However, it causes a
voltage drop of approximately 0.7 volts. The PV arrays can be expanded by hierarchically
adding SBs, facilitating easy and efficient scalability. To create an array of PV panels, the
proposed SB connection system is applied to each pair of PV panels. An array of 9 PV
panels was proposed by using eight SB modules to connect each of the nine PV panel pairs
at three levels in a hierarchical manner. In the first level, five SBs are used, one block for
each pair of solar cells. The SB of the ninth cell is connected to the SB of the seventh and
eighth solar cells, as shown in Figure 2. The second level consists of two SBs, to which
the switch blocks of the first level are connected. The third and final level consists of one
switch block, to which the two switch blocks of the second level are connected. This results
in an integrated hierarchical structure.
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Our proposed system employs a pair of Arduino Uno microcontrollers, each featuring
6 analog inputs and 14 digital outputs. This setup enables us to connect the nine SISC units
via the analog inputs and the 16 relays through the digital outputs, as depicted in Figure 2.

The following encapsulates a concise overview of the collaborative functionality be-
tween the controller and the switching block within the framework of the proposed system.
As shown in Figure 3, upon initialization, the microcontroller enters a standby mode,
awaiting an input signal from the SISC unit. Once the sensor cell unit transmits signals, the
microcontroller processes these signals using pre-programmed mathematical calculations.
It then compares the processed signal value with a preset threshold value. If the processed
signal value exceeds the threshold, the signal is disregarded, and the relay remains in
its default state, which is normally closed. Conversely, if the processed signal value falls
below the threshold, the microcontroller triggers the relay to switch from its default state to
normally open. This switching mechanism alters the connection configuration between the
two solar panels from parallel to series, as detailed in Table 1. This configuration change is
contingent on the signal value being less than the threshold value.
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Solar PV System Modeling

The study employed MATLAB–Simulink version R2021b for the proposed system
modeling and analysis. A detailed model of the system was developed in Simulink,
incorporating elements such as photovoltaic panels with nonlinear I–V characteristics,
relays represented by SBs, and control algorithms implemented through microcontroller
functions. The model sends signals representing solar irradiation to the Arduino, and it
receives the processed signals to control the SBs. Figure 4 illustrates the proposed system
in MATLAB–Simulink.

A consistent temperature of 25 ◦C was established. The attributes of the solar PV
system are outlined in Table 2, and the configuration of the parameters for the solar PV
array is depicted in Figure 5.

Table 2. Specifications of PV panels.

Characteristics Unit Specification

PV module type - HL-Mono 50 W

Size mm 670 × 530 × 25

Working voltage (Vmp/V) V 17.5

Working current (Lsc/A) A 2.85

Open circuit current (Vmp/V) V 21.6
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Table 2. Cont.

Characteristics Unit Specification

Short circuit current (Lsc/A) A 23.14

Cell number - 9 × 4 psc

Cell efficiency % 19

Net weight kg 3.7

Max. system voltage - DC1000V (IEC)
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The illustration in Figure 6 displays the configuration for the optimal switch, which
has a loss in voltage in ON status. The ideal switch acts as a relay and is used in SBs.
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4. Simulation Results and Discussion
4.1. System Parameter

The proposed SB-based hierarchical scheme was used to control a nine panel PV array
(3× 3) that was built in a MATLAB–Simulink environment using 50 W PV panels and eight
SB modules. The details of the PV panel specifications are outlined in Table 2.

Without sacrificing generality, the nine PV panels are positioned in a singular row,
subject to various shading patterns. As outlined in Section 3, a PV panel is considered
shaded if its output falls below a predetermined threshold; otherwise, it is considered
unshaded.

To find the threshold limit, the level of solar irradiance and voltage for the different
shading cases were measured for SISC, as shown in Figure 7. In mid-October of this
year (2023), the irradiance in the Iraq/Kirkuk region was measured to reach 720 W/m2

during peak hours under non-shading conditions. The coordinates of the location are
35.466633 latitude and 44.379889 longitude. Figure 7 illustrates the linear relationship
between irradiance and the generated voltage, making the latter a reliable estimate for the
imposed irradiance and, hence, the shading level. The details of the SISC specifications are
outlined in Table 3, while the multimeter specifications are presented in Table 4.

PS can increase the temperature of shaded PV panels that are in contact with unshaded
panels. This can lead to faster cell aging. Therefore, we recommend disconnecting the weak
board from the system to prolong its lifespan and efficiency.

Numerous shading cases exist, including standard patterns SP, BL, and TCT. Table 3
presents the tested shading cases, utilizing various irradiance values (600, 480, 360, 120, 80,
and 720 W/m2 for unshaded panels) to monitor MPPT performance.
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Table 3. Specifications of the SISC module.

Characteristic Unit Specification

PV module type KS-M5555 monocrystalline silicon

Maximum power (Pm) W 0.4

Operating voltage (Vmp) V 5

Operating current (Imp) mA 80

Power tolerance % ±5

Dimensions mm 55 × 55 × 3

Sealed technology Encapsulated with epoxy resin

AM 1.5

Irradiance W/m2 1000

Module temperature ◦C 25

Table 4. UT89X Digital Multimeter specifications.

Characteristic Unit Range Uncertainty

DC voltage V 600 mV/6 V/60 V/600 V/1000 V ±(0.5% to 2%)

AC voltage V 6 V/60 V/600 V/1000 V ±(0.8% to 5%)

DC current A 60 µA/60 mA/600 mA/20 A ±(0.5% to 9%)

AC current A 60 mA/600 mA/20 A ±(1% to 15%)

Resistance Ω 600 Ω/6 kΩ/60 kΩ/600 kΩ/6 MΩ/60 MΩ ±(0.4% to 10%)

Capacitance F 100 mF ±(2.5% to 60%)

Frequency Hz 9.999 Hz/9.999 MHz ±(0.1% to 0.5%)

Duty cycle % 0.1–99.9% ±(2% to 10%)

Temperature ◦C −40–1000 ◦C ±(2% to 4%)

Temperature ◦F −40–1832 ◦F ±(2% to 8%)

4.2. PS Cases

The experiment conducted tested 18 different shading scenarios, as illustrated in
Figure 8, and it turned out that for every number of shaded panels, there are numerous
equivalent shading patterns. This indicates that regardless of the number of shaded panels,
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there are several shading patterns that have the same impact on the performance of the
matrix. This is due to the symmetrical nature of the PV array design and layout. For
example, in the partially shaded (PS) case, where one PV panel is shaded while the other
eight remain unshaded, the equivalence holds for all combinations in which one PV panel
is shaded, without consideration for the specific location of the shaded panel. This means
that the effect on array performance is the same whether the shaded panel is at one end of
the array, in the middle, or elsewhere. These point to the fact that the symmetrical design
of the PV array leads to identical effects from different shading patterns.
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4.3. Results

Table 5 presents the maximum power in watts achieved through a comparative analy-
sis of the proposed system with conventional systems, namely SP, BL, and TCT, under the
influence of 18 distinct shading scenarios. The discerned outcomes unequivocally establish
the superior performance of the proposed system across the majority of shading instances
in comparison to the referenced systems.

Figure 10 compares the performance of different PV array configurations under vary-
ing shading conditions. The proposed SB scheme consistently delivers higher normalized
MPPT values even in challenging shading conditions, indicating improved energy harvest-
ing efficiency.
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Table 5. Cases of PS and the MPPT in the hierarchical nine panel PV array based on SB.

Shading
Cases

MPPT Shading
Cases

MPPT

SP BL TCT SB SP BL TCT SB

No
shading 264.9 264.9 264.9 238.2 Case 10 167.2 121.8 123.8 213.4

Case 1 209.1 195.1 222 227.4 Case 11 122.5 123.8 123.8 124.4

Case 2 209.1 196.1 198.2 227.4 Case 12 122.5 123.8 123.8 124.4

Case 3 209.1 195.1 198.2 227.4 Case 13 120.4 121.1 123.6 146

Case 4 195.7 192.4 188 195.8 Case 14 120.4 121.9 120.3 128

Case 5 187.4 187.5 189 207.8 Case 15 168.8 164.2 164 146

Case 6 195.7 192.4 188 195.8 Case 16 120.9 120.9 120.9 124.5

Case 7 188 188 188 207 Case 17 71.06 71.06 71.06 114.4

Case 8 186.6 186.6 186.6 223.4 Case 18 71.06 71.07 120.9 111.6

Case 9 188 188 172.3 188.3

No shading irradiance = 720 W/m2, case 1–case 18 irradiance = 360 W/m2.
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The equations derived for the proposed system, which theoretically calculate the total
output voltage, current, and power for different shading scenarios, are presented in Table 6.

Table 6. The equations for the total output voltage and current in the SB-based hierarchical configura-
tion for the nine PV arrays.

PS Cases Shaded PVs Total Output Voltage (V) Total Output Current (I)

0 No shading V1//V2//V3//V4//V5//V6//V7//V8//V9 I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9

1 PV 1 V2//V3//V4//V5//V6//V7//V8//V9 I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9

2 PV 5 V1//V2//V3//V4//V6//V7//V8//V9 I1 + I2 + I3 + I4 + I6 + I7 + I8 + I9

3 PV 9 V2//V3//V4//V5//V6//V7//V8 I1+ I2 + I3 + I4 + I5 + I6 + I7 + I8

4 PV (1, 2) (V1 + V2)//V3//V4//V5//V6//V7//V8//V9 I12 + I3 + I4 + I5 + I6 + I7 + I8 + I9

5 PV (1, 4) V2//V3//V5//V6//V7//V8//V9 I2 + I3 + I5 + I6 + I7 + I8 + I9
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Table 6. Cont.

PS Cases Shaded PVs Total Output Voltage (V) Total Output Current (I)

6 PV (5, 6) V1//V2//V3//V4//(V5 + V6)//V7//V8//V9 I1 + I2 + I3 + I4 + I56 + I7 + I8 + I9

7 PV (1, 2, 3) (V1 +V2)//V4//V5//V6//V7//V8//V9 I12 + I4 + I5 + I6 + I7 + I8 + I9

8 PV (1, 4, 7) V2//V3//V5//V6//V8//V9 I2 + I3 + I5 + I6 + I8 + I9

9 PV (3, 4, 5) V1//V2//(V3 + V4)//V6//V7//V8//V9 I1 + I2 + I34 + I6 + I7 + I8 + I9

10 PV (1, 2, 8, 9) (V1 +V2)//V3//V4//V5//V6//V7 I12 + I3 + I4 + I5 + I6 + I7

11 PV (1, 2, 4, 5) (V1 +V2)//V3//V6//V7//V8//V9 I12 + I3 + I6 + I7 + I8 + I9

12 PV (5, 6, 8, 9) V1//V2//V3//V4//(V5 + V6)//V7 I1 + I2 + I3 + I4 + I56 + I7

13 PV (2, 3, 5, 6, 7) V1//V4//(V5 + V6)//V8//V9 I1 + I4 + I56 + I8 + I9

14 PV (1, 2, 4, 5, 6) (V1 + V2)//V3//(V5 + V6)//V7//V8//V9 I12 + I3 + I56 +I7 + I8 + I9

15 PV (2, 4, 5, 6, 8) V1//V3//(V5 + V6)//V7//V9 I1 + I3 + I56 + I7 + I9

16 PV (1, 2, 4, 5, 7, 8) (V1 + V2)//V3//V6//(V7 + V8)//V9 I12 + I3 + I6 + I78 + I9

17 PV (4, 5, 6, 7, 8, 9) V1//V2//V3//(V5 + V6)//(V7 + V8) I1+ I2 + I3 + I56 + I78

18 PV (1, 2, 4, 6, 8, 9) (V1 + V2)//V3//V5//V7 I12 + I3 + I5 + I7

5. Discussion

Simulation results highlight the effectiveness of the proposed method in maximizing
energy harvest. For simple shading patterns where one or two PV panels are shaded out
of a total of nine panels in the simulated array, in cases one, two, and three, the proposed
system demonstrated a 2.13% increase in energy percentage compared to an average of
TCT, SP, and BL configurations. For cases five, seven, and eight, there was a 2.5% increase
in power. Cases four, six, and sixteen showed marginal increases of approximately 0.5%
and 0.8%, respectively. Notably, cases 13 and 14 exhibited substantial increases of 3.2%
and 1.5% over traditional configurations, respectively. The proposed system excelled in
cases 10 and 17, boasting significant increases of 7.6% and 13.2%, respectively. In case 18,
the proposed system outperformed SP and LP configurations by 15.9%, although it lagged
behind TCT by 4%. For cases nine, eleven, and twelve, minimal differences were observed
in acquired energy values with the proposed system, indicating close performance. In case
15, the average of three traditional configurations surpassed the proposed system by 3%.
Figure 11 presents a comparative analysis of the energy harvested by the proposed system
and the three configurations under various shading patterns. Moreover, the results affirm
the effectiveness and high efficiency of the proposed system, attributed to the hierarchical
switching blocks that streamline the system, reducing the number of switches, electrical
connections, and sensors during the integration of additional solar units for scalability and
growth requirements. Moreover, the system’s management control operations contribute
to safeguarding solar panels against rapid damage, aging, and the direct adverse impact
of shaded panels on PV arrays. Finally, the integration of a solar radiation sensor cell
into the proposed system enhances its accuracy and reliability. This system is classified as
an isolated system, characterized by the absence of a direct physical connection between
the microcontroller and the solar panels. One of the key features of such a system is its
ability to significantly reduce noise and distortions in the data, thereby achieving near-ideal
conditions and preventing signal interference between the primary and secondary circuits.
In contrast, similar systems exhibit a direct physical connection between the controller
and the solar cell. These types of systems necessitate the addition of numerous electronic
components to prevent the occurrence of reverse currents. This can impact the system’s
operational accuracy and stability, leading to inefficiency. Thus, the proposed system’s
design offers a distinct advantage in terms of performance and reliability.
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5.1. Power Generation Performance

The proposed system underwent a comparative analysis concerning its maximum
power performance in PS scenarios, juxtaposed with an alternative dynamic system as
referenced in [41]. The findings revealed that the proposed system consistently surpassed
the dynamic system cited in [41] across all shading instances, alongside its superiority over
the Sudoku system. The detailed results of this comparison are elucidated in Table 7 for
three distinct shading scenarios. The proposed system SB demonstrably outperforms other
methods in both power output and efficiency across all three shading scenarios analyzed,
as shown in Figures 12 and 13.

Table 7. Comparison table for three different scenarios of partial shading.

Methods Power (W)
Type 1

Power (W)
Type 2

Power (W)
Type 3

Efficiency (%)
Type 1

Efficiency (%)
Type 2

Efficiency (%)
Type 3

TCT 153.4 144.3 162.324 59.0 55.5 62.4

Sudoku [41] 189.4 153.306 162.324 72.8 59.0 62.4

Dynamic [41] 207.414 162.324 180.36 79.8 62.4 69.4

Proposed SB 213.8 182.8 197.4 82.2 70.3 75.9

Compared to the traditional TCT system, the proposed SB demonstrates an impressive
increase in power generation of 21.6% to 39.33% and an improvement in efficiency ranging
from 12.9% to 39.32%. It also outperforms the Sudoku system, showing a superiority of
12.8% to 21.6% in power and 12.6% to 21.63% in efficiency. Even against the dynamic
system, the proposed SB maintains a clear lead, offering a 3.1% to 12.6% increase in power
and a 3% to 12.6% improvement in efficiency. These consistent and significant gains confirm
the effectiveness of the proposed SB in optimizing PV system performance under diverse
PS conditions, as shown in Figure 14 for power generation and Figure 15 for efficiency.

Furthermore, to validate the proposed system’s efficiency, a comprehensive compari-
son was conducted with a comparable system from prior research [42]. The results were
impressive, with SB significantly surpassing its competitor, particularly relevant for low-
power photovoltaic arrays. Table 8 provides a detailed breakdown of SB’s performance
across diverse shading scenarios (short–narrow, long–wide, short–wide, and long–narrow).
As Figures 16 and 17 illustrate, SB demonstrably outperforms other methods in both power
output and efficiency across all four scenarios analyzed.
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Table 8. Comparison table for four different cases of partial shading.

Methods Power (W)
Case 1 (SN)

Power (W)
Case 2 (LW)

Power (W)
Case 3 (SW)

Power (W)
Case 4 (LN)

Efficiency
(%)

Case 1

Efficiency
(%)

Case 2

Efficiency
(%)

Case 3

Efficiency
(%)

Case 4

TCT 1.445 1.52 1.184 1.634 41.81 43.98 34.26 47.28

Magic
Square con-
figuration

[42]

1.53 1.638 1.596 1.887 44.27 47.40 46.18 54.60

Proposed SB 2.031 1.897 1.687 2.027 58.77 54.89 48.81 58.65

Compared to the traditional TCT system, the proposed SB exhibits an impressive
32.39% to 42.52% increase in power generation and a 31.17% to 42.13% improvement in
efficiency. It also surpasses the Magic Square system by a 7.53% to 19.61% increase in
power generation and a 5.51% to 32.08% improvement in efficiency. These consistent and
significant gains confirm the effectiveness of the proposed SB in optimizing PV system
performance under diverse PS conditions.
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5.2. Scaling

The proposed system utilizes additional units of the same design of two PV arrays
without requiring software updates or hardware modifications to the two PV controllers in
terms of input and output lines and is easily expanded. In contrast, the dynamic system
demands hardware modifications, including an expanded switch matrix (sw = n × n→
(n + 1) × (n + 1)), additional output lines for switch control, and increased input lines
for additional sensors. Software updates are also necessary for the dynamic system to
accommodate the expanded hardware configuration.

6. Conclusions

This paper introduces a reconfiguration technique for PV arrays. The technique uti-
lizes a hierarchical structure based on a switching block to optimize the maximum power
output under PS conditions. The system, controlled by a microcontroller and equipped
with a SISC module, dynamically reconfigures the PV array to maximize power extrac-
tion under varying shading conditions. The switching block alters the connection state
between the solar panels, switching between parallel and series connections based on a
predetermined threshold value. The performance of this technique was evaluated using
MATLAB–Simulink, and the results demonstrated that the proposed reconfiguration strat-
egy offers better performance compared to the SP, BL, TCT, Sudoku, the dynamic proposal
from reference [41], and Magic Square from reference [42] under similar partial shade condi-
tions. Furthermore, the proposed strategy effectively reduces losses, enhances efficiencies,
and improves the overall performance of PV arrays during partial shading. One of the key
advantages of the system’s hierarchical structure is the ease of array expansion. Additional
solar panels can be seamlessly integrated into the PV array without complications in design
or the need for re-establishing electrical connections. The results showed the proposed
SB consistently outperforms, with increases in power generation (21.6% to 39.33%) and
efficiency (21.63% to 39.32%). It also outperforms other systems, including Sudoku and
a dynamic proposal, confirming its superiority in optimizing PV system performance.
Furthermore, the proposed SB exhibits significant gains when compared to the TCT and
Magic Square systems, with a remarkable increase in power generation (32.39% to 42.52%)
and efficiency (31.17% to 42.13%). These high-value results underscore the efficiency of the
proposed SB in optimizing PV system performance under various PS conditions. In the
future, we plan to investigate the impact of different switching block configurations and
optimization algorithms on system performance through real-world testing.
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