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Abstract: The internet of things is undergoing rapid expansion, transforming diverse industries
by facilitating device connectivity and supporting advanced applications. In the domain of energy
production, internet of things holds substantial promise for streamlining processes and enhancing
efficiency. This research introduces a comprehensive monitoring and energy management model
tailored for the University of Cuenca’s microgrid system, employing internet of things and ThingS-
peak as pivotal technologies. The proposed approach capitalizes on intelligent environments and
employs ThingSpeak as a robust platform for presenting and analyzing data. Through the inte-
gration of internet of things devices and sensors, the photovoltaic system’s parameters, including
solar radiation and temperature, are monitored in real time. The collected data undergo analysis
using sophisticated models and are presented visually through ThingSpeak, facilitating effective
energy management and decision making. The developed monitoring system underwent rigorous
testing in a laboratory microgrid setup, where the photovoltaic system is interconnected with other
generation and storage systems, as well as the electrical grid. This seamless integration enhances
visibility and control over the microgrid’s energy production. The results attest to the successful
implementation of the monitoring system, highlighting its efficacy in improving the supervision,
automation, and analysis of daily energy production. By leveraging internet of things technologies
and ThingSpeak, stakeholders gain access to real-time data, enabling them to analyze performance
trends and optimize energy resources. This research underscores the practical application of internet
of things in enhancing the monitoring and management of energy systems with tangible benefits for
stakeholders involved.

Keywords: IoT; energy monitoring; energy management; ThingSpeak; photovoltaic; microgrid

1. Introduction

The internet of things (IoT) has become a pivotal driver for substantial advancements
across diverse sectors, including education, industry, and energy. By enabling seamless data
transfer and exchange through networks, IoT plays a crucial role in fostering innovation.
Specifically, the implementation of IoT technology facilitates the collection of data from
interconnected devices, paving the way for interpretation and process optimization. A
notable example is the application of IoT in monitoring energy generation, particularly in
the context of cost mitigation and sustainability through renewable sources like photovoltaic
(PV) energy. Despite significant strides in IoT, its full potential faces a bottleneck due
to limited remote accessibility for users. This study emphasizes the urgent need for
user-friendly tools to enable hassle-free remote connectivity, focusing on overcoming this
limitation.

In the academic literature, various IoT applications for remote access to meteorolog-
ical parameters, such as temperature, humidity, dew point, light intensity, atmospheric
pressure, precipitation, and smoke percentage, have been documented [1]. A specific
instance is the prototype system detailed in [2], utilizing an Arduino controller for remote
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monitoring of room temperature and humidity. Despite promising outcomes, this study
acknowledges technological limitations associated with the Arduino controller. Another
approach is outlined in [3], presenting a low-cost monitoring system for off-grid PV systems.
This system integrates a fault diagnostic algorithm into a cost-effective microcontroller,
demonstrating effectiveness in accurately detecting various faults. However, this approach
overlooks real-time monitoring of PV variations based on current weather conditions, a
crucial aspect for future energy system planning. Several authors have developed smart
meters, as evidenced in [4], describing low-cost measurement equipment in PV installations
in homes. Additionally, Ref. [5] proposes a methodology to analyze the influence of data
granularity on high-resolution household consumption profiles.

ThingSpeak, closely tied to IoT, emerges as a key player by providing a straightforward
means to collect, store, and analyze data generated by IoT devices. Operating as a web
service, ThingSpeak serves as a host for various sensors, facilitating cloud-based data moni-
toring through integration with MATLAB 2021a [3]. This integration enables the plotting of
daily and annual load profiles using advanced data analysis techniques while monitoring
variables in real time [6]. In parallel, monitoring PV systems assumes critical significance
in enhancing energy production rates and demand management. However, monitoring
the conditions of a PV system necessitates an extensive repository of measured data and
software tools [7]. In the specific domain of monitoring PV systems, some authors have
proposed methodologies based on Python [8] and intelligent monitoring techniques [9].
However, these studies lack easily accessible online monitoring capabilities across various
devices. An IoT-enabled smart solar water heater system using the ThingSpeak platform
is presented in [10], showing considerable potential to enhance water heater efficiency
through real-time system observations. However, the authors do not incorporate a more
advanced and robust monitoring system, thus limiting the scope of their results.

In a similar vein, Ref. [11] proposes an IoT-based technique to monitor key values of
a PV panel using an espressif systems 32 (Esp32) microcontroller. Although the system
has undergone successful tests, it focuses solely on the behavior of isolated PV systems.
Currently, PV systems operate within microgrids covering multiple energy flows, posing
a significant challenge to the proper monitoring of the PV system, an aspect overlooked
in [11]. Monitoring PV systems through IoT and ThingSpeak involves connecting system
components to the ThingSpeak platform via IoT devices. ThingSpeak facilitates data
analysis and processing through its integration with MATLAB, allowing the application
of advanced models and techniques to extract meaningful insights from the collected
data. This includes fault detection, trend analysis, and performance optimization. By
leveraging the power of IoT and ThingSpeak, efficient real-time monitoring of PV systems
becomes possible, increasing visibility into energy generation. This enables timely anomaly
detection and facilitates informed decision-making processes to optimize PV performance
and energy management.

In the realm of energy storage systems (ESSs) optimization in microgrids, the study [5]
stands out for its innovative approach based on genetic algorithms. It addresses energy
management in hybrid microgrids, proposing strategies that maximize battery efficiency
and lifespan. Detailed evaluation through simulations reveals significant improvements
compared to conventional strategies, solidifying the pioneering contribution of this study
to ESS optimization. In [12], attention is focused on microgrid planning in isolated envi-
ronments, proposing a multi-objective approach based on optimization algorithms. This
study highlights the benefits of maximizing microgrid autonomy and minimizing opera-
tional costs, providing a comprehensive perspective for sustainable and efficient microgrid
planning in isolated contexts. Study [13] contributes to understanding the stability of the
electrical system in microgrids by applying battery-based energy storage technologies. The
research includes detailed simulations under various operating conditions, emphasizing
the effectiveness of storage systems in mitigating issues associated with renewable source
variability. In [14], the importance of efficient planning and management in microgrids to
ensure power supply reliability is addressed. The approach, based on risk analysis and
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reliability assessment proposed in this study, emphasizes the need for holistic approaches
to electrical supply continuity in microgrids. Within the framework of smart microgrids,
study [15] stands out by exploring energy management and analysis through the incor-
poration of the IoT. The use of a hybrid PV/wind and piezoelectric energy generation
system, evaluated with ThingSpeak and MATLAB tools, presents an innovative perspective
to enhance the efficiency of smart microgrids. In a similar approach, study [16] imple-
ments an optimized energy management scheme for a hybrid microgrid, using a low-cost
IoT communication platform. The applicability and scalable security of this intelligent
hybrid microgrid solution are highlighted, contributing to the development of efficient
technologies. In the field of IoT system security, Refs. [17,18] explore formal verification
and validation techniques, addressing critical challenges and proposing future directions
to enhance the security of connected systems.

Despite the exhaustive literature review addressing current advances, it is evident
that only a limited number of studies have explored the integration of IoT and ThingSpeak
in the monitoring of PV systems. Most of the existing research predominantly focuses on
isolated PV systems, overlooking the inherent complexities of multiple energy flows within
microgrids. Although some studies, such as that conducted by [3], have conducted various
tests to validate their models, and others, like study [11], have conducted comprehensive
tests to validate their data, none of them address monitoring in the context of a PV system
connected to a microgrid or incorporate robust machine learning techniques to assess
performance. In this regard, the ThingSpeak platform stands out as a straightforward
resource for the collection, storage, and analysis of IoT device data. However, its application
in monitoring PV systems connected to microgrids has been limited so far. Additionally,
despite research on IoT system security, with notable studies like [17,18], there is an evident
need for deeper exploration in the specific context of the fusion of IoT and ThingSpeak in
monitoring PV systems. As a result, there is a significant gap in the literature that requires
attention.

In this context, this study addresses a significant gap in the literature by proposing a
comprehensive model to enhance the visibility of PV energy generation data through the
ThingSpeak platform. It goes beyond conventional approaches by introducing a perfor-
mance evaluation framework based on machine learning-driven linear regression models.
This approach could not only reduce operational costs but also enable precise management
of PV energy in various regions, leveraging available meteorological parameters. The con-
cept of a remote microgrid for energy distribution is presented, facilitating the optimization
of energy resources and global collaboration through internet connectivity. The rest of the
paper is organized as follows: Section 2 explains the proposed methodology, Section 3
shows the system description, Section 4 presents the case study, Section 5 shows the main
results and research discussion, and Section 6 concludes the paper.

2. Methodology

The methodology of the proposed model is structured into three stages, as illustrated
in Figure 1. The initial stage involves microgrid data acquisition, followed by information
processing in the second stage, and concludes with an energy management monitoring
and control algorithm in the third stage. In the first stage, the data acquisition system
is developed on the ThingSpeak platform, focusing on three primary channels: weather
station (WS) monitoring, photovoltaic (PV) monitoring, and demand profiles, each operat-
ing at a frequency of 1 s. The variables obtained from the meteorological station include
solar irradiation (W/m2), ambient temperature (◦C), relative humidity (RH%), wind speed
(m/s), and wind direction (◦). Additionally, for channel 2, a Pzem004t device is employed
to measure electrical power, providing data on power demand profiles (kW).

Moving to the second stage, information processing involves the communication
between channels 1 and 2 on the ThingSpeak platform, facilitated through Equations (1)
to (4). Finally, the third stage presents the outcomes on channel 3 of ThingSpeak, where
real-time values of the variables are visualized. This configuration ensures continuous
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monitoring of the PV system in the microgrid and its corresponding demand. Following
this logic, if the PV generation exceeds the demand, it enables battery charging; otherwise,
it can supply energy through discharge.
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3. System Description
3.1. Monitoring and Data Acquisition

Devices and equipment within IoT networks often transmit their data through person-
to-person or person-to-computer interactions. This communication occurs through the
gateways of physical servers, where data are filtered and subsequently transmitted to
other devices and software applications [19]. This section outlines the methodology and
data acquisition approach proposed for this study. Initially, data acquisition is carried
out utilizing a supervisory control and data acquisition (SCADA) system, employing a
LabVIEW data logger and a dedicated weather station. This allows for the collection of
data, subsequently recorded in the primary server of the microgrid. Within the server, the
SCADA system takes on essential processes, including

• Retrieval of data from the Modbus TCP/IP communication protocol;
• Storage of acquired data in a Citadel database;
• Visualization of the recorded data through a tailored SCADA configuration.

The SCADA main interface empowers users to actively monitor and exercise control
over the operational states of the entire power system, including individual equipment
components within the installation. Additionally, it facilitates the supervision and regu-
lation of pivotal actions, such as the opening and closing of primary switches. However,
due to security considerations, external network monitoring of the microgrid is strictly
prohibited.

This study aims to provide a compelling solution to overcome this limitation. Figure 2
illustrates the proposed diagram, delineating an effective monitoring framework for the
PV system by leveraging the capabilities of ThingSpeak. In this context, a parallel program
is strategically deployed to seamlessly acquire data from the SCADA system via MATLAB,
utilizing the Modbus communication protocol as an intermediary conduit. Subsequently,
these acquired data are effectively transmitted to the IoT web platform, enhancing overall
monitoring capability and improving data accessibility [20]. This setup establishes three
communication channels through the ThingSpeak open access platform. In the first instance,
data are obtained from the meteorological station to establish online monitoring of the
photovoltaic system of the microgrid on channel 2. Channel 3 facilitates data acquisition of
energy consumption demand profiles for a home located in a different area and far from
the microgrid.

It is important to highlight that the transmission of data information occurs within
an external network of the microgrid through an access point. This setup enables the
visualization and monitoring of data from any internet connection point. However, its
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use for operational and control purposes is restricted due to safety considerations. The
model governing the control and management of the microgrid can be programmed
directly into the internal code of the microgrid. In IoT projects, the MQTT (Message Queue
Telemetry Transport) protocol is commonly employed for machine-to-machine (M2M)
communications due to its efficiency and low consumption. However, being considered a
less mature technology, it has certain limitations compared to HTTP (Hypertext Transfer
Protocol). MQTT is slower than HTTP in data transmission, and its resource management
is more complex. Additionally, the MQTT protocol is more susceptible to broker failures
than HTTP. Therefore, the implementation of the HTTP, a more established technology in
microgrid applications, has been chosen. While it does not signify a technological leap, it
offers a better response within the proposed system.
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3.2. PV System Supervision

The variability in PV power generation is affected by various environmental factors,
encompassing temperature, solar irradiation, relative humidity, and geographical location.
Taking these elements into account allows for the estimation of PV power behavior [21].
A predictive methodology for PV power estimation relies on a machine learning-driven
linear regression model, facilitating the monitoring of PV systems. This model incorporates
parameters like solar radiation and ambient temperature, and it is mathematically expressed
by Equation (1) [22]:

P(t)pvm = 0.0118 × t(t) + 0.0999 × r(t)− 1.1393 (1)

where P(t)pvm represents the output PV power from the model, t(t) denotes ambient
temperature, and r(t) represents the solar radiation at time t. This value is compared with
the PV power obtained in real time Ppv from the microgrid. A comparison is automatically
generated with the linear regression model described in Equation (1). This information is
recorded in the ThingSpeak IoT platform, enabling the optimal monitoring and supervision
of microgrid generation.

3.3. Monitoring Energy Demand Consumption

The Pzem004t energy monitor captures data from the loads connected to the terminals,
including values of power (W), voltage (V), current (A), energy (kWh), frequency (Hz),
and power factor. This device also includes a TC voltage and current sensor that allows
measurements of 127/220 V voltage and current up to 100 A. The ESP32 module collabo-



Energies 2024, 17, 170 6 of 13

rates with this tool to monitor electrical energy consumption effectively [23–25]. For on-site
monitoring, the I2C serial communication protocol is employed to display data on an LCD
screen. Additionally, the parameters mentioned above are sent to the ThingSpeak server
via Wi-Fi for monitoring. Figure 3 presents the schematic diagram for data acquisition from
the demand side through the ESP32 microcontroller that functions as an access point for
sending IoT data to the network. Simultaneously, the aforementioned parameters are trans-
mitted to the ThingSpeak server via Wi-Fi for continuous monitoring. Figure 3 illustrates
the schematic diagram detailing the acquisition of data from the demand side through the
ESP32 microcontroller, serving as an access point for sending IoT data to the network.
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3.4. Energy Management Model for a Remote Microgrid

Given that most renewable resources are not always in close proximity to the energy
demand consumption location, a model for a remote microgrid is proposed. This remote
microgrid is seamlessly integrated into the national interconnected system, allowing for the
optimization of resources and energy dispatch through real-time information processing.
Information gathered from various IoT devices, detailing renewable generation and energy
consumption demand across different locations, can be effectively managed through a
data communication model. This enables the harnessing of generation and consumption
during different hours of the day. Strategic planning is crucial for resource management
in demand, underscoring the significance of energy storage systems in cases of excess or
insufficient generation. The following equation illustrates how storage based on demand
can be effectively managed:

P(t)ress[kW, kVAr] = P(t)pv [kW] − P(t)load [kW, kVAr] (2)

where P(t)ress represents the reference power supplied to the batteries, P(t)pv signifies the
photovoltaic power generated by the microgrid, and P(t)load denotes the power consumed
from demand. Depending on the energy demand requirement, the batteries can provide ei-
ther active or reactive power. The state of charge (SoC) values of the battery are constrained
by maximum and minimum limits. Consequently, if the SoC is outside the established
range, the reference value is set to 0. This characteristic of the battery is expressed in
Equations (3) and (4). The reference power for batteries is determined as follows:

SOC(t)min ≤ SOC(t)ess ≤ SOC(t)max (3)

P(t)ess= P(t)ress ; P(t)ess= 0 (4)

A negative reference power value is assigned when PV generation exceeds demand,
allowing for the charging of batteries in excess of the generation. Conversely, if the genera-
tion falls short of the demand, a positive power value is assigned to discharge the batteries
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toward the grid. Throughout this process, control of the SOC of the batteries is maintained,
oscillating around 50%. This implies the autonomous maintenance of a balance between
generation and demand.

4. Case Study

This section delineates an experimental case study aimed at validating the proposed
model. The study was conducted at the Microgrids Laboratory of the University of Cuenca
(CCTI-B), utilizing a state-of-the-art testbed comprising a 15 kWp polycrystalline solar
panel system. The system consists of 60 polycrystalline panels arranged in a 15 × 4 configu-
ration (parallel-series) and is seamlessly integrated with an independent two-level GPTech
inverter featuring advanced maximum power point tracking capabilities, as detailed in
Table 1 [20]. It should be emphasized that the inverter operates at a distinct voltage level
(440 VAC) compared to the primary electrical grid (220 VAC). All interconnected compo-
nents are seamlessly synchronized with the public distribution grid, ensuring reliable and
efficient power flow. Moreover, to facilitate comprehensive monitoring and analysis, a ded-
icated weather station located within the laboratory premises effectively captures crucial
environmental parameters such as solar radiation, temperature, humidity, wind speed, and
wind direction. The microgrid configuration and key equipment installations are visually
depicted in Figure 4, providing a holistic view of the system under investigation.

Table 1. Characteristics of photovoltaic systems and energy storage system [20].

Description Panels Model Max.
Current

Max.
Voltage

Max.
Power

PVS1 60 (15 × 4)
Series-parallel

Atersa
A-250P 35.78 A 553 V 15 kW

Lithium Ion
Battery 11 cells Samsung ELPT392-0002 68.30 A 642 V 44 kWh
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The model designed for comprehensive monitoring of the PV system was meticulously
implemented using advanced script code in MATLAB. The model’s execution begins with
the activation of a timer, ensuring periodic execution of essential processes. Subsequently,
a robust Modbus communication framework is established, enabling seamless retrieval
of the designated power value from the communication port. Simultaneously, leverag-
ing a sophisticated serial communication protocol, the model efficiently acquires crucial
data, including solar radiation and temperature, from the dedicated weather station. This
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process involves effective interfacing with the SCADA system. The acquired data are
meticulously fed into a meticulously crafted linear equation model, specifically tailored
for precise estimation of the PV power. Finally, to facilitate streamlined data management
and dissemination, the model seamlessly transmits the processed data to the designated
ThingSpeak channel, ensuring a seamless and reliable data flow. The intricate implementa-
tion and workflow of the model exemplify the technical prowess and meticulous attention
to detail that underpins its superior performance and reliability.

Pseudocode: PV System online monitoring

1: Start
2: TimerVal = tic
3: Modbus communication
4: while t = 1:N iterations
5: m = modbus(Transport, ‘Port’,Name,Value)
6: Ppv = read(m, ‘holdingregs’,address1,count)
7: Weather station data Reading
8: data = textread(‘data.csv’,”,‘delimiter’,’,’,‘emptyvalue’,NaN)
9: sr(t) = str2num(data{position 1})
10: tp(t) = str2num(data{position 2})
11: Linear Regression Model Equation
12: Ppvm = 0.0118 × tp(t) + 0.0999 × sr(t) − 1.1393
13: IoT communication
14: thingSpeakWrite(channelID,data,‘WriteKey’,writeKey)
15: break
16: end

The model for the channel for the energy management model is described below, as
indicated in Section 3.4.

Model: Energy management model

1: Data Input: Ppv, Pload, SOCess
2: while t = 1:N iterations
3: Start
4: TimerVal = tic
5: Start Modbus communication
6: m = modbus(Transport,‘Port’,Name,Value)
7: Read data from a Modbus server
8: read(m,target,address,count,serverId,precision)
9: Write data to a ThingSpeak Channel 1
10: thingSpeakWrite(channelID,data,‘WriteKey’,writeKey)
11: Read data stored in ThingSpeak Channel 2
12: thingSpeakRead(channelID,‘Fields’,[1,4], ReadKey = ‘channel Read API key’)
13: Execution of MATLAB script Control model
14: Press = Ppv − Pload
15: If SOC(t)min ≤ SOC(t)ess ≤ SOC(t)max
16: Pess = Press
17: else
18: Pess = 0
19: end
20: Perform a write operation to the connected
21: Modbus server SC value
22: write(m,target,address,values,serverId,‘precision’)
23: end

The SCADA screen provides a comprehensive synoptic overview of the microgrid,
empowering users to monitor and command the operational states and total powers of
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each piece of equipment within the installation. Additionally, users can oversee and
control the opening and closing of the main switches. The communication panel within the
SCADA interface offers a synoptic of communication states, allowing the monitoring of
connection and disconnection states for all equipment connected to the Modbus TCP/IP
network. The model, represented as pseudocode in the MATLAB script, has been seamlessly
integrated into the laboratory’s SCADA system for rigorous testing and evaluation. Figure 5
visually showcases a screenshot of the SCADA system’s main menu, highlighting the
successful implementation of the model [20]. This integration underscores the robustness
and versatility of the model, facilitating effective communication and interaction between
the PV system and the SCADA infrastructure. The pseudocode implementation, coupled
with its seamless integration into the SCADA system, exemplifies the meticulous attention
to detail and technical proficiency employed in this advanced and sophisticated framework.
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5. Results and Discussion

This section reveals the findings from the conducted experiment. Initially, data from
the meteorological station were collected and stored, illustrating in Figure 6 the peak
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solar power reaching 1200 W/m2 and temperatures fluctuating between 12 and 20 ◦C.
Notably, the study location, situated near the equator, lacks distinct seasons, resulting in
relatively stable PV power and temperature patterns. For monitoring the PV system, three
channels were established on the ThingSpeak platform, showcasing solar power (W/m2),
temperature (◦C), modeled PV power (kW) derived from Equation (1), and actual PV power
(kW) generated in the laboratory, as depicted in Figure 6.
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To rigorously validate the model, a comparison was made across three randomly
chosen days of stable PV generation. The results, depicted in Figure 7a for the generated
power using the linear regression model and Figure 7b for the power output derived from
the model, highlight the effectiveness of the supervision model. These findings strongly
suggest that the behavior of a PV system can be precisely characterized and controlled
through the application of a model, facilitating efficient internet-based monitoring and con-
trol. Notably, Figure 7c establishes a significant correlation between the model derived from
Equation (1) and the observed real-world behavior. These highly promising results signify a
considerable advancement, setting the stage for more rigorous and resilient methodologies
crucial for enabling real-time analysis of microgrid management and demand through
network-based systems.
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data, and (c) model for daily supervision of PV systems.

Figure 8 illustrates the real-time monitoring of variables through two separate chan-
nels on ThingSpeak. On one side, it aggregates the outcomes from the meteorological
station, as shown in Figure 8a–f. This encompasses parameters such as solar radiation,
temperature, humidity, wind speed, and wind direction. Additionally, it captures the
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monitoring of power demand and the energy consumption of loads, depicted in Figure 8g
and Figure 8h, respectively.
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The introduced monitoring system carries substantial potential for influencing the
landscape of renewable energy integration and the management of remote microgrids. By
harnessing the capabilities of IoT and ThingSpeak, the system provides heightened visibility
into the PV system’s performance. Real-time analysis of crucial parameters, including solar
radiation, temperature, and power generation, offers valuable insights into the dynamic
behavior of renewable energy sources. This enhanced understanding facilitates optimized
decision-making processes, empowering stakeholders to make informed choices regarding
energy generation, consumption, and storage. The proactive maintenance capabilities
of the system ensure the reliability and longevity of PV system components by swiftly
detecting anomalies or deviations in performance. Moreover, the system’s integration with
ThingSpeak enables remote accessibility, overcoming geographical constraints in micro-
grid management. Stakeholders can monitor and control the PV system from virtually
any location with internet access, a particularly valuable feature for remote microgrids
facing physical oversight challenges. The inclusion of energy consumption data from the
Pzem004t energy monitor enhances the system’s capacity to manage demand effectively,
allowing for optimal resource allocation and a balanced, reliable power supply. In the
broader context, the implemented monitoring system aligns with global efforts to transi-
tion toward renewable energy sources, contributing to a more sustainable and resilient
energy ecosystem.

In consideration of the importance of ensuring the reliability and correctness of IoT
services, formal verification and validation techniques play a crucial role in enhancing the
overall quality of our proposed monitoring system. By employing formal methods, we
can systematically analyze and validate the functionality of the IoT services integrated
into our system. Formal verification provides a rigorous means to mathematically verify
that the system behaves according to its specifications, reducing the likelihood of errors
and enhancing its robustness. Moreover, this approach facilitates the identification and
mitigation of potential security vulnerabilities, contributing to the system’s resilience
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against cyber threats. Incorporating formal verification and validation techniques aligns
with the best practices in IoT system development, reinforcing the trustworthiness and
dependability of our monitoring system.

Finally, the proposed model, built upon the IoT platform, facilitates the integration
of ten channels, each supporting a maximum of eight fields. This configuration enables
support for up to 80 IoT devices. To enhance the effectiveness of monitoring and managing
microgrids, the inclusion of a greater number of variables, such as frequency, voltage,
harmonics, among others, could be considered. These additional parameters have the
potential to enhance the operability of the microgrid. Consequently, these aspects will be
subject to analysis in future studies.

6. Conclusions

This paper introduces a comprehensive monitoring system for a PV system utilizing
IoT technologies and the capabilities of ThingSpeak. The system underwent development
and testing in a laboratory microgrid setting, where the PV system is integrated with various
generation and storage systems, along with the electrical grid. Through the integration
of IoT technologies and ThingSpeak, the system achieved real-time monitoring and data
acquisition from the PV system and its interconnected components.

The monitoring system seamlessly integrates the PV system with other energy gen-
eration and storage systems, facilitating efficient management and control of the entire
microgrid. Leveraging ThingSpeak, data from the PV system, including solar radiation,
temperature, and power generation, can be collected, analyzed, and visualized in a user-
friendly manner.

This case study serves as a practical application of IoT and cloud-based platforms,
demonstrating their effectiveness in monitoring and managing PV systems within a micro-
grid context. The integration of multiple energy sources and the electrical grid introduces a
complex operational environment, and the developed monitoring system provides valuable
insights into the performance and behavior of the PV system within this context.

Through the utilization of IoT and ThingSpeak, the monitoring system enhances
visibility, offers real-time data analysis, and enables remote accessibility. This facilitates
efficient decision making, optimization of energy resources, and proactive maintenance
of the PV system. Such monitoring systems hold the potential to contribute significantly
to the advancement of renewable energy integration and the effective management of
remote microgrids.

Further research and development in this field are crucial to explore additional func-
tionalities, enhance system reliability, and validate the scalability of the monitoring system
for real-world applications.
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