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Abstract: Statistical characteristics of the wind speed in the Samaria region of Israel have been
analyzed by processing 11 years of wind data provided by the Israeli Meteorological Service, recorded
at a 10 m height above the ground. The cumulative mean wind speed at a measurement height
was shown to be 4.53 m/s with a standard deviation of 2.32 m/s. The prevailing wind direction
was shown to be characterized by a cumulative mean azimuth of 226° with a standard deviation of
79.76°. The results were extrapolated to a 70 m height in order to estimate wind characteristics at
the hub height of a medium-scale wind turbine. Moreover, Weibull distribution parameters were
calculated annually, monthly, and seasonally, demonstrating a good match with histogram-based
statistical representations. The shape parameter of the Weibull distribution was shown to reside
within a narrow range of 1.93 to 2.15, allowing us to assume a Rayleigh distribution, thus simplifying
wind turbine energy yield calculations. The novelty of the current paper is related to gathering wind
statistics for a certain area (Samaria), and we are not aware of any published statistics regarding
wind velocity and direction in this area. These data may be interesting for potential regional wind
energy development in which the obtained Weibull distribution could be used in calculations for the
expected power generation of particular turbines with a known power dependence on velocity. We
have given an example of these calculations for three different types of turbines and obtained their
yield in terms of electric power and economic value. We also point out that the fact that realistic wind
velocity statistics can be described well by an analytic formula (Weibull distribution) is not trivial,
and in fact, the fit may have been poor.

Keywords: wind statistics assessment; Weibull distribution; Rayleigh distribution

1. Introduction

During the last decade, wind characteristics and wind power potential have been
studied in many countries worldwide [1-58] demonstrating that despite the prolonged
global economic crisis, the worldwide wind power ascent continues. The world’s wind
power capacity reached 273 TWh (93.6 GW new wind power capacity) in 2021, growing
by 17%/year current total installations, which were 837 GW. A new capacity of 557 GW
is expected to be added in the next five years under current policies. That is more than
110 GW of new installations each year until 2026.

A huge part of this capacity was installed in China, with 50.91% of the world’s wind
energy new installations (about a third of the world year’s additions), and the USA with
13.58%, while the rest of the world was responsible for any additional new installations [59].

Wind energy has become a significant player in the world’s energy market. The global
market worth of wind turbine installations in 2020 was around 98.63 billion USD [60].
About 1.371 million people are now employed by the wind industry around the world [61].
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Considering the Israeli energy market, the desire to add to the natural gases found,
which is a nonrenewable local energy resource, has also motivated the state to devote
various efforts to ‘green’ energy research and development, primarily in the area of solar
energy. Recently, wind energy has drawn the attention of energy initiatives as well. Yet,
the wind power amount produced in Israel was diminutive (27 MW in 2019) compared to
the continuously growing global market; however, the steps undertaken by the state were
destined to improve the situation.

Israel currently operates a single wind farm in Asanyia Hill in Golan Heights, with
a total installed capacity of 6 MW (consisting of ten 600 kW turbines), which satisfies the
consumption of about five thousand families. The wind farm operated around 97% of the
time and yielded a revenue of ~1 million $ USD a year. Indeed, the wind energy potential of
Israel is restricted because of surplus moderate-to-poor wind velocity areas and is limited
to areas with sufficiently constant wind, some of which are opposed by green groups on
landscape conservation grounds. Nevertheless, the state continues efforts to bring into
operation two more farms with a 50 MW capacity [62].

It is emphasized in the Israel Knesset document that an improved estimate, based on
the wind turbines’ technological development, gives a value of much more than 500 MW
of the Israeli potential wind energy capacity [63]. One of the perspective areas for efficient
wind technology development, considering its climatic characteristics, is the Samaria region.

It is well known that the energy yield of a wind turbine mainly depends on wind
energy characteristics and the turbine power curve [64,65]. In this paper, statistical char-
acteristics of the wind speed behavior in Ariel (located in Samaria) were derived and
investigated, relying on data collected by the meteorological station located on the Ariel
University campus.

2. Materials and Methods

Eleven years of meteorological data (2001-2011) acquired by the Ariel Meteorological
Station and supplied by the Israeli Meteorological Service were processed. Measurement
samples were taken at a 10 m height above the ground and were available at 10 min
intervals. The city of Ariel is located at 32°6'21.6" N, 35°11'16.43" E, in the center of Israel
(Figure 1). The Ariel Meteorological Station is located inside the Ariel University campus
in the eastern part of the city (Figure 2), residing at 700 m above sea level.

The wind speed data were provided by the meteorological station as a raw matrix of
wind speed and azimuth versus time at a 10 m height, sampled at 10 min. In reality, the
sample time was much higher than stated, and the available data sample actually produced
an average of tens to thousands of faster samples. An example of the monthly wind speed
raw data in Ariel represented by 10 min samples is shown in Figure 3.

The raw vector was used to extract the mean and standard deviation parameters and
then could be either transformed into a histogram (with a discrete probability distribution
function—PDF) or fitted to a known PDF, typically of the Weibull type, as shown in Figure 4.
When creating a histogram, the bins were typically chosen to be 1 m-s~! wide to match
the resolution of the manufacturer-provided turbine power curve data, resulting in the
following discrete PDF:

frst(v) = f(v;),v; —05 < v <v;+05 1

where f(v;) is the magnitude of the histogram bin, centered at v;.

The Weibull PDF is defined by two parameters: the shape or Weibull modulus
(k, dimensionless) and scale (¢, m/s for wind speed). The general form of the Weibull
PDF is given by [54]:

fse(0) = 5(2) et @
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for positive wind speeds (v > 0) with parameters c and k = related to the site wind speed
mean Ly and standard deviation o, which can be calculated as [66]:

wo—er(1+7) )
and
(Tz,:c\/I"(l—F%)—Fz(l—l—%) (4)
where: .
I(x) = [ e tdt (5)
/

© 2003 Korst Communications Lid. www. koret.com

Figure 1. The city of Ariel (© 2003 Koret Communications Ltd.).
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Is the complete Gamma function. In case the wind raw data of a site are unavailable,
but the mean and standard deviation of the wind speed are given, Weibull PDF is usually
assumed, and its parameters are extracted from (4) and (5). In general, several ways to
extract Weibull parameters from raw data exist [67], including the MATLAB function wblfit,
which was used in this work.

A particular (and very common) case of the Weibull PDF is the case where k = 2. It is
called the Rayleigh PDF and is given by [54]:

20 - (27

freu(v) = 2¢

(6)

for positive wind speeds (v > 0) with scale parameter c related to the site mean wind speed
as [66]:

Po = —5-¢ @)
resulting in (6) bring dependent on the average wind speed as [68]:

o ,(@)2
freu(v) = 22 2o ®)
It is worth noting that the wind energy resource can be typically classified according

to average wind speeds at a 10 m height, as shown in Table 1 [68].

Since power in the wind increases with height [69,70], the turbine hub of medium and
large-scale wind turbines is usually located between 50 and 150 m in height. Therefore,
statistical wind parameters must be either measured at the hub height or extrapolated from
measurements available at smaller heights. In case single height measurements only are
available, the power law is usually employed to estimate the wind speed v; at height H; as

shown [71]: L
01\ 1
(%)= (&) ©)

where vy is the wind speed measurement available at height Hy and « is the surface
roughness-dependent friction coefficient [60,71]. The friction coefficient dependence on
terrain characteristics can be typically determined from Table 2 [68].
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Figure 2. Meteorological station location (Google maps).
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According to the above, a software simulator was created that received meteorological
data (excel format) as input and calculated the following output. Using the wind speed raw
data, the mean and standard deviation (5TD) values were calculated, followed by Weibull
parameters extraction and plotting respective histograms along with the resulting Weibull
PDFs. The process was repeated after extrapolating the samples to a 70 m height using
the friction coefficient of 0.3, according to Table 2. All the results were calculated monthly,
annually, and seasonally. As for wind directions, annual Rose diagrams were created for
both 10 and 70-m heights.

18
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14} R

121 =

10 .

wind speed [m/s]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
311 23 456 7 8 91011121314151617 181920 21222324 252627 2829 30 31
time [days]

Figure 3. Typical monthly wind speed raw data.
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Figure 4. Histogram and Weibull PDF fit of wind speed raw data of Figure 3.

Table 1. Wind power classification.

Wind Power Class Average Wind Speed (m/s) at 10 m Height

1 044

2 44-51
3 5.1-5.6
4 5.6-6.0
5 6.0-6.4
6 6.4-7.0
7 7.0-9.5
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Table 2. Friction coefficient dependence in terrain type.

Terrain Characteristics o
Smooth hard ground, calm water 0.10
Tall grass on level ground 0.15
High crops, hedges, and shrubs 0.20
Wooded countryside, many trees 0.25
Small town with trees and shrubs 0.30
Large city with tall building 0.40

3. Results
3.1. Annual Wind Statistical Parameters

Tables 3 and 4 summarize the yearly and cumulative mean and STD of wind speed and
azimuth at 10 and 70 m heights, respectively. It may be concluded that the wind belongs to
class 2, according to Table 1.

Table 3. Yearly and cumulative wind speed statistics at 10 m height.

Year Parameter Speed Azimuth
Mean 4.28 209.41
2001
STD 221 81.13
Mean 4.89 227.31
2002
STD 251 83.03
Mean 4.81 224.15
2003
STD 2.57 78.48
Mean 4.57 228.17
2004
STD 2.49 80.32
Mean 4.64 227.63
2005
STD 2.33 7745
Mean 4.35 231.65
20
06 STD 2.20 83.15
Mean 4.50 228.73
2007
STD 221 79.28
Mean 4.50 221.94
2008
STD 2.25 77.23
Mean 4.54 231.31
2009
STD 2.38 75.39
Mean 4.41 225.30
2010
STD 2.27 79.84
Mean 4.26 230.11
2011
STD 2.08 79.28
Mean 4.53 226.00
2001-2011

STD 2.32 79.76
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Table 4. Yearly and cumulative wind speed statistics at 70 m height.

Year Parameter Speed Azimuth
Mean: 7.72 209.41
2001
STD: 3.94 81.13
Mean: 8.78 227.31
2002
STD: 4.50 83.03
Mean: 8.68 224.15
2003
STD: 4.57 78.48
Mean: 8.24 228.17
2004
STD: 443 80.32
Mean: 8.37 227.63
2
005 STD: 415 77.45
Mean: 7.82 231.65
2006
STD: 3.94 83.15
Mean: 8.07 228.73
2007
STD: 3.97 79.28
Mean: 8.07 221.94
2
008 STD: 4.04 77.23
Mean: 8.15 231.31
2009
STD: 4.28 75.39
Mean: 7.91 225.30
2010
STD: 4.08 79.84
Mean: 7.64 230.11
2011
STD: 3.74 79.28
Mean: 8.13 226.00
2001-2011
STD: 417 79.76

3.2. Monthly Wind Weibull Parameters

Tables 5 and 6 summarize the monthly, yearly, and cumulative Weibull parameters of
wind speed at 10 and 70 m heights, respectively. It may be concluded that winds in Ariel
may be accurately assumed by Rayleigh since the cumulative k is very close to two.

3.3. Annual Wind Weibull Fits

In order to validate the applicability of the Weibull PDF to wind statistics in Ariel,
Figure 5 gives a 2001 annual wind speed raw data histograms and Weibull PDFs at both
10 and 70 m heights. Good matching is evident in Figure 5 and in similar Figures 6-15,
which are associated with the years 2002-2011.

Table 5. Monthly, yearly, and cumulative Weibull parameters at 10 m height.

Month Parameter 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

| c 4.18 6.40 5.97 6.21 6.19 5.45 6.11 6.65 6.08 6.03 5.40
anuar
Y k 1.60 2.11 2.33 1.93 2.06 1.83 1.86 2.31 1.81 2.35 2.06
c 5.60 6.39 7.46 5.92 6.02 5.95 5.58 6.03 6.42 6.10 5.82
February
k 1.76 2.03 2.39 1.70 1.89 1.80 2.03 2.33 2.12 2.07 1.99
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Table 5. Cont.
Month  Parameter 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
c 469 620 647 523 516 545 577 551 564 550 498
March K 1.71 1.98 1.83 1.81 202 195 217 218 206 205  1.89
o c 455 580 549 539 577 555 577 515 497 424 513
Tl
P K 152 228 192 193 177 212 231 218 180 193 210
" c 512 469 572 541 504 423 473 439 475 458 469
a
Y K 165 220 208 202 214 217 215 207 191 212 239
c 476 52 455 490 487 478 506 463 451 506 503
une
J K 214 271 240 277 239 292 270 225 238 224 284
l c 487 506 477 473 499 502 506 456 532 485 445
u
Y K 272 277 221 271 28 300 270 281 291 282 264
c 475 512 412 486 481 436 467 458 450 408 467
August
K 287 274 194 247 263 272 285 278 268 270 301
c 463 475 458 411 468 432 465 446 474 421 409
September
K 246 244 173 212 226 238 276 201 249 233 244
c 415 390 431 338 458 427 412 388 427 413 408
October
K 220 214 174 167 178 236 226 232 215 216 223
c 522 659 463 571 496 444 449 462 484 450 414
November K 2.05 1.88 1.72 1.70 188 209 18 217 18 191 202
c 487 609 666 544 511 497 477 634 559 647 524
December K 1.98 184 203 1.60 166 177 18 203 192 202 216
ol c 485 554 545 518 526 493 509 509 514 498 481
ear.
¥ K 203 205 196 193 210 208 214 210 200 203 215
c 512
2001-2011
K 2.05
Table 6. Monthly, yearly, and cumulative Weibull parameters at 70 m height.
Month  Parameter 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
c 648 813 896 854 858 1032 925 1193 1090 1081  9.68
January
K 178 205 193 206 174 257 216 232 181 235 206
c 956 1044 1021 1029 1081 926 857  11.04 1152 1094 1043
February
K 191 213 192 217 236 206 241 244 212 207 199
c 768 1108 1014 1058 1023 974 877 974 1011 987 894
March
arc K 188 259 209 223 223 193 233 213 206 205  1.89
ot c 773 968 1066 976 1149 992 820 930 891 760 921
Tl
P K 187 223 219 217 227 194 193 222 180 193 210
N c 11.09 954 909 855 982 88 1012 799 851 821 840
a
y K 1.81 195 210 177 208 217 232 213 191 212 239
c 859 986 804 869 836 739 1097 827 808 908 9.2
une
J K 195 213 194 217 198 206 267 224 238 224 284
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Table 6. Cont.

Month Parameter 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

| C 8.86 10.23 8.67 8.80 10.70 8.72 10.81 8.20 9.54 8.70 7.99
u
July k 2.90 2.26 2.14 1.89 2.04 1.98 3.01 2.82 291 2.82 2.64
C 7.67 9.47 10.10 8.21 11.88 9.61 8.88 8.22 8.07 7.32 8.37
August
k 297 2.38 2.21 1.96 2.05 1.97 2.72 2.79 2.68 2.70 3.01
C 9.42 9.85 8.51 8.34 8.42 10.51 8.14 7.82 8.49 7.54 7.33
September
k 2.61 1.89 2.03 2.02 2.31 2.03 242 2.09 2.49 2.33 2.44
C 7.21 9.84 9.40 8.97 9.16 8.02 9.34 7.22 7.66 7.40 7.32
October k 209 207 205 221 243 222 249 220 215 216 223
C 8.18 10.44 10.36 9.60 8.39 8.54 10.05 8.38 8.67 8.06 7.42
November
k 1.98 2.19 2.20 2.50 2.21 2.38 2.53 2.27 1.88 1.91 2.02
C 9.90 9.69 10.19 8.93 8.11 7.96 7.99 11.12 10.03 11.60 9.40
December
k 2.09 2.29 2.35 2.36 1.80 1.94 2.77 1.96 1.92 2.02 2.16
Yearl C 8.70 9.92 9.78 9.29 9.44 8.83 9.12 9.12 9.21 8.93 8.63
ear
y k 2.03 2.05 1.96 1.93 2.10 2.08 2.14 2.10 2.00 2.03 2.15
C 9.17
2001-2011
k 2.05
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Figure 5. The 2001 wind speed raw data Histogram and Weilbull PDF. Top (a)—10 m height, Bottom
(b)—70 m height.
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Figure 6. The 2002 wind speed raw data Histogram and Weilbull PDF: (top)—10 m height,
(bottom)—70 m height.
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Figure 7. The 2003 wind speed raw data Histogram and Weilbull PDF: (top)—10 m height,
(bottom)—70 m height.
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Figure 8. The 2004 wind speed raw data Histogram and Weilbull PDF: (top)—10 m height,
(bottom)—70 m height.
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Figure 9. The 2005 wind speed raw data Histogram and Weilbull PDF: (top)—10 m height,
(bottom)—70 m height.
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Figure 10. The 2006 wind speed data Histogram and Weilbull PDF: (top)—10 m height,
(bottom)—70 m height.
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Figure 11. The 2007 wind speed data Histogram and Weilbull PDF: (top)—10 m height,

(bottom)—70 m height.
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Figure 12. The 2008 wind speed data Histogram and Weilbull PDF: (top)—10 m height,
(bottom)—70 m height.
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Figure 13. The 2009 wind speed data Histogram and Weilbull PDF: (top)—10 m height,
(bottom)—70 m height.
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Figure 14. The 2010 wind speed raw data Histogram and Weilbull PDF: (top)—10 m height,
(bottom)—70 m height.

T
02r I Histogram ||
Weibull fit
0.15 J
z
2
8 o1 f
Y
o
0.05 B
0 ‘
0 2 4 6 8 10 12 14 16
Wind speed [m/s]
T
I Histogram
015k Weibull fit ||
2
% 0.1 8
Qo
g
o
0.05 _
0 ! |
0 5 10 15 20 25 30

Wind speed [m/s]

Figure 15. The 2011 wind speed raw data Histogram and Weilbull PDF: (top)—10 m height,
(bottom)—70 m height.
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3.4. Annual Comparison of Weibull Wind Curves

All annual Weibull PDFs were plotted together in Figure 16 for 10 and 70 m heights,
respectively. It may be concluded that the wind regime was relatively stable and, hence,
predictable. This is supported by Figure 17, which presents statistical as well as Weibull
parameter variations throughout the years at a 10 m height.

0.2 \ ‘
— 2001
2002
0.15 + 2003 H
s 2004
2 + 2005
B o4l 2006 1
Q
: 2007
e 2008
0.05 —— 2009 |
2010
0 F 4 ‘ =S = OO I 201 L
0 2 4 6 8 10 12 14 16 18 20
wind speed [m/s]
0.12
—— 2001
y — 2002
+ 2003
Sos 2004
g + 2005
® 006 2007
g 2007
a 0.04 o0
—— 2009
0.02 o
| 2011 |
0 ! ! ! ! ! ! ! ! P
0 2 4 6 8 10 12 14 16 18 20

Wind speed [m/s]
Figure 16. The 2001-2011 Weilbull PDFs: (top)—10 m height, (bottom)—70 m height.

3.5. Seasonal Comparison of Wind Weibull Parameters & Curves

Weibull parameters were estimated seasonally as well. The winter season in Israel
generally takes place from November to January, the autumn season from August to
October, the spring season from February and April and the summer season from May to
July. The results are summarized in Tables 7 and 8 for the 10 and 70 m heights, respectively.
Cumulative seasonal PDF plots are given in Figures 18-21, respectively.

3.6. Statistical Analysis of Wind Direction

Another important aspect of wind analysis is the prevailing wind direction (azimuth).
Eleven years of wind direction polar histograms (Rose diagrams) are shown as they rose in
the diagram in Figure 22 for the year 2001 (additional Figures 23-32 for the years 2002-2011
are given below) for both 10 and 70 m heights. The cumulative wind rose diagrams are
shown in Figure 33. It may be concluded that the prevailing wind direction remained
relatively stable throughout the years.
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Figure 17. The 20012011 parameter variations at 10 m: (top)—statistical, (bottom)—Weibull.

Table 7. Seasonal variation in Weibull parameters at 10 m height.

Parameter 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Winter ¢ 453 525 548 503 467 499 508 58 551 568 494
November—January Kk 185 212 213 229 188 221 235 204 183 199 202
Spring c 463 580 577 569 605 538 475 558 566 526 530
February-April k 184 229 206 218 226 196 220 223 195 193 197
Summer c 533 558 480 484 537 465 594 455 487 483 472
May-July K 200 210 205 192 199 203 262 235 224 234 258
Autumn c 453 543 521 475 548 523 490 433 450 414 429
August-October k 239 208 208 205 205 199 251 230 241 236 250
Table 8. Seasonal variation in Weibull parameters at 70 m height.
Parameter 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Winter c 812 942 982 903 837 895 911 1051 988 1018 885
November—January k 185 212 213 229 188 221 235 204 183 199 202
Spring c 831 1041 1034 1021 10.84 964 852 1001 1014 944 950
February—-April k 1.84 229 206 218 226 196 220 223 195 193 197
Summer c 955 1001 860 868 962 834 1064 816 873 867 847
May-July Kk 200 210 205 192 199 203 262 235 224 234 258
Autumn ¢ 812 973 934 851 983 938 879 776 807 742  7.68
August-October k 239 208 208 205 205 199 251 230 241 236 250
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Figure 18. The 20012011 spring Weilbull PDFs: (top)—10 m height, (bottom)—70 m height.
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Figure 19. The 2001-2011 autumn Weilbull PDFs: (top)—10 m height, (bottom)—70 m height.
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Figure 20. The 2001-2011 summer Weilbull PDFs: (top)—10 m height, (bottom)—70 m height.
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Figure 21. The 20012011 winter Weilbull PDFs: (top)—10 m height, (bottom)—70 m height.
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Figure 22. The 2001 wind rose diagrams. Top (a)—10 m height, Bottom (b)—70 m height.
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Figure 23. The 2002 wind rose diagrams: (top)—10 m height, (bottom)—70 m height.
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Figure 24. The 2003 wind rose diagrams: (top)—10 m height, (bottom)—70 m height.
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Figure 25. The 2004 wind rose diagrams: (top)—10 m height, (bottom)—70 m height.
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Figure 26. The 2005 wind rose diagrams: (top)—10 m height, (bottom)—70 m height.
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Figure 27. The 2006 wind rose diagrams: (top)—10 m height, (bottom)—70 m height.
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Figure 28. The 2007 wind rose diagrams: (top)—10 m height, (bottom)—70 m height.
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Figure 29. The 2008 wind rose diagrams: (top)—10 m height, (bottom)—70 m height.
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Figure 30. The 2009 wind rose diagrams: (top)—10 m height, (bottom)—70 m height.
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Figure 31. The 2010 wind rose diagrams: (top)—10 m height, (bottom)—70 m height.
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Figure 32. The 2011 wind rose diagrams: (top)—10 m height, (bottom)—70 m height.
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Figure 33. The 20012011 wind rose diagrams: (top)—10 m height, (bottom)—70 m height.

4. Wind Power Generation

The power curves of available turbines are described in [52,53], from which three
examples were analyzed in this paper and are depicted in Figure 34.

Among the turbines analyzed, the largest was Enercon’s model E101/3000 turbine
with a radius of 50.5 m. Hence, we assume from now on that the hub of the turbine is 70 m.
Table 9 summarizes the area and radii of the turbines under study:
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Table 9. Wind turbine geometric parameters.
Turbine Enercon’s E101/3000 AWE’s 54-900 EWT’s Directwind 52/750
Area (m?) 8012 2290 2083
Radius (m) 50.5 27 25.75

For this height, we obtained an average speed of 8.8 m/s. The average of the power
and the standard deviation obtained for each turbine is depicted in Table 10, and we used
the Weibull distribution to calculate the average power and the power standard deviation.

Table 10. Wind turbine power and economic yield.

Turbine Enercon’s E101/3000 AWE’s 54-900 EWT’s Directwind 52/750
Average Power (kW) 1380.97 379.06 333.25
Power Standard Deviation (kW) 1160.94 326.58 275.32
Annual Revenue (Million SH) 6.46 1.77 1.56
Annual Revenue (Million $) 1.84 0.50 0.44

Table 10 contains the annual economic value of the turbine based on the current price
of energy for household consumers in Israel, which is 0.5342 SH per kW hour on 1 January
2023 (before tax), and the exchange rate for the same date is 3.5190 SH for one $ USD. In
Israel, the price was determined by governmental authorities who attempted to strike a
balance between the interest of other producers, the cost of transmission and distribution,
and the public interest in clean energy.
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Figure 34. Power curves of wind turbines [66]. The dashed thick curve is the power curve of
Enercon’s model E101/3000 turbine, the thick line is the power curve of AWE’s model 54-900 turbine
and the dashed curve is the power curve of EWT’s model Direct wind 52/750 turbine.

5. Conclusions

In this work (see Figure 35 for a workflow diagram), statistical characteristics and
Weibull parameters of the wind speed in the Samaria region were extracted from 11 years
of wind data provided by the Israeli Meteorological Service and acquired at 10 m height
above the ground.
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Figure 35. Workflow diagram.

The cumulative mean wind speed at measurement height was found to be 4.53 m/s
with a standard deviation of 2.32 m/s. The prevailing wind direction was shown to be
characterized by a cumulative mean azimuth of 226° with a standard deviation of 79.76°.
The Weibull distribution parameters were calculated yearly, monthly, and seasonally,
demonstrating a good match with histogram-based statistical representations. The shape
parameter of Weibull distribution was shown to reside within a narrow range of around
two, allowing Rayleigh statistics to be assumed. The results were extrapolated to a 70 m
height in order to estimate the wind characteristics at the hub height of a medium-scale
wind turbine. It was shown that both statistical parameters and wind direction distribution
remained relatively constant throughout the years, indicating good prediction potential.
The novelty of the current paper is related to gathering wind statistics for a certain area
(Samaria), and we are not aware of any published statistics regarding wind velocity and
direction in this area. These data may be interesting for potential regional wind energy
development in which the obtained Weibull distribution can be used in calculations of the
expected power generation of particular turbines with a known power dependence on
velocity. The current work contains an analysis of three different turbines in terms of power
generation and economic value. We also point out that the fact that realistic wind velocity
statistics are well described by an analytic formula (Weibull distribution) is not trivial, and
in fact, the fit may have been poor.
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