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Abstract: Road transport is one of the most important factors for the national economy due to its
universality and comprehensive possibilities of transporting people and goods. Unfortunately, from
the energy point of view, it is also the most cost-intensive and has a negative influence on the natural
environment. For these reasons, issues related to limiting the use of conventional fuels are very
important, which results in reducing emissions from this sector, as well as reducing transport costs.
This article presents currently used energy sources for propulsion of road vehicles, including fossil
and alternative fuels, gaseous fuels and other energy sources such as fuel cells. The following section
presents technologies that allow to recover some of the energy lost in motor vehicles and internal
combustion engines used for their propulsion. The principle of operation of these solutions, their
structure and their main features are presented. The last part focuses on discussing and identifying
the most universal technologies for energy harvesting in vehicles and showing further directions of
energy development in the automotive sector.

Keywords: alternative energy; micro sensors; thermoelectric generator; vibration energy; wasted energy

1. Introduction

Currently, the world is struggling with climate and energy problems. The increase in
energy and fuel prices affects not only producers and transport entrepreneurs but also the
entire society. There are problems with the supply chains of various products and semi-
finished products or raw materials, which results in a large increase in prices. Therefore,
among others, for these reasons, they accelerate work on various alternative energy sources
and new solutions, which were usually reserved for large energy sectors. Derkacz and
Dudziak in [1] presented research on the energy sector in Poland in the years 2005–2020.
Based on the conducted research, it was shown that the gross amount of savings strongly
determines the gross amount of investments in the energy sector. This study [1] proved
that it is not profits but investments that drive the development of private investments,
which in turn influence the development of the energy sector and the entire economy in
Poland. In turn, Jalowiec et al. [2] believe that the implementation of the Energy Policy
between now and 2050 should facilitate the transformation of the coal-based electricity
system towards a more sustainable and diversified energy mix. The authors [2] presented
an analysis of surveys on basic matters related to climate and energy strategies which, in
the opinion of respondents, were adopted in the EU. Unfortunately, a major role in making
decisions about changes in the energy sector is taken by politicians who do not want to

Energies 2023, 16, 3787. https://doi.org/10.3390/en16093787 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16093787
https://doi.org/10.3390/en16093787
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-7546-8703
https://orcid.org/0000-0002-1407-2924
https://orcid.org/0000-0002-8066-7782
https://orcid.org/0000-0001-6006-9470
https://orcid.org/0000-0002-9320-5296
https://doi.org/10.3390/en16093787
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16093787?type=check_update&version=1


Energies 2023, 16, 3787 2 of 32

expose themselves to public opinion, which has a negative impact on changes in this sector.
Figure 1 shows the forecast of the investment size in individual market renewable energy
sources (RES) until 2050.
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The energy transformation of many national economies is moving towards abandon-
ing coal in favor of greater use of RES, including the share of wind energy [4,5], solar
energy [6–10], hydro energy [11–15] and the development of alternative fuels, including
biomass [16–22] and biofuels [23–27]. It is predicted that in 2050, the use of RES in electricity
production may increase by as much as 70%. In Figure 1, we can see that photovoltaics
installations and wind turbines have the largest market share (50% of electricity supply).
There is a noticeable increase in the share of hydropower in the energy market, which,
according to estimates, by 2050 is to become one of the main sources of electricity [2]. The
use of natural gas (NG) appears to increase slightly, while the share of coal in electricity
production will decrease significantly by 2050. Around 2030, it is assumed that hydrogen
and ammonia will be able to be used as fuel to generate electricity, similarly to NG in
gas engines and coal. From the point of view of climate policy, the origin, method of
hydrogen production and the related CO2 emissions are very important. The lower the
CO2 emission is, the greater the chances of using hydrogen in the energy sector are. There
are several types of hydrogen identified by colors, and they depend on how they are
obtained. Poland produces approx. 1 million tons of hydrogen per year, coming entirely
from fossil sources, and it is the so-called gray or black hydrogen, which must be purified
of methane. Green hydrogen obtained in the process of water electrolysis using energy
from RES is the most desirable in the energy sector. Violet or red hydrogen is obtained
in the process of electrolysis but in nuclear power plants. Another is yellow hydrogen,
which is produced in the process of electrolysis using solar energy. In turn, blue hydrogen
is produced from fossil fuels combined with CO2 capture processes. Brown hydrogen
is obtained on the basis of fossil fuels: lignite. There are also white hydrogen—coming
from natural geological sources—and turquoise hydrogen—obtained in the process of
pyrolysis of methane or in the process of processing waste plastics. The development of
hydrogen and bio methane technology used to power vehicles in road transport in EU
countries is recommended, for example, in the Directive 2014/94/EU of the European
Parliament and of the Council of 22 October 2014 [28,29]. In turn, the biofuels market is
noticeable in each of the economies, but it depends on the local substrates used in a given
area of the country or region. These tendencies are visible in numerous publications, such
as [30–34]. Papers [30,31] focused on the issues of biomass production from wood waste
and wood for energy purposes. Momayez et al. [32] used biogas digestate effluents for
pre-treatment of rice straw in order to improve the production of biofuels. Rice straw was
pre-treated at several temperatures—130, 160 and 190 ◦C—for 30 and 60 min and subjected
to enzymatic hydrolysis, simultaneous saccharification and fermentation (SSF), as well as
liquid anaerobic digestion (L-AD) and dry anaerobic digestion (D-AD) [32]. The highest
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improvement in hydrolysis and ethanol yield was 100 and 125%, obtained from straw at
the highest process parameters and pre-treatment with biogas digestion wastewater. The
best methane yield (24 and 26%) was obtained with L-AD and D-AD straw at process
parameters of 190 ◦C and 30 min with biogas digestate effluent. Wang et al. [33] studied
methane production from rural household digesters. The influence of various amounts
of magnetite powder on the anaerobic co-digestion of pig manure (PM) as well as wheat
straw (WS) was determined. Satisfactory results were obtained; with the addition of 3 g of
magnetite powder, a maximum methane production of 195 mL/g total solids was obtained
(i.e., an increase of 72.1%). To improve the AD efficiency in [34], a soil with the potential
for interspecific electron transfer, buffering capacity and nutrients for microbial growth
was used. It was confirmed that the cations contained in the soil are the main reason for
improving AD efficiency. Therefore, the finding in this study can be a benchmark for the
conversion of various bio-wastes by solid-state AD [34]. As you can see, the methane
production process can be carried out in various ways and uses a variety of input materials.
However, the use of methane as a fuel requires operational tests to confirm the effect of
the gas on the components of the internal combustion engine (ICE). However, it is an
interesting alternative to fossil fuels.

Figure 2 shows the energy mix in the EU, together with the planned changes.

Energies 2023, 16, x FOR PEER REVIEW 3 of 32 
 

 

country or region. These tendencies are visible in numerous publications, such as [30–34]. 

Papers [30,31] focused on the issues of biomass production from wood waste and wood 

for energy purposes. Momayez et al. [32] used biogas digestate effluents for pre-treatment 

of rice straw in order to improve the production of biofuels. Rice straw was pre-treated at 

several temperatures—130, 160 and 190 °C—for 30 and 60 min and subjected to enzymatic 

hydrolysis, simultaneous saccharification and fermentation (SSF), as well as liquid anaer-

obic digestion (L-AD) and dry anaerobic digestion (D-AD) [32]. The highest improvement 

in hydrolysis and ethanol yield was 100 and 125%, obtained from straw at the highest 

process parameters and pre-treatment with biogas digestion wastewater. The best me-

thane yield (24 and 26%) was obtained with L-AD and D-AD straw at process parameters 

of 190 °C and 30 min with biogas digestate effluent. Wang et al. [33] studied methane 

production from rural household digesters. The influence of various amounts of magnet-

ite powder on the anaerobic co-digestion of pig manure (PM) as well as wheat straw (WS) 

was determined. Satisfactory results were obtained; with the addition of 3 g of magnetite 

powder, a maximum methane production of 195 mL/g total solids was obtained (i.e., an 

increase of 72.1%). To improve the AD efficiency in [34], a soil with the potential for inter-

specific electron transfer, buffering capacity and nutrients for microbial growth was used. 

It was confirmed that the cations contained in the soil are the main reason for improving 

AD efficiency. Therefore, the finding in this study can be a benchmark for the conversion 

of various bio-wastes by solid-state AD [34]. As you can see, the methane production pro-

cess can be carried out in various ways and uses a variety of input materials. However, 

the use of methane as a fuel requires operational tests to confirm the effect of the gas on 

the components of the internal combustion engine (ICE). However, it is an interesting al-

ternative to fossil fuels. 

Figure 2 shows the energy mix in the EU, together with the planned changes. 

 

Figure 2. EU energy mix, including the planned changes [35]. 

As we can see in Figure 2, nuclear and gas fuels seem to be stable in the EU, as well 

as hydropower and biomass to a somewhat lesser degree. On the other hand, the expected 

share of RES (photovoltaics and wind farms) at the level of over 50% in the total energy 

mix is questionable due to their main and obvious disadvantage—i.e., high dependence 

on weather conditions. It is known that photovoltaic installations cannot generate electric-

ity at night; however, during the day, the amount of solar radiation also varies, especially 

when it is located in the middle latitudes where EU countries are situated [36]. The area 

with relatively constant winds is the coastal zone and the Central European Plain; on the 

rest of the continent there are the same problems as with photovoltaics. Figure 3 shows 

the forecast of the emission reduction scenario by 55% by 2030 in the Polish energy sector. 

Figure 2. EU energy mix, including the planned changes [35].

As we can see in Figure 2, nuclear and gas fuels seem to be stable in the EU, as well as
hydropower and biomass to a somewhat lesser degree. On the other hand, the expected
share of RES (photovoltaics and wind farms) at the level of over 50% in the total energy
mix is questionable due to their main and obvious disadvantage—i.e., high dependence on
weather conditions. It is known that photovoltaic installations cannot generate electricity at
night; however, during the day, the amount of solar radiation also varies, especially when
it is located in the middle latitudes where EU countries are situated [36]. The area with
relatively constant winds is the coastal zone and the Central European Plain; on the rest
of the continent there are the same problems as with photovoltaics. Figure 3 shows the
forecast of the emission reduction scenario by 55% by 2030 in the Polish energy sector.
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The projection presented, the 50% emission reduction target in 2018–2030 in Poland,
could cause emissions in the energy sector to fall by 78%, while the 55% emission reduction
target could reduce emissions by as much as 82% over the same period of time. Undoubt-
edly, there is a significant share of coal at the beginning of the forecast period, which is to be
compensated by gas and renewable energy. On the basis of the forecasts presented above,
there is a high hydropower potential. From the currently existing solutions for storing
the produced electricity, the best results are obtained in the case of pumped-storage hydro
power plants (widely used). Other technical solutions are compressed air and flywheels
(rarely used in practice), as well as thermal energy stores and batteries. The spread of
pumped-storage hydro power plants is favored by the surplus of energy generated at night
by stable nuclear power plants, i.e., their efficiency is high exclusively in the complementary
pair. With the exception of pumped-storage, all other methods have low energy storage
capacity [36], but progress in the field of batteries could be a breakthrough in this sector. In
the case of batteries, potential shortages of lithium and other metals used in the production
of batteries may be a threat. As reported by Rehman et al. [38], the flexibility and storage
capacity of hydroelectric power can improve grid stability and facilitate the deployment
of other intermittent renewables, such as wind or solar power. Other authors also believe
that hydroelectric power plants fill the energy gap created by the discontinuity of wind
and solar energy [39–41]. Unfortunately, some regions create obstacles to the growth and
use of hydropower due to the characteristics of this energy source [42]; promoting, at
the same time, the construction of small and large hydropower plants is of fundamental
importance [43]. According to Ma et al. [44], water energy turned out to be an important
safeguard of socio-economic evolution. As pointed by Yang et al. [45], as power systems
become increasingly dependent on an ever-increasing combination of intermittent RES,
hydroelectric power plants are being required to regulate their frequency more aggressively.
Hydro power plants have many advantages, the most important of which are the follow-
ing: long service life of hydropower turbine sets [46]; low impact on the water ecosystem
(fauna and flora); regulating the riverbed and reducing the risk of flooding [12]; aerating
water and requiring care for water purity in the river; etc. However, they may affect the
groundwater level [13], lowering or increasing it in the close vicinity of large hydropower
plants, although this impact is difficult to determine.

One of the energy-intensive and cost-intensive sectors is the machinery sector, where
technological processes consume huge amounts of energy. Therefore, there also is a lot of
research on improving technological processes in this area [47–50], which also results in
significant cost and energy savings.

Rising energy prices are changing the way of thinking about managing this energy
in public buildings and the service sector or the hotel industry. Interesting research on
energy consumption in a large hotel was presented by Orynycz and Tucki in [51]. The
research shows that significant amounts of water and energy are wasted in the analyzed
hotel facility, and the main sources of their losses have been identified [51]. As a result of
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modernizations and improvements, about 20% savings were obtained. In addition, the
maximum possible daily savings resulting from the replacement of lighting in staircases
and underground garages in the hotel building, along with replacement of the ventilation
system, are estimated at approximately 68% for lighting and ventilation.

Another sector with high energy demand is the transport sector, both public and
private. Due to the high rate of vehicles on the road, the transport sector is a major reason
of fuel depletion [52]. In this sector, apart from the consumption of energy for work, we
are dealing with its large dispersion and loss. In addition, the transport sector is a huge
producer of pollutants and exhaust and dust emissions. Many scientific and research works
have been devoted to the issue of pollutant emissions from means of transport, of which
the following are worth mentioning: on greenhouse gas emissions [53,54], the impact of
vehicle operation and the technical condition of the vehicle on exhaust emissions [55–61]
and the type of fuel for vehicle propulsion [29,62–66].

Thus, we can see that the problem with energy consumption is visible in many sectors
of the economy; therefore, any prospects for its saving or more effective use are an important
issue for the sectors as well as consumers. This review presents development trends in
the field of energy used in means of transport for their propulsion and the possibilities
of saving fuel consumption and systems for recovering energy lost in means of transport.
The latter aspect will be extensively described in the further part of the work, with the
division into various ways of recovering mechanical and thermal energy and converting it
into electricity that can be used directly in the vehicle. A schematic representation of the
work structure is shown in Figure 4.
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2. Current Sources of Energy for Road Vehicles

This chapter presents the current sources of energy (fuels) used to propel modern road
vehicles. More than a hundred years ago, the internal combustion engine won the battle for
the propulsion of motor vehicles. Currently, it is increasingly being displaced in favor of
hybrid and electric systems. Although the road to complete electro mobility is still long,
this direction is becoming more and more visible in many countries, but, above all, it can
be seen in the offers of car manufacturers. There is a clear trend in moving away from
combustion engines in many leading manufacturers, such as Toyota, Hyundai, Kia, Volvo,
BMW or VW. Currently, work is underway on an EU regulation draft on the cessation of
production of vehicles powered by ICE. The main premise of the project is the departure
from the sale of vehicles powered by diesel engines from 2030 and petrol engines from
2035. Work on this project began in December 2018, and the regulations are to come into
force from 1 June 2023. This is related to the expiry of the Motor Vehicle Block Exemption
Regulation (31 May 2023). Despite this trend, ICE is still very attractive and has many
supporters. The unquestionable advantage of the ICE is the possibility of its uninterrupted
operation and the ease of fuel storage, which is important in off-road applications [67]
(agriculture, construction and forestry machinery).

Diesel oil and gasoline remain the main fuel for ICE. However, due to the policy of
moving away from fossil fuels and reducing exhaust emissions, there are two ways to
improve the environmental performance of motor vehicles. One of the ways may be to
modify the fuel with additives and mixing [68] and the use of the so-called alternative
fuel. The second way is to change the drive systems. Fuels of this type include alcohols
(such as ethanol and methanol), ethers, vegetable oils, animal fats and biodiesel as well
as gaseous fuels (such as hydrogen, NG and liquefied petroleum gas (LPG)) [69]. Despite
many research works [70–77], a big problem when using various alternative fuels to replace
mineral diesel oil in diesel engines is the problem of its adaptation, resulting, for example,
from modification of the fuel system or seasonality of selected biofuels. The latter factor
is important in countries with high variability of weather conditions. On the other hand,
biodiesel has long been considered a unique alternative fuel that can be used in a diesel
engine with little or no modification [78]. Fuels in ICE, apart from their main function of
providing energy, perform a lubricating function [23,71]. The fuel is involved in lubricating
the precise pairs of the engine’s injection equipment. In a study [71], the lubricating
properties of fuel based on rapeseed oil esters and camellia esters were compared. Based
on the tests, it was found that the highest electrical resistance occurs when lubricated with
diesel oil, while the lowest coefficient of friction occurs when lubricated with camellia esters.
In turn, in [23], the authors note that biofuels (such as rapeseed oil methyl esters and esters
with the addition of oleic acid) have worse lubricating properties and may not be the best
for fueling a diesel engine. Longwic et al. [73] presented research on the use of rapeseed
oil and n-hexane mixtures in diesel engines with a common rail fuel injection system. The
addition of n-hexane to canola oil significantly reduced its viscosity and surface tension [73].
This contributes to improving the process of preparing the combustible mixture and has
a positive effect on the course of the combustion process. In one work [74], the impact
of adding rapeseed oil fatty acid methyl esters (FAME) to diesel fuel on the specific fuel
consumption and the emission of harmful exhaust components such as nitrogen oxides
(NOx), hydrocarbons (HC), carbon monoxide (CO), particulate matter (PM) and carbon
dioxide (CO2) was assessed. During the tests, it was found that the addition of esters to
diesel fuel significantly reduces the useful power of the engine, and higher FAME additives
increase the specific fuel consumption. In addition, for the engine fueled with diesel oil with
the addition of FAME, higher emissions of NOx, hydrocarbons and CO2 were observed.
On the other hand, much lower concentrations of CO and PM were recorded in relation to
diesel fuel. It turns out that the use of biodiesel increases the specific fuel consumption and
NOx, while reducing the emission of other toxic gas [75].

Research on the impact of biodiesel used in diesel engines with various fuel systems
was studied also by [60,79]. In terms of fuel blending, bioethanol with gasoline [80,81],
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bio-ethanol with diesel [82,83], ethanol with diesel [84], biodiesel-ethanol and biodiesel-
methanol blends can be used [85].

In a study [80], the effect of bioethanol (from soybean oil) and gasoline as a pre-mixed
injection source on the combustion efficiency and emission characteristics of a single-
cylinder dual-fuel engine was investigated. Dual-fuel combustion generates less NOx
and soot than traditional mono-fuel combustion, while there is an increase in HC and
CO emissions by premixing bioethanol or gasoline. As presented in [80], the biodiesel–
bioethanol dual-fuel combustion mode was characterized by higher HC emissions than
in the biodiesel–gasoline dual-fuel combustion mode, while the CO emission was at a
similar level in both combustion modes. Pyrolysis oil is perceived as a substance extremely
harmful to living organisms, which must be neutralized, but it has a relatively high calorific
value; therefore, it can be treated as a potential fuel for spark-ignition ICE. Mixtures of
ethanol and pyrolysis oil in a volume ratio of 3:1 (25% pyrolysis oil) can successfully replace
ethanol in spark-ignition engines, especially in vehicles with a flexible type of fuel [81].
Paper [83] presents the results of testing dual fuel diesel engines fueled with fuel with a high
bioethanol content—E85. Replacing diesel oil with E85 oil by 20% resulted in more than
2-fold shortening of the combustion time. With the increase in the energy share of E85 and
the soot emission decreases in all ranges of the analyzed engine operation, unfortunately,
the NO emission increased. The study [84] presents the results of co-combustion of the
diesel–biodiesel–ethanol fuel mixture in a diesel engine with direct injection. Hydrated
ethanol with a concentration of 89% alcohol was used. In the study, ethanol was added to
a mixture of diesel fuel and biodiesel in a concentration of up to 50% with an increment
of 5% [84]. With the increase in the ethanol content in the mixture, an increase in the
ignition delay was observed (38.5% at full load), but the combustion time decreased. The
proportion of ethanol fuel in the mixture causes an increase in NOx emissions due to the
higher oxygen content and higher combustion temperatures in the engine cylinders. It
was found that at full load, the uniqueness of the indicated mean effective pressure was
close to 50% of ethanol in the fuel in the mixture [84]. Yilmaz and Sanchez [85] investigated
the biodiesel–methanol and biodiesel–ethanol blends and compared them to biodiesel
and standard diesel fuel. In general, blends of biodiesel and alcohol, compared to diesel,
reduce NO emissions while increasing CO and HC emissions at up to 70% loading [85]. In
addition, the blends of biodiesel and ethanol were found to be more effective than blends
of biodiesel and methanol in terms of engine performance and emissions reduction.

Summing up the considerations on biodiesel, it can be said that biodiesel is pro-
duced in the form of rapeseed oil [86–90], sunflower oil [91–93] or palm oil [78,94,95] or
obtained from wood biomass [96]. Moreover, mixtures of diesel oil with NG [63,76,97,98],
CNG [99–101] and LNG [102–104] or diesel fuel with Brown’s gas [105] are used.

Currently, models of dual-fuel engines that can run on diesel oil and natural gas have
been successfully tested and successfully implemented. The dual-fuel mode of operation
of the engine on natural gas/diesel fuels is a mode in which NG is introduced into the
intake air before the intake manifold and then ignited by diesel fuel injected directly into
the cylinder [97]. The dual-fuel mode of operation of the engine is characterized by lower
compression pressure and a longer ignition delay compared to traditional diesel engine
operation. Conversion of the popular ICE to gas fuel has positive effects in the form
of reducing NOx and CO2 emissions by 90–85% and 20–10%, respectively, and virtually
completely eliminating PM and SO from exhaust gases [76,98]. A very important issue is
the successful conversion of ICE to dual-fuel operation, which is supported by appropriate
theoretical preparation and modelling. Much space is devoted to these issues in the
literature. According to paper [63], the model made by the authors is recognized as a
theoretical tool for the dual-fuel conversion model for engines in operation and has a
practical application in the form of a quick application in industry. An interesting study
on controlling the dose and time of NG injection in a dual-fuel engine was conducted
by Ding et al. [97]. As demonstrated in the research on controlling the injection time of
a natural gas engine, gas should be injected to the cylinder as soon as possible (better



Energies 2023, 16, 3787 8 of 32

15◦ CA to 30◦ CA) after closing the exhaust valve [97]. Review [99] presents the global
background, perspectives and challenges related to gaseous fuel and natural gas vehicles,
as well as the environmental and economic aspects of compressed natural gas (CNG) as
a transformational fuel. The authors presented the main environmental advantages and
limitations of the use of this fuel in road transport, such as limited number of refueling
stations, vehicle range, limited loading space due to gas tanks or longer refueling time
compared to petrol or diesel. The environmental benefits of using CNG in a dual-fuel
gasoline engine are presented in study [100]. In turn, Szpica and Dziewiątkowski carried
out research on the measurement of the catalyst conversion factor in an engine powered by
CNG at various operating temperatures.

In [103], the authors assessed the environmental and economic properties of liquefied
natural gas (LNG) as interim fuel to replace diesel oil in trucks. Tested vehicles with spark-
ignition LNG engines turned out to be less energy-efficient (by approx. 18%) compared
to their diesel counterpart, leading to a 7% increase in greenhouse gas emissions in the
Well-to-Wheel (WTW) cycle. A reduction of up to 13% has been shown to be possible
if LNG vehicles achieve comparable efficiency to diesel engines. The authors suggest
that reductions in greenhouse gas emissions from LNG trucks will be possible when the
efficiency of vehicles improves, and fleet operators will only gain financial benefits if the
availability of public LNG refueling networks increases. Similar conclusions were reached
by Jurković et. al. [102,104], paying attention to the environmental friendliness of LNG in
the operation of vehicles. However, in order to comprehensively assess the environmental
impact of switching from diesel to another alternative fuel source, such as LNG, it is
necessary to quantify the lifetime emissions of each fuel. Another mixture fed into the
engine’s intake manifold is a mixture of hydrogen and oxygen (HHO), also known as a
Brownian gas mixture. A small amount of gaseous hydrogen could also be produced in a
car by splitting water in an electrolysis process, using the energy generated by a car power
generator [105]. In [105], the combustion process of the fuel–air mixture in a 1.6 TD diesel
engine and the fuel–air mixture for HHO gas combustion without additional regulation of
the fuel supply system were studied. An increase in fuel consumption was observed after
the additional injection of HHO gas into the fuel mixture, but a slight decrease in the content
of CO, HC and PM was obtained. At low engine loads, the amount of NOx decreased;
however, the increase in engine load resulted in a gradual increase in the NOx value. The
authors concluded that the additional supply of HHO gas to the fuel mixture resulted in an
improvement in the combustion quality of the air–fuel mixture and a greater environmental
friendliness of the engine. These results are important for users of older vehicles that are
not equipped with an additional system for reducing toxic exhaust components.

Another research area are mixtures of diesel fuel with butyl ester [106] and diesel
engine with a diethyl ether [107] or n-hexan with diesel blend [73,108]. In [106], the physical
and chemical properties of rapeseed oil butyl esters (RBE) and its mixtures of 10%, 20% and
30% RBE–diesel oil and rapeseed oil methyl esters (RME) were investigated. The obtained
test results indicate that the additives of biological origin improved the energy performance
of the tested engine but also slightly increased fuel consumption in comparison with
pure diesel fuel. Increasing the concentration of the bio-component to 30% in mixtures
of diesel oil and biodiesel (RME and RBE) leads to a comprehensive improvement of the
environmental impact in comparison to pure diesel [106]. On the other hand, for mixtures
with RBE, slightly higher concentrations of CO2, HC and NOx in the exhaust gas were
revealed, compared to RME mixtures of the same composition and pure diesel oil. An
interesting study of mixtures of biodiesel with the addition of diethyl ether is presented
in [107], where small portions of ether were added to a mixture of biodiesel and diesel oil
(B30). The results of testing the properties of this mixture indicate a slight improvement
in the density and acid number with a significant decrease in viscosity, pour point and
cloudiness of the fuel mixture with the addition of 8% additive ratio by 26.5%, 4 ◦C and
3 ◦C, respectively, in comparison with the mixed fuel without the addition [107]. However,
the calorific value decreases by about 4% with increasing the additive share to 8%. The
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study showed that the B30 supplement had a noticeable effect in increasing cycle-to-cycle
fluctuations. The research conducted by Górski et al. [108] showed that the use of a mixture
of rapeseed oil and n-hexane reduced the emission of nitrogen oxides (NOx). During the
tests, the level of the main toxic substances (CO, HC, NOx) and CO2, O2 was measured
for a diesel engine fueled with a mixture of rapeseed oil and n-hexane in comparison with
diesel oil. It turned out that the addition of n-hexane as a non-reactive solvent to rapeseed
oil causes a positive change in the physicochemical properties of the mixture, especially in
terms of its density and viscosity [73,108].

A rediscovered direction of research is the use of ammonia as a fuel for self-ignition
engines. Research in this area is presented by, among others, Boretti [109], Pyrć et al. [110],
Sahin et al. [111] and Ubowska [112]—which studied reduction of greenhouse gases emis-
sions for the supply of ship engines. Ammonia (NH3) is the best hydrogen carrier in terms
of safety and efficiency, which is why there are proposals to power internal combustion
engines with ammonia [109–111]. Unfortunately, NH3 is a difficult fuel to burn, so faster
and more complete combustion is achieved when working in a dual-fuel system. The
most promising fuel alternatives are either diesel injection ignition with indirect/direct
NH3 injection or jet ignition of a gasoline-like fuel (such as gasoline, CH4, C3H8, H2)
with indirect/direct NH3 injection [109]. The simulations show the prospect of achieving
diesel-like power densities and efficiencies and controlling the load with the amount of fuel
injected [109]. The co-combustion of diesel oil with a water solution of NH4OH ammonia
in the tested engine contributed to extending the period of ignition delay and combustion
time and to increasing the rate of heat release [110]. Research [110] shows that the addition
of aqueous ammonia solution led to a decrease in NOx emissions and an increase in CO
and HC emissions and did not cause significant changes in CO2 emissions. In turn, in
a study [111], it was found that CO2 emissions usually decrease at two selected engine
speeds, but NOx, HC and CO generally increase. It seems that the key element for powering
ammonia engines are specially designed high-pressure fuel injection systems.

As already mentioned, another way may be to change the drive systems of vehicles.
This includes modifications to internal combustion engines or completely new alterna-
tive drives. Such a modification of gas engines has been described, among others, in
the works of [113,114], hydrogen fuel cells [115–118] or battery and hybrid electric ve-
hicles [59,119–122]. Hybrid systems are a combination of an electric motor and a spark-
ignition or compression-ignition combustion engine. Electric vehicles (EV) are a new
chapter in the automotive industry [123], which requires solving many challenges, such
as modernization of the existing vehicle charging infrastructure [120], construction of a
new one where it does not exist, and issues of technical diagnostics of EV [124–126]. In the
case of EV, there is also a dispute about whether they are actually a zero-emission means of
transport. This issue is discussed in more detail by Rievaj in [127]. The issues of emissions
from various means of transport were also of interest to Rybicka et al. [128]. Ultimately,
the question of the direction of changes in the dominant alternative fuel has not yet been
settled, although hydrogen fuel cells and EV are becoming more and more popular.

3. Energy Recovery in Road Vehicles

The main reasons for reducing energy losses in motor vehicles is to reduce the fuel
consumption of motor vehicles and thus reduce emissions [129–131], reducing the con-
sumption of consumables [132–134] and increasing the efficiency and reliability of vehi-
cles [135–138]. Part of the recovered lost energy can be used to cover the demand of other
vehicle electronic systems. Automotive energy harvesting systems are usually employed to
increase overall vehicle efficiency [139]. The main directions of recovery of energy lost in
vehicles are heat energy losses [140–145], the energy obtained from the vehicle braking pro-
cess [146,147] and the energy derived from damping vibrations in the vehicle suspension
system [148–152]. The most popular energy harvesting systems are based on the following
types of energy converters:
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• piezoelectric [153–156];
• ferromagnetic materials [157];
• electromagnetic [158–160];
• thermoelectric [161].

A piezoelectric energy harvester is a device that converts the mechanical energy of
a given environment into electrical energy [153,162]. In 1880, Pierre and Jacques Curie
first described a piezoelectric material [163]; it consists of a solid material that is able to
accumulate an electric charge as a result of mechanical deformation [164,165]. Currently,
the piezoelectric effect is used to recover waste energy in various industry sectors, includ-
ing motor vehicles. Vibration-based energy conversion using the piezoelectric effect has
several significant advantages over other forms of RES, including low initial cost and less
complicated wiring [154].

Vehicle thermoelectric generators (ATEG) are used in road vehicles to obtain waste
energy from ICE exhaust gases [166]. There are three main components of the thermoelec-
tric generators:

• heat absorber in contact with exhaust gases;
• thermoelectric modules converting heat into electricity;
• heat sink, the purpose of which is to increase heat transfer.

Thermoelectric generator modules (TEM) are an available device; basically, they consist
of two pairs of n-type and p-type semiconductor legs that are connected electrically in series
and thermally in parallel. This device converts a temperature gradient to electric voltage
through the Seebeck effect. The legs connected by copper junctions are placed between two
plates of electrical insulator—usually ceramic. A single 40 × 40 × 3.5 mm TEM can contain
about 100 legs, capable of generating < 10 W with a heat flux of 240 Wm−2 and an overall
energy efficiency of less than 5% [166]. The number of units in the TEG module is very
different and depends on the type of vehicle and, thus, the size of the exhaust system. For
passenger cars, it can be from 8 to 100, while for trucks it will be much more. For example,
Frobenius et al. [167] installed 224 TEMs in a heavy duty truck exhaust pipe.

3.1. Waste Heat Recovery Technologies

As it is known, modern ICE are characterized by an overall efficiency of 40%, so
most of the energy generated by them is dissipated, mainly through exhaust gases in
the exhaust system and in the cooling system. As you may know, about one-third of
the energy contained in the fuel burned in a light diesel engine is expelled with the
exhaust gases through the exhaust system [168,169]. For this reason, numerous studies
are being carried out to recover part of the thermal losses in the exhaust system and
convert them into electrical energy stored in the vehicle’s battery. The most important
thing, however, is the assessment of the heat source because the nature of the exhaust
flow changes during the engine operation [170]. According to Wang et al. [144], significant
energy savings can be achieved by proper recovery of waste heat from ICE. Among the
various waste heat recovery technologies in vehicles, the TEG has attracted much attention
among researchers around the world [140,141,170–174]. Its high reliability is due to its
compact design (without any moving parts), and the ability to convert heat directly into
electricity is another noted advantage.

The diagram of the exhaust system in the ETEG thermoelectric generator is shown in
Figure 5. This system includes TEG modules and channels of the heat source and heat sink
through which the engine exhaust gases flow. Twenty TEG modules (10 on each side) were
installed on both sides of the engine exhaust system [140]. The exhaust channel system
serves as the heat source, and the air flows through the cooling channel (upper and lower
exhaust channel) as a heat sink. The presented TEG module consists of a total of 160 TEG
units, electrically connected in series and thermally in parallel.
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Stobart et al. [175] investigated an ATEG with 16 TEMs in a square arrangement
(4 columns each containing 4 TEMs; here, the term column refers to the position per-
pendicular to the direction of the engine exhaust pipe), achieving a maximum power
output of over 30 W. The following dimensions were selected for the modeled TEMs:
65 × 65 × 4 mm3, to mimic commercially available HZ14®TEMs (supplied by Hi-Z Tech-
nology) [175]. This study also used computational fluid dynamics (CFD) calculations to
predict in detail the impact of design parameter choices. In addition, the study aimed at
validating the CFD calculations using a mathematical model to accurately predict the TEG
power output. Heat transfer and pressure drop studies for six structures of internal heat
exchangers in a passenger car with a 1.2 dm3 petrol engine using CFD modeling were also
carried out by Bai et al. [176]. It has been shown that the serial plate structure provides
the greatest heat transfer and the greatest pressure drop, and that there is a compromise
between these parameters. In turn, Su et al. [177] analyzed three internal structures of heat
exchangers for TEGs based on car exhaust: fishbone, pleated and diffuse. Studies have
proven that the accordion-shaped design provides better uniform temperature distribution
in the system. Unfortunately, both of these studies do not present specific values of electric
and net power. In another study, Liu et al. [178] conducted an analysis of the temperature
distribution in a heat exchanger mounted in the exhaust system of a naturally aspirated
spark ignition engine with a capacity of 2.0 dm3. In this study, two systems of internal heat
exchangers with different geometries were compared, the first in the shape of a fishbone
and the second with a chaotic structure. The authors concluded that a heat exchanger with
a chaotic structure achieves better results (maximum electrical power of about 180 W).

The transmission of energy from the engine exhaust of two types of vehicles, a 3.5-ton
van and a heavy 40-ton vehicle, at constant speed and the World Harmonized Transition
Cycle (WHTC) is presented in [143]. The simulation evaluated the effect of two different
designs of heat exchangers, either with flat fins or staggered stripes, on electrical power
and net power output. The influence of the height, spacing and length of the fins, as well
as the width and length of the heat exchanger and the height of the thermocouple legs
were investigated. The analysis was carried out under fixed conditions, assuming typical
extra-urban driving speeds, mass flows and exhaust gas and coolant temperatures for
both vehicles. In both tested heat exchangers (flat and offset), a compromise is needed
to obtain high electrical power and net power simultaneously. With the criteria used, the
flat fin exchanger provides better performance than offset ribbons, especially as a result
of the pumping force. Analysis of the size of the TEG shows that doubling the length
for maximum electrical power is more efficient than doubling the width [143]. However,
doubling the width of the exchanger is more efficient in terms of net power output. It was
found that for typical domestic driving conditions, as well as for the heat exchanger and
the external dimensions of the TEG found in the parametric test, the efficiency of energy
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harvesting is low [143]. Thus, the best energy recovery efficiency recorded is around 2%,
with an average thermoelectric material efficiency of around 4.4% for a light vehicle [143].
Moreover, for a heavy truck, the results of the parametric analysis indicate the achievement
of over 800 W of electric power. In this way, this energy can be used to generate the vehicle’s
required electrical network. Thus, this can be used in determining the requirement for the
electrical network of a given vehicle. The potential profits from the use of TEG modules
in a steady state Sports Utility Vehicle (SUV) were analyzed by Karri et al. [179]. In their
research, they generated electricity in the range of 100–450 W, which translated into fuel
savings of about 2.3%. It is obvious that the best results were noticed in trucks, which
produce more exhaust gases, which does not mean that passenger cars are not interesting,
especially those used mostly in city traffic.

In a study by Lu et al. [180], two types of structures related to the improvement of
heat exchange from the exhaust gas of a car with a spark-ignition engine were tested. The
first type of structure is rectangular staggered tape fins, and the second structure consists of
metal foams. It was shown that the electrical power obtained for metal foams was definitely
higher (in the range of approx. 130–294 W) than for offset tape ends. Unfortunately, with
metallic foams, there is a greater pressure drop, and although the total system output power
increases, the resulting net power output is lower.

In the work of Ibrahim et al. [181] the characteristics of car exhaust heat recovery by
TEMs using a rectangular exhaust gas exhaust system were investigated. They found that
by placing a porous material inside the flue exhaust system, the conversion efficiency of
thermoelectric energy increases the heat exchange from the gas stream flowing in the hot
side duct to the surface of the TEM. Kim et al. [141] used the exhaust system of a six-cylinder
diesel engine with turbocharging as a source of heat. The ICE worked in various conditions
determined by three different engine speeds (i.e., 1000, 1500 and 2000 rpm). The tests
determined the influence of the flue gas flow rate on the TEG output power. Then, based
on the analysis of the experiment results, a contour map was developed for the TEG output
power, expressed as a function of engine load as well as rotational speed. As a result, the
output power of the TEG module was found to increase with engine load or engine speed.
Summing up the research, the maximum output power was 119 W at 2000 rpm with BMEP
0.6 MPa, and the maximum energy conversion efficiency was in the range of 0.9–2.8% [141].

In [182], the efficiency of waste heat recovery for the TEG module equipped with a
porous plate-type carrier (perforated plate) was experimentally tested. The obtained results
of experimental studies showed that at the engine speed of 1400 rpm, the maximum power
output of 98.3 W was obtained with the lowest insert porosity (0.121), and with the optimal
insert porosity (0.416), the maximum energy conversion efficiency was 2.83% [182]. Increasing
the conversion efficiency and the output power of the tested TEG module can be achieved by
using a porous internal medium, the values of which are 0.461 and 0.32, respectively. It was
ultimately shown that a plate-type porous medium with a porosity greater than 0.32 should
not be used in the current configuration of the TEG module because the back pressure in the
passenger car exhaust system would exceed the allowable limit of 3 kPa.

Figure 6 shows an exemplary configuration of the TEG system with a preceding diesel
oxidation catalytic converter (DOC).
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From the CFD simulation, the surface temperature distribution on the hot and cold
sides is obtained as shown in Figure 7. More details on the applied equations and numerical
CFD simulations of the model can be found in [183].
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The scientific literature presents numerous studies devoted to the modeling of thermal
waste energy harvesting systems in automotive applications. Meng et al. [185] developed
a multi-physics control-volume TEG model for waste heat recovery from automobile
exhaust. In these studies, the constant state of exhaust gas was taken into account, and
the thermoelectric material used was Bi2Te3. This study analyzed and discussed in detail
the number and size of thermocouples used in the system and the direction of flow in the
heat exchanger on the cold side. Temperature inequality occurring along the flow direction
and its impact on TEG parameters are presented. In the articles by Kumar et al. [186,187],
a numerical model was developed for the TEG corresponding to the conditions found
in a light commercial vehicle. Another mathematical model of TEG was presented by
Wang et al. [144]. Their model operates in a steady state and uses the engine exhaust in the
vehicle as a heat source. Yu et al. [188,189] developed a numerical model based on which
they found that the performance of the TEGs improved as the driving speed of the pickup
vehicle increased. A range of power values of 18–220 W was obtained when the driving
speed was increased from 20 km/h to 120 km/h, and the transient behavior of the TEG
modules in various driving conditions was tested.

In turn, Ma et al. [190] tested the performance of a TEG system equipped with plate-fin
heat exchangers for the effect of longitudinal vortex generators (LVGs). These tests showed
that there is great potential at LVGs to improve the efficiency of TEG modules. The input
heat and open-circuit voltage in the TEG module with LVG under basic system operating
conditions are increased and range from 41% to 75% compared to the normal smooth
TEG channel [190].

Research in the field of TEG is not only the domain of scientific centers but also of
automotive companies, who are working tirelessly on solutions for energy recovery in
the vehicles they produce. For example, BMW has strategies for commercializing vehicles
with TEG installation and combining TEG and catalytic converter functions to improve
system compactness [191]. They were also involved in the production of highly efficient
and environmentally friendly thermoelectric modules. On the other hand, General Motors
has developed a TEG with a rectangular configuration, aimed at the Chevrolet Suburban,
which includes two different types of TEG modules [192].
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3.2. Braking Energy Recovery

Parallel to the progress of energy management technology in the propulsion sys-
tem [193], work is underway on the recovery of energy from the vehicle braking pro-
cess [139,146,147,194,195]. Braking energy in a hybrid vehicle can be recovered and recy-
cled by the regenerative braking system [196–198], which significantly saves energy and
reduces the emission of harmful gases into the atmosphere. In the literature, you can find
many works that refer to the recovery of energy from the braking force. Most of the studies,
however, refer to EV [194,196,199,200] or hybrid vehicles [201–203], and only a few refer to
those powered by an ICE [147,204] and other machines [205]. The reason for this may be
achieving significantly lower benefits compared to hybrid or EV. According to Held et al.,
test cycle simulations with a variable speed profile show that 7% of energy can be saved
without increasing travel time or deviating from the normal driving pattern [204].

Thanks to the use of the regenerative braking system, it is possible to use the engine
to convert the kinetic energy of braking into electric energy and store it in the vehicle’s
battery. The electric energy obtained in this way can then be used for further driving. In
this case, we obtain a more efficient use of electricity, which translates into a greater range
of the vehicle. For these reasons, it was important to maximize the recovery of braking
energy under safe braking conditions and was the main goal of research on energy flow
management in hybrid and electric vehicles.

The regenerative braking strategy for rear-wheel drive EV proposed by Zhang et al. [206]
improves the efficiency of regenerative braking up to approx. 47%. In the experiment of
Qiu et al., this model was experimentally verified, and the obtained results confirmed the
effectiveness of this strategy for a constant input of 58.56% and for a dynamic action of
over 69% [207]. In turn, Itani et al. compared flywheels with supercapacitors as the second
source of energy for EV driven by the front axle [208]. Their results showed the superiority
of ultra-capacitors in terms of mass, specific energy and specific power. Reusing braking
energy was more convenient and safer for the batteries during regenerative braking [208].

Lu et al. [209] presented research on a strategy for controlling the regenerative braking
of a fully electric composite energy bus based on the use of engine performance. In this
study, they achieved a relative increase in braking energy recovery of nearly 48%. Research
results conducted by Chu et al. [210] show that based on the World Light Vehicle Test
Cycle (WLTC), the energy recovery rate can reach 30.4%, while ensuring braking safety
even when braking with high intensity. Similar values for the WLTC test were obtained
by Sandrini et al. [211], where the energy saved was 29.5 to 30.3 percent. In this study, the
braking energy recovery logic was tested using a simulation on a front-, rear- and all-wheel
drive compact car.

In the research presented by Yang et al. [194], a hybrid electric vehicle system was
used, the schematic diagram of which is shown in Figure 8. When high power demand
is required, both motors can work simultaneously. Both axles of the vehicle are equipped
with electric motors, which ensures good dynamics in purely electric mode, and it is also
possible to obtain more energy during braking.

The vehicle controller is responsible for collecting data on vehicle speed, brake pedal
position and master cylinder pressure, among others. After detecting the signal from the
brake pedal, the driving status of the vehicle is quickly determined; then, the control signal
via the Controller Area Network (CAN) bus is sent to the downstream controller [194]. The
downstream controller, on the other hand, identifies the correlation according to the control
signal, after which it sends signals to the hydraulic control unit and the motor control unit
according to a predetermined algorithm to execute the control instructions from the driver.

Figure 9 shows the graph of energy consumption, where the losses of individual
system elements in the braking process are marked.

As shown in the diagram in Figure 9, energy losses occur in every element of the
system, starting from the wheels of the vehicle, through the CVT transmission, to the
motors and the energy stored in the battery. Other energy losses not related to the braking
process, such as motion resistance or wind resistance, are omitted at this point.
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Another braking strategy analysis for a Formula SAE electric race car, for steering the
vehicle wheels on the front and rear axles, was presented by Henao-Muñoz et al. [212].
The proposed braking strategy is aimed at increasing the recovery energy through the
appropriate distribution of braking forces between the wheels on both axles of the vehicle.
In this study, three braking strategies were compared with regard to braking energy yield
and vehicle stability. The results of the simulations show that the proposed management
strategy allows for greater energy recovery while avoiding blocking both the rear and front
wheels of the vehicle [212].

Similar studies for a Formula SAE electric racing car were conducted by Dolara et al. [213].
All components of the EV and hybrid lithium–ion batteries as well as ultracapacitors are
used to store the kinetic energy of regenerative braking in the Kinetic Energy Recovery
System (KERS) [213]. Their results show the ability of the converter to operate in resonant
mode in both boost and step down modes. The noted disadvantage of this solution is the
presence of high current peaks in the resonant coil. On the other hand, the use of more than
one interlaced converter and the adoption of an appropriate efficiency factor enable the
correct operation of this system.

Summing up the considerations on the distribution of energy recovered during brak-
ing, the following graph of energy distribution in an EV can be generated (Figure 10).
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Analyzing the graph in Figure 10, it can be concluded that braking can absorb from
30% to 80% of the vehicle’s kinetic energy. This share depends on energy management
and the implementation of the braking process. Due to the increased range, extended
mileage and increased efficiency of electric vehicles, it is so important to properly manage
and recover energy. In addition to the overall improvement of the vehicle’s efficiency,
regeneration can significantly extend the service life of the braking system, because in such
operating conditions, the mechanical parts of the system wear much more slowly [214].

3.3. Energy Harvesting from Vehicle Suspension

Regardless of the drive that a motor vehicle is equipped with, each has a suspension
system whose task is to dampen vibrations from the ground in order to ensure adequate
vehicle stability, safety and comfort of passengers. That is why this vehicle system can also
be used to obtain additional energy, which under normal conditions (without recovery
devices) is damped in the suspension and consequently lost. Due to the fact that only
12–30% of the energy contained in the fuel is used to propel the vehicle in order to overcome
the friction of the road surface and air resistance [215], and one of the main losses is the
dissipation of vibrations in the suspension (shock absorber) [216], such an important
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issue is the technology of obtaining energy from the vibrations of the vehicle suspension
system [217,218].

As shown in study [219], for a medium-sized vehicle moving at a speed of 96.5 km/h,
the average power obtained from the suspension system is in the range of 100–400 W, on
B- and C-class roads. As presented by Zhang et al. [220], based on the tests carried out by
Audi AG, it is possible to recover energy with an average power of approx. 150 W from the
energy harvesting system. Large differences in the presented values of the obtained power
occur due to the type of the test section of the road on which the vehicles were moving.
Thus, for a passenger car moving on a new section of the German motorway, it is only 3 W,
while on an uneven national road, the energy efficiency obtained from the system was even
613 W. In turn, Li et al. [216], show that with optimal load resistance (at 7.5 Ω) and harmonic
excitation with an amplitude of 8 mm and a frequency of 2 Hz, a maximum of 248.8 W
of instantaneous power can be obtained with an average of 114.1 W and a maximum of
38.81% efficiency of energy obtained from the vehicle suspension system. In cars, collecting
dissipated kinetic energy during damping can save fuel by about 2–10% of the car’s total
fuel consumption [221]. Figure 11 shows the possibilities of fuel savings due to the use of
systems for obtaining kinetic energy during damping for various types of vehicle.
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Analyzing the data presented in Figure 11, it can be concluded that off-road vehicles
and trucks as well as overloaded vehicles show a greater potential for fuel savings (up to
6%) compared to passenger cars, which give only a half of this result, and that is up to
3% fuel savings. However, as shown in Figure 11, the best results can be obtained with
electric and hybrid vehicles. This is due to the differences in vibration intensity levels for
individual vehicles. For this reason, energy harvesting systems from the suspension system
should be of interest primarily to fleet customers.

The key element that converts the mechanical energy of vibrations into electrical energy
in the suspension system is a special energy shock absorber. It mainly includes two elements:
the energy conversion unit (linear or rotary electric motor) as well as the transmission
devices (from reciprocating to rotary motion) [222]. Therefore, vibration energy flows into
the vehicle’s suspension system, causing the shock absorber piston rod to move vertically up
and down sequentially. Electricity could be generated from these perpendicular oscillations
in two ways: directly by the linear electromagnetic harvesters or indirectly by the rotary
electromagnetic harvesters [223]. Schematics of various electromagnetic regenerative shock
absorbers used in the vehicle suspension system are shown in Figure 12.
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Figure 12. The electromagnetic regenerative shock absorbers (a) linear motor, (b) ball screw and
(c) rack-pinion.

Zhang et al. [220], used an electro-hydraulic shock absorber to collect energy in off-
road vehicles, thanks to which they obtained an average regenerative power of 110.6 W.
They also showed that a trade-off is necessary between energy harvesting characteristics
and shock damping. Li et al. [216] showed the construction of energy-receiving shock
absorber receiving energy and the optimization of the control system, according to the
diagram shown in Figure 13a. The construction of the shock absorber consists mainly of
two elements—the motor and the ball screw. The task of the ball screw is to transform the
vibrations that are generated between the vehicle body and the chassis into the rotation of
the motor. The electric motor mounted in the shock absorber acts as a power generator that
converts the kinetic energy of the suspension system into electricity, which is stored in the
battery for further use, while ensuring the damping force [216] and proper vehicle stability.
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Since the system is affected by the moment of inertia of the motor rotor and the
screw rod, the shock absorber for energy harvesting can be treated as a conventional oil
shock absorber connected in parallel with an inerter, as shown in Figure 13b [222]. The
individual symbols marked in the figure mean the following: F is the total shock absorber
force; v1 and v2 are vehicle body and chassis velocities, respectively; b is inertia value;
and ceq is the equivalent damping coefficient. The PMSM generator (synchronous motor
with permanent magnets) and the buck-boost converter, which is used to collect electricity,
bring positive effects. Based on the test results, it can be said that the proposed control
system and control strategy were characterized by a high response speed (i.e., 4 Hz) and a
small tracking error, which amounted to 6.44%, compared to the set value of the damping
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coefficient [216]. It was found that this is a good basis for further research on the energy-
harvesting semi-active suspension system [216]. In addition, the tests showed a high
efficiency of energy collection from the tested suspension, ranging from 40.72% to 70.55%
with sinusoidal excitation and random road excitation.

In the studies presented in [223], it was shown that vehicle vibrations caused by road
irregularities can produce an average power of 350 W for a medium-sized passenger car
(equipped with four energy-harvesting shock absorbers). However, for larger vehicles,
harvesting power can be significantly higher than that of a sedan vehicle. The regenerative
electromagnetic shock absorber has a relatively small load capacity, so it is more suitable
for passenger cars, minivans, etc. An electro-hydraulic shock absorber can provide more
damping force that is typically required in off-road vehicles. Therefore, it can be concluded
that there is a large potential for recovering energy dissipated from the vehicle suspension
system, which can be used to power, among others, comfort-enhancing systems. More
detailed information on the collection of dissipated energy from the vehicle suspension system
and the design of systems for energy harvesting can be found in the available scientific
literature [216,219,221,224]. Figure 14 shows an example of the position of the shock absorber
equipped with the energy harvesting system on the rear axle of the minivan vehicle.
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According to Al-Yafeai et al. [225], for passenger cars moving at a low speed of about
47 km/h, about 200 W of power dissipated in the suspension shock absorbers was recorded.
Other studies presented above also confirm the high potential of generating energy in the
vehicle suspension system. The energy yield increases depending on the type of vehicle
(passenger car, van, truck) and the type of surface on which it moves. Therefore, this amount
of energy cannot be ignored and is worthy of interest as well as harvested from the system.

As the presented literature research has shown, the energy yield from the vehicle
suspension system, depending on the type of vehicle and the harvester used, is quite
diverse. The ranges of recovered power range from several dozen watts to over 600 W, but,
on average, it is up to about 300 W for a medium-sized passenger car. This energy can be
used to power various electrical systems in the vehicle, such as comfort devices.

4. Discussion

Road transport is responsible for about 70% of total greenhouse gas emissions from
transport [226]; the rest is mainly due to sea and air transport. The main air pollutants
from the transport sector are harmful dusts and gases, which include carbon dioxide (CO2),
nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), polycyclic aromatic
hydrocarbons (PAHs), benzene, methane (CH4), particulate matter (particulate matter
(PM)), lead (Pb), platinum, ozone and dioxins. Particulate matter is composed of a center
core of elemental carbon (soot) and adsorbed organic compounds including PAHs and
small amounts of sulfate, metals nitrate, and other trace components [227]. The emissivity
of motor vehicles and their performance can be improved in several ways, including by
changing the type of fuel [23,29,226–228] or the power system [63,229–234] and recovering
lost energy [176,187,211,217,235].
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Biodiesel fuel is relatively easy to apply in diesel-powered motor vehicles. Biodiesel
can be produced from local crops and waste, which allows for its greater availability and
additionally gives an economic effect in the form of stimulating rural areas and sustainable
development. The use of biodiesel brings certain benefits resulting from the reduction of
PM and CO emissions. Unfortunately, you have to watch out for the increase in NOx and
HC compared to pure diesel. Reduction of nitrogen oxides is possible through the use of
selective catalytic reduction (SCR) systems in motor vehicles.

Currently, there are many trucks on the market, and manufacturers of marine engines
offer a significant number of new CIEs equipped with a modern battery fuel system
powered by pilot diesel and NG batches, such as Wartsila, MAN Diesel & Turbo and
IVECO [63]. NG is a very promising and very attractive fuel due to its availability, extensive
distribution infrastructure, low cost and clean combustion, which can be used as a transport
fuel [97]. Conversion of the popular ICE to gaseous fuel leads primarily to the reduction
of NOx and CO2 emissions by 90–85% and 20–10%, respectively, and almost completely
eliminates components such as PM and SO from exhaust gases [76]. These ecological
properties in road transport are possible thanks to high-pressure (up to 2000–3000 bar) fuel
injection systems, mainly of the common rail type in modern ICE.

The results showed that CNG had several advantages over diesel and petrol, including
a significant reduction in emissions and costs [99]. Despite the good position of CNG on
global transport markets, there are still many obstacles to their widespread use. The main
obstacles to the use of CNG are as follows: problematic gas storage in the vehicle and loss
of cargo space, vehicle refueling time, availability of refueling stations and supply problem
in case of pipeline failure. Due to its lower energy density, NG, compared to petrol or diesel,
takes up 3–4.5 times more storage space than petrol or diesel, which consequently reduces
the range of the vehicle. In addition, this reduces the loading space of a vehicle, especially
a passenger car or a small van, because additional gas tanks must be placed somewhere.
This disadvantage can be eliminated by taking into account special additional gas tanks
placed in the vehicle in the design process, but this applies only to newly designed vehicles.
Refueling times for vehicles powered by natural gas are longer than for vehicles powered
by conventional engines, and there may be a lack of refueling infrastructure in some places,
especially on less frequented routes. This problem significantly limits the development of
long-distance trucking on irregular routes. In addition, refueling a vehicle is considered
the “least safe” moment of its use [99,236,237]. Therefore, based on the literature, it can
be concluded that the use of natural gas as a transport fuel can contribute to improving
air quality in cities, reducing the harmful health effects and social costs of atmospheric
air pollution. Currently, alternative fuels are expected not to increase emissions and may
provide comparable or even better engine performance [238,239].

There are various technologies such as Kinetic Energy Recovery Systems (KERS),
Energy Harvesting Shock Absorber Systems (EHSA) and Waste Heat Recovery Units
(WHRU) [240] for automotive energy recovery. Energy harvesting in self-powered systems
is particularly needed not only as a sustainable and cost-effective alternative to conven-
tional energy sources but also to help minimize the environmental impact of overuse of
conventional energy resources [241].

Another widely discussed direction in the development of energy sources and drive
sources for motor vehicles is undoubtedly electro mobility [64,119–128]. The use of EV
is mainly supported by the lack of exhaust emissions at the place of use. However, the
ecological aspects of EV should be looked much more widely. A comprehensive assessment
of the impact of an EV on the natural environment should take into account not only the
stage of use but also other stages occurring in the life cycle of the vehicle [64]. Thus, the life
cycle of a vehicle consists of three main stages [64]:

• the production stage, which includes the extraction of the necessary raw materials, the
production of the necessary materials and their transport;

• the vehicle operation stage;
• and the end-of-life vehicle management stage.
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In the case of EV, the emission of pollution is a particularly important issue in the
assessment of environmental risk during its operation. In this case, it is about the emission
of substances from the production and distribution of electric energy used to charge the
vehicle traction battery. Energy security in relation to EV consists in ensuring appropriate
infrastructure in the form of charging points for EV that are able to generate and supply
the traction batteries of vehicles with the appropriate amount of electricity [242]. Thus,
the origin of the energy used during charging has an impact on the vehicle’s emissions
balance [10,64,242–245]. The improvement of the overall emissivity of EVs can be achieved
by using RES for charging—for example, PV or wind energy. In the case of using solar
energy, special sheds called carports are perfect; interesting research in this area is presented
in [242]. However, emission issues are not the only problem about electric vehicles and
electro mobility in the world. A big problem that does not convince drivers to buy EV
is the limited range of the vehicle and the long battery charging time, which is from half
an hour to several hours and even a day to fully charge. In addition, in many countries,
there is no proper vehicle charging infrastructure [246], such as in Poland. The solution to
these problems will certainly come with time; more and more efficient batteries are already
appearing, and the charging infrastructure is developing. However, at the present time, it
is still not enough to switch to EVs.

5. Conclusions

As shown in the review, alternative fuels to diesel oil and gasoline are of great interest,
especially in developing countries with a large share of agriculture in the national economy.
In addition, a large share of research work is visible in gaseous fuels (NG, CNG, LNG)
in various transport applications, e.g., public transport vehicles or off-road vehicles and
machines powered by an internal combustion engine. In many countries, such as Poland or
the Netherlands, there is a large share of motor vehicles powered by an internal combustion
engine running on LPG. It should be noted that in the case of fuels for internal combustion
engines, no leader has yet emerged that could replace the existing fossil fuels with such a
large share as them. Here, there is still a significant cost of generating and storing energy
in fuel, which should be settled within a few years due to technological development in
the field of energy storage. In the coming years, more and more attention will be paid
to hydrogen fuels, and ammonia will be an equally interesting research direction. The
development of electro mobility will also be of great importance, with many countries
seeing significant progress in this technology.

Another issue that is possible regardless of the type of power supply for the ICE in the
vehicle is the possibility of recovering energy lost using energy harvesting systems. This
direction is strongly developed and brings great benefits with relatively small expenditures
and small modifications. An additional advantage of these systems is their progressive
miniaturization. As shown in the review, the average energy yield in passenger cars is up
to 300 W, and in the case of larger vehicles, the benefits are greater.

To sum up, it can be said that the best energy effects are achieved by a hybrid sys-
tem, i.e., the use of alternative fuels and the use of energy collection devices in vehicles
powered by ICE. In the case of electric vehicles, good effects are obtained by using energy
management during vehicle braking. The undisputed leader in terms of universality of use
are energy recovery systems from the vehicle suspension system, due to the fact that each
vehicle, regardless of the drive source, has a suspension system responsible for driving
comfort and vehicle safety in motion.
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64. Marczak, H.; Droździel, P. Analysis of Pollutants Emission into the Air at the Stage of an Electric Vehicle Operation. J. Ecol. Eng.
2021, 22, 182–188. [CrossRef]
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