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Abstract: The efficiency of electrical complexes depends directly on the level of power supply system
reliability, which comprises extensive and branched distribution networks. A complex of single-
phase ground fault (SPGF) relay protection and automation devices (RPA) is used to reduce the
economic losses from the failure of the electrical receivers’ distribution networks. This paper presents
a study of the protection sensitivity factor, taking into account the influence of the network capacity
and the resistance during a fault. The results of this study determined the minimum permissible
values of the sensitivity factor that ensures the stable operation of the protection device. This was
achieved by taking into account the influence of the transient resistance at the point of short circuit.
The practical significance of the study is as follows: the obtained characteristics will allow for the
development of new functional logic circuits for SPGF protection. The practical implementation
of the obtained results will allow for the following: to increase the sensitivity and selectivity of
current non-directional protections in conditions of incomplete short circuits; to ensure the reliable
functioning of technological equipment and responsible consumers; to reduce the level of electrical
injuries of service personnel; and to reduce economic losses associated with the repair of damaged
electrical receivers.

Keywords: distribution network; transient resistance; sensitivity factor; zero-sequence current;
relay protection and automation; incomplete single-phase ground fault

1. Introduction

The efficient operation of mining enterprises of the mineral resource complex (MRC)
is determined by the safety and continuity of technological processes [1–3]. Motorized
loads comprise the main part of MRC loads. Their operation depends on the reliability of
the power supply system, which comprises long and branched networks with constantly
changing parameters [4–6]. In such networks, on the medium-voltage level of 6–35 kV,
81% of failure incidents are caused by SPGF [7–9].

Subsequently, due to this high failure rate, and in order to reduce the resulting eco-
nomic losses and improve the safety of production in mining enterprises, it is necessary
to use modern and reliable RPA devices. As a consequence, this will allow workers to
selectively determine the damaged sections of the electrical network and eliminate the
emergency modes.

However, the introduction of RPAs into the mining electrical grid is met with the
following problems:

• The increase in the length and branching of medium-voltage air-cable and cable lines
and the complexity of the MV grid with respect to the technological cycle application
requires a timely update of the operation settings in order to preserve sufficient
sensitivity in the protection behavior of the SPGF mode;
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• The variety of SPGF modes and the places of their occurrence in the electrical network
must be considered. For example, the arc SPGF (ASPGF) in the power supply system
leads to overvoltage, exceeding the nominal value by 3–4 times. This causes dete-
rioration of the insulation properties of electrical installations, accelerates the aging
process, and, as a result, contributes to the premature failure of electrical equipment
and increases the risk of electrical injuries of service personnel, unauthorized persons,
and animals accidentally caught at the accident site [10];

• The calculation of the protection settings is straightforward in the case of a metallic
SPGF mode. The incomplete ground fault (GF) mode is often accompanied by the
presence of transient resistance at the point of fault, reaching values of several kilo-
ohms [11]. The constant changing of the values of the zero-sequence current during
the operation of 6–35 kV electrical networks (the conductivity of line phases relative to
the ground, the parameters of neutral circuit grounding) causes additional difficulties
in solving the problem of ensuring the stable functioning of protections in incomplete
single-phase short circuit modes (through transient resistance).

According to the operational data, the incomplete line-to-ground short circuit was
found to be the main reason for the low action selectivity and the stability disruption of
the SPGF’s functioning, based on the zero-sequence steady-state current control [12]. The
incomplete SPGF mode happens due to the occurrence of a transient resistance at the point
of short circuit. As it is a parameter of the zero-sequence circuit, this drops the value of
the zero-sequence voltage and, as a consequence, the signals of zero-sequence currents of
protected connections controlled for protection purposes. Considering that the operation of
non-directional protections is set under the condition of metal short circuits (in the absence
of a transient resistance at the site of the SPGF), the incompleteness of the phase short circuit
to the ground will cause these protections to be inoperable under operating conditions.

The value of the transient resistance is random and depends on many factors: the
resistance of the element through which the line phase touches the ground (a layer of snow,
ice, fallen leaves, etc.), the resistance of the “reverse” current flow circuit of a single-phase
short circuit along the ground from the point of the SPGF to the neutral of the network,
the hemisphere of the “spreading current” in the place of contact with the ground, etc.
According to [13], the value of the transient resistance can reach 5–7 kOhm, and according
to [14], the transient resistance can reach 10 kOhm. The transient resistance is the cause of
the failure not only of non-directional current protections from the SPGF, but also of the
protection devices that respond to higher harmonic components in the steady-state earth
fault current. The conducted studies on the analysis of the effect of the incompleteness
of the phase-to-ground short circuit on the operational stability of these protections have
shown that in an SPGF experiencing a transient resistance of several ohms, the level of
higher harmonics decreases sharply, which reduces the selectivity and sensitivity of the
action of these protections.

Directional protections that determine the direction of the zero-sequence power flow
in the steady-state mode of a single-phase circuit have better characteristics in comparison
with non-directional current protections from an SPGF. However, the performed analysis
of the operational data of the ZZP-1 protection device indicates a low selectivity in the
detection of a damaged connection in the event of an incomplete SPGF through transient
resistances of 600–700 Ohms with a maximum capacitance of the distribution network of
6.5 µF.

It should be noted that the task of conducting a study of the incomplete SPGF regime
effect on the stability of current protections, as well as identifying the ways to ensure the
necessary selectivity and sensitivity of its action in such conditions, seems relevant today
due to the prevalence of this type of SPGF in the electrical networks of mining enterprises,
and due to the negative consequences associated with its untimely liquidation [15].

In addition, the existing method of calculating the protection settings does not allow
for the adjustment of protection, ensuring its effective operation in conditions of incomplete
earth faults, which also requires its improvement.
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2. Problem Statement

The analysis of the number of SPGF and the corresponding effect of protections in
Kemerovo region, Russia, in the 6–35 kV network at MRC enterprises for 2019 are shown
in Figure 1. It follows from Figure 1 that in 30% of the emergency cases, if an SPGF is not
resolved by time, it will lead to phase to phase short circuit (SC) [16].
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Figure 1. The total number of SPGF and the number of ground faults not eliminated in a timely
manner that have passed into an inter-phase short circuit (SC) in 6–35 kV networks.

Combining heat and the high sensitivity of the SPGF protection devices, along with
the desire of the MRC enterprises operating at 6–35 kV networks to maintain the power
supply to their consumers under the conditions of SPGF mode until the damage location is
reliably determined, create the conditions for the development of an accident. Despite the
immutability of linear voltages values in SPGF mode with electric receivers switched on in
medium-voltage networks, the long-existing single-phase short circuit mode increases the
probability of intact phases insulation damage due to overvoltage and contributes to the
transition to more serious damage—phase-to-phase short circuit, followed by immediate
disconnection of the damaged line, shutdown of the technological process and an increase
in economic losses [17–19].

The fulfillment of the requirements for a safe and reliable operation of the power sup-
ply system [20,21] directly depends on the state of the insulation of electrical installations.
Timely detection of damage in 6–35 kV distribution networks and selective disconnection
(selective protection) of damaged connections allow us not only to prevent the transition
of SPGF to phase-to-phase short circuit, but also to significantly reduce the likelihood of
electrical injuries to personnel.

The problem of organizing a reliable, selective and sensitive protection is associated
with the transient processes complexity of unstable arc faults [22] in the following cases:
(1) initial phase of damage; (2) interruption of the single-phase fault current in the process
of its development; and (3) the isolated neutral mode of 6–35 kV networks [23–25]. In
addition, as noted earlier, the calculation of the current setpoints of the directional and
non-directional ground fault protections of 6–35 kV networks considers the mode of stable
metal ground fault, where in most cases single-phase GF occurs through a resistance [26,27].
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Figure 2 shows the characteristics of the change in phase voltages with incomplete
SPGF. The analysis of the above characteristics allows us to conclude that the presence of a
resistance at the location of the SPGF is the reason for the decrease in the operating signals
necessary for the stable operation of the RPA device. From Figure 2 it can be seen that up
to 0.22 s, the emergency mode is reflecting a stable voltage behavior during the SPGF. After
the 0.22 s, the non-cleared damage switched to ASPGF mode resulting in an overvoltage up
to 2.15–2.18 Uph and subsequently in a disconnection of electrical installations. It should be
noted that during arc SPGF mode in a network with isolated neutral, overvoltage at the
undamaged phases can reach values of 3.1 to 3.4 Uph, and in some unfavorable cases even
higher values.
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3. Materials and Methods

The sensitivity analysis of the SPGF protection was performed on the section of 6 kV
distribution network of the JSC “Polosukhinskaya Mine”, and its one-line diagram is
shown in Figure 3. The section of distribution network contains (Figure 3): a power
transformer: TDTN-40000/115/38.5/6.6; six outgoing cable lines feeding: a central step-
down substation (CSS); two and four sections of a closed switchgear (CS-6) and a packaged
switchgear (CSW-2-10); a distribution substation (DS-6) and mechanical workshop for the
mining installations repair (MW).

The experiment was carried out on the outgoing connection No. 6 by connecting
a set of resistances to the neutral through a magnetic starter. Non-directional current
protections are used as single-phase GF protections in the section under consideration. Its
operating signal is the zero-sequence current 3I0, as well as non-selective protection of the
zero-sequence voltage 3U0.

The characteristics of the load graph are presented in Table 1.

Table 1. Parameters of cable lines of the 6 kV distribution network of JSC “Polosukhinskaya Mine”.

Cable Line Cable Cross Section
Scl, mm2

Cable Length
li, km

Capacity
Ci, µF/km

Resistance
R, ohm/km

Inductance L,
mH/km

1 120 6 0.418 0.196 0.268

2 120 3.217 0.418 0.196 0.268

3 50 0.056 0.292 0.494 0.313

4 95 0.163 0.380 0.247 0.278

5 120 7.755 0.418 0.196 0.268

6 50 0.07 0.292 0.494 0.313
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Figure 3. One-line power supply diagram of the step-down substation of the mining enterprise JSC
“Polosukhinskaya Mine”.

To perform a sensitivity analysis for the action of current protection against SPGFs
used on the outgoing cable lines of the 6 kV distribution network, it is necessary to estimate
the value of the current passing at the fault location, which in turn is determined by the
Expression (1):

I f = β · IC∑
·
√

dn2 + 1 (1)

where dn is the factor of relative conductivity of neutral grounding system; Ic∑ is the ground
fault current, taking into account the value of all intact galvanically connected lines, with
its value determined by the Expression (2):

IC∑
=

i

∑
1

Icci (2)

where Icci is the intrinsic capacitive current of the line [28] equal to (3):



Energies 2023, 16, 3690 6 of 15

Icci = 0.6 · li ·
√

Scli.
50

(3)

where Scli. is the cross-sectional area of the i-th outgoing cable line, mm2; li is the length of
the i-th cable line with a voltage of 6 kV, km.

In the incomplete SPGF mode, the current will decrease proportionally to the decrease
in the protection sensitivity factor, taking into account the effect of resistance at the fault
location on the current of the SPGF—β [29]. Based on [30,31], its value is determined by
the following Equation (4):

β =
1√(

C∑
g f

+
dn ·C∑

g f
+ 1
)2

+
(

C∑
g f

)2
(4)

where C∑ (in µF) is the capacitance of the phases of galvanically connected network lines
relative to the ground; gf is the active conductivity at the point of fault. The value of ground
fault completeness factor is in the range 0 ≤ β ≤ 1, where 0 corresponds to an infinitely
large resistance at the fault location, and 1 corresponds to the mode of metallic phase fault
to ground.

The method of calculating the values of cable line intrinsic capacitive current was
chosen based on previous studies of the accuracy of existing methods for calculating
the SPGF current at the coal mining enterprise of the JSC “Polosukhinskaya Mine”. The
calculation is done by taking into account the length and cross-section of the laid lines
(underground cables) [32].

The choice of the operation set point of the RPA from the SPGF Iset must be based on
the following Condition (5):

I f ≥ Iset ≥ Icci·Kpd (5)

where Kpd = Kr · Kcc is the protection detuning factor [33], which includes Kr = 1.2–1.3, the
reliability factor, taking into account the relay and calculation errors of Icci;

Kcc = 1.5–1.8 is the capacitive current kick factor [34], which takes into account the
inrush capacitive current at the moment of fault occurrence, as well as the response of the
SPGF protection devices.

By considering the given boundary values of Kr and Kcc, the values of the detuning
factor will be Kpd_min = 1.8 and Kpd_max = 2.34, respectively.

The value of the sensitivity factor of Ks determines the operability of the SPGF protec-
tion [35] and is calculated by Equation (6):

Ks =
1 − m

Kpd · m
≥ 1.25 (6)

where m is a fractional participation factor of the line’s own capacitive current in the total
current of SPGF, equal to (7):

m =
Icci
IC∑

(7)

On the basis of Expression (7) and the values given in Table 1, the dependences of the
Ks on the value of fractional participation factor for one of the outgoing cable lines from the
6 kV busbar section (Figure 3) were determined, and shown in Figure 4.

It follows from Figure 4 that the SPGF protection will be stable when part of the dam-
aged line current in the total current of GF will not be more than 25.4% and 30.7%, having
the factors of detuning Kpd_max = 2.34 and Kpd_min = 1.8, respectively. This circumstance
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imposes certain restrictions on the operating conditions of the non-directional protections
reacting to the zero-sequence current in distribution networks with a significant level of
inhomogeneity of transverse parameters relative to the ground.

Taking into account the above expressions, the formula for determining the Ks single-
phase GF protection, using the parameters considered above, will take the following
form (8):

Ks =
IC∑

·
√

dn2 + 1

Kpd · Icci ·
√(

C∑
g f

+
dn ·C∑

g f
+ 1
)2

+
(

C∑
g f

)2
≥ 1.25 (8)
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The factor of relative conductivity of the neutral grounding system dn allows us to
investigate the effect of changing the neutral grounding mode, from isolated to resistive-
grounded, on the sensitivity of the SPGF protection. This is done by taking into account the
selection of the resistor’s active current in the neutral with respect to the total capacitive
current of the network. So, for example, with an isolated neutral of the network, the value
of the dn factor will be 0, but when a resistor is switched on in the neutral, the relative
conductivity can range from 2 to 4 dn [36,37].

To assess the effect of the phase-to-ground fault completeness factor on the sensitivity
of protection, an experimental study of a single-phase short circuit was carried out on a
section of the 6 kV distribution network of the mining enterprise JSC “Polosukhinskaya
Mine”; the experimental installation is shown in Figure 5.
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Figure 5. Experimental setup for creating a single-phase ground fault through a transient resistance
on a section of a 6 kV distribution network of JSC “Polosukhinskaya Mine”.

The experimental setup contains: (1) measuring voltage transformer NTMI-6, used to
remove the voltage of the zero-sequence 3U0; (2) switch line No. 6; (3) a set of resistances;
(4) calibrated microcontroller “HV” manufactured by LLC “Service Coal Company”, pro-
viding measurement of the zero-sequence current 3I0 in the ranges of 0–5000 mA with an
accuracy of 2%; RIGOL DS1052E digital oscilloscope (Figure 6), recording the value of the
zero-sequence voltage; and the remote control of the cable line switch.
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Figure 6. Oscillogram of the zero-sequence voltage of a single-phase ground fault through a 5 kOhm
transient resistance, recorded during the ground fault experiment.

The experiment was carried out on the outgoing line No. 6 (see Figure 3) according to
the following algorithm:

1. Measurement of the current and voltage of the zero-sequence in the metal SPGF mode
has been performed;

2. In parallel to the load at point K1, resistances of various sizes ranging from 0 kOhm
to 100 kOhm were connected in order to simulate the incomplete SPGF mode with
different ground fault completeness factors;

3. The values of the voltage and current of the zero-sequence circuit were recorded in
the incomplete SPGF mode;

4. On the basis of the experimental zero-sequence parameter values, the protection
sensitivity factor was calculated in the incomplete SPGF mode with a different ground
fault completeness factor.

During the research study, seven experiments were conducted, and the results are
presented in Table 2.
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Table 2. The results of the experiment of single-phase ground fault through transient resistance on
the site of the distribution network of JSC “Polosukhinskaya Mine”.

Experiment Resistance Ri, Ω Factor ß Zero-Sequence Current 3I0, mA Zero-Sequence Voltage 3U0, V

1 0 1 15,121 5700

2 2500 0.232 1100 924

3 5000 0.128 185 475

4 10,000 0.067 173 254

5 25,000 0.028 147 142

6 50,000 0.014 77 46.2

Figure 6 shows the oscillogram of the zero-sequence voltage with an incomplete single-
phase GF, with a resistive value of 5 kOhms at the fault location. Taking into account
the transformation factors of the RIGOL DS1052E digital oscilloscope and the NTMI-6
measuring transformer, the effective value of the voltage 3U0 in Figure 6 was 475 V.

Having analyzed the results of the experimental study presented in Figure 7, it can
be noted that with a decrease in the value of the GF’s completeness factor in the mode of
incomplete single-phase GF and, taking into account a sensitivity factor of 1.25, the applied
current’s SPGF protection is able to detect the presence of an emergency mode on the
protected connection with a resistance at the point of damage of no more than 3.2 kOhm
and 4.5 kOhm, with the values of Kpd_max = 2.34 and Kpd_min = 1.8, respectively.
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Figure 7. Experimental setup for creating a single-phase ground fault through a transient resistance
on a section of a 6 kV distribution network of JSC “Polosukhinskaya Mine”.

The value of the sensitivity factor Ks is also determined by the level of capacitive cur-
rent of the network section connected to one transformer. During the experimental studies,
the capacitance of the 6 kV distribution network section of the JSC “Polosukhinskaya Mine”
was constant and came up to 7.2 µF. Due to the peculiarity of technological processes at
mining enterprises, the electrical capacitance of galvanically connected lines is unstable
and can range from 0.05 to 5 µF. Having this in mind, and by using the Expression (8),
the sensitivity coefficient Ks of protection against single-phase short circuits, were plotted
against the change in: (1) the transient resistance value at the fault location and (2) the total
capacitance of galvanically connected cable lines. The plots are shown in Figure 8.
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Figure 8. Dependences of the sensitivity factor of SPGF protection on the transient resistance at the
point of SPGF and the total capacity of the 6 kV power supply section network of JSC “Polosukhin-
skaya Mine”: (a) Kpd_min = 1.8, (b) Kpd_max = 2.34.

The obtained results allow us to determine the boundary conditions of the resistance
at the ground fault location and the total capacitance of the network with respect to the
ground. With such conditions the requirements for the sensitivity of protection against
ground faults are met. (The results were obtained at Kpd_min = 1.8 and Kpd_max = 2.34). It is
established that in the ground fault mode through transient resistance, at the 6 kV power
supply site of the JSC “Polosukhinskaya Mine”, the protection will satisfy the sensitivity
condition in the following transient resistance ranges: 0–18 kOhm, 0–4 kOhm and network
capacity ranges: 0.95–0.05 µF, 0.25–0.05 µF (Figure 8).

Analysis of the experimental data obtained has shown that one of the primary prob-
lems of low selectivity and sensitivity of protection is the variability of the zero-sequence
current and voltage values. Based on this, one of the priority tasks aimed at ensuring
the safety and reliability of medium-voltage power supply systems is the development of
measures that will allow establishing an effective single-phase GF protection, which has
the necessary selectivity and sensitivity of action in conditions of incomplete SPGF, taking
into account the variation of zero-sequence parameters.
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4. Discussion

With an increase in the length and branching of the 6–35 kV voltage networks, the
value of the capacitive current increases. During operation, the dielectric parameters of
the insulation of cable lines deteriorate and their wear increases, but at the same time, the
level of redundancy of the power supply of busbars of substations increases, which leads
to minor interruptions in the power supply of consumers when the damaged sections are
disconnected. Therefore, it is currently advisable to ground the grid through a resistor
instead of systems with isolated neutral [38–40]; see Figure 9.
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The main feature of networks grounded through a resistor is the reduction of over-
voltage and the creation of conditions for high-speed and selective elimination of the SPGF
mode. In turn, this ensures a reduction in electrical injuries of the service personnel.

The neutral grounding resistor is connected either to the neutral of the power trans-
former, to the winding connected in a triangle, or to a special neutral output transformer
with a star-triangle winding connection [41,42]. In the normal grid operation, the voltage
value in the neutral of the transformer with respect to the ground is almost zero, and no
current flows through the active resistance connected to the neutral.

In case of a ground fault, capacitive currents appear in all outgoing connections, which
is determined by the length and cross-section of the cable line. In the damaged section there
is a total capacitive current flowing to the phase-to-ground fault location, and an active
current appearing due to the inclusion of a grounding resistor in the zero-sequence circuit.
This method provides the most effective identification of the SPGF location, increases the
speed of RPA systems, simplifies the execution of RPA algorithms, reduces the probability
of arcing, and improves the electrical safety of operational personnel, as well as the safety
of people and animals who accidentally find themselves at the fault site. Unlike grounding
through an arc-extinguishing reactor, this method requires relatively less capital investment.

In the course of an experimental study of the mode of single-phase ground fault
under conditions of transient resistance in the distribution network section of the JSC
“Polosukhinskaya Mine”, it was found that with an increase in the resistance value at the
point of fault, the sensitivity factor becomes lower than 1.25, which is unacceptable in
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distribution networks and can lead to protection failure. Since the aim is in providing
selectively sensitive protection against ground faults under the conditions of variation of
the electrical network’s parameters in order to minimize the influence of the SPGF mode
on the elements of power supply system, a transition from an isolated neutral to grounding
the neutral through a resistor is necessary.

Figure 10 shows the result of the proposed measures implementation into the 6 kV
power supply system section, the relative conductivity factor dn was selected based on the
conditions for ensuring the selectivity of protection and chosen to be dn = 4.
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network of JSC “Polosukhinskaya Mine” with the factor of relative conductivity of neutral grounding
dn = 4 (a) Kpd_min = 1.8, (b) Kpd_max = 2.34.

Analytical studies of the results show that the operability of the applied ground fault
protection is 0–36 kOhm and 5–0.05 µF and 0–27 kOhm and 4.05–0.05 µF at Kpd_min = 1.8
and Kpd_max = 2.34, respectively.

The introduction of a resistor into the neutral of the power system makes it possible to
increase the sensitivity of the current non-directional protection by more than five times,
during which it is possible to create reliable protection, both at low ground fault currents
and at a significant transient resistance at the short circuit location.
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5. Conclusions

During theoretical and experimental studies, it has been established that 30–35% of the
total number of a timely unremoved SPGFs lead to phase-to-phase short circuits. This will
increase the economic losses in the distribution networks of the MRC mining enterprises.
Such losses are determined by the cost of repairing the failing equipment and the downtime
technological process. At the same time, any SPGF can exist accompanied by overvoltage
with a multiplicity of 3.1 to 3.4 Uph. This increases cable lines insulation wear and aging.

This research was conducted in the distribution networks of the MRC mining enter-
prises. It was found that the increase in sensitivity of ground fault protection is determined
by choosing the installation location of separation transformers on the out-going connec-
tions that have a greater share of the line’s own capacitive current in the total capacitive
ground fault current.

In order to increase the reliability and safety of operation of medium-voltage distribu-
tion networks of MRC mining enterprises, to ensure the stability and selectivity of the SPGF
protection, a transition from isolated neutral grounding to neutral grounding through a
resistor is necessary.

While performing the experimental study of the existing level of SPGF capacitive
current in the JSC “Polosukhinskaya “Mine”, it was found that its value is 16 A. To transfer
the 6 kV distribution network of this mining enterprise to resistive neutral grounding, it is
possible to recommend the installation of a 400 Ohm high-voltage resistor. A resistor of
this magnitude will completely eliminate the possibility of high multiplicity overvoltage. It
is optimal in terms of minimizing the current through the human body directly touching
the phase of the network and creates a guaranteed active current in the damaged feeder,
which will ensure the selectivity and reliability of the SPGF protection.

The information given in this article makes it possible to expand the scope of the
available experience of experimental evaluation of the influence of the zero-sequence cur-
rent circuit’s parameters in the incomplete earth fault mode, on the effectiveness of the
current protection from SPGF in the conditions of mining enterprises. Although performing
field studies in the electrical networks of mining enterprises is a very dangerous and time-
consuming event, it allows for a reliable assessment of the values of the zero sequence
values and the features of their change during fault mode. Based on the results of the
conducted research, mathematical and graphical patterns of changes in the operating
signals of protections during incomplete SPGF mode have been established. This will
form the prerequisites for an optimal solution for improving the safety of power supply
mining enterprises.

The direction of further research may be the development of an algorithm for the
action of SPGF protection during short circuits through transient resistances. It is necessary
in order to ensure the immutability of the protection action in conditions of zero-sequence
circuit non-constant parameters, as well as to consider the possibility of using current and
directional protections taking into account the resistive grounding of the neutral.
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