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Abstract: Nonintrusive load monitoring (NILM) is a process that disaggregates individual energy
consumption based on the total energy consumption. In this study, an energy disaggregation
model was developed and verified using an algorithm based on a recurrent neural network (RNN).
It also aimed to evaluate the utility of the occupant location information, which is nonelectrical
information. This study developed energy disaggregation models with RNN-based long short-term
memory (LSTM) and gated recurrent unit (GRU). The performance of the suggested models was
evaluated with a conventional method that uses the factorial hidden Markov model. As a result, when
developing the GRU disaggregation model based on an RNN, the energy disaggregation performance
improved in accuracy, F1-score, mean absolute error (MAE), and root mean square error (RMSE). In
addition, when the location information of the occupants was used, the suggested model showed
improved performance and good agreement with the real power and electricity consumption by
each appliance.

Keywords: nonintrusive load monitoring (NILM); recurrent neural network (RNN); gated recurrent
unit (GRU); occupant location information

1. Introduction

As energy consumption increases worldwide, so does the demand for energy manage-
ment. In addition, as the demand for appliances and personal equipment increases due to
the increase in population and living standards, electricity use in the building sector is also
increasing [1]. In South Korea, about 39% of electricity consumption as of 2018 occurred
in residential and commercial buildings, and the rate is increasing by about 1% every
year [2]. Accordingly, there is an increasing need to reduce the electricity consumption in
the residential and commercial building sectors.

Among the various measures for energy saving, energy disaggregation, also called
nonintrusive load monitoring (NILM), is the process of estimating individual loads of
facility systems by using the total electric power consumption measured by a household
power monitor [3]. In other words, energy disaggregation investigates detailed information
on appliance-specific or usage-specific energy consumption from the total energy usage.
According to Darby, when the energy disaggregated results were posted for users, the
energy use efficiency improved by about 15%, and 81% of users answered that the informa-
tion was useful [4]. Therefore, this energy disaggregation shows the user that it is more
effective to save energy by posting the power usage per appliance rather than the total
power usage.

This energy disaggregation is a process of power consumption analysis based on
the data collected in a timed sequence, as shown in Figure 1. The most widely used
algorithm for learning probabilistic models of time series data is the hidden Markov
model (HMM) [5] and the factorial HMM (FHMM). The Markov process and its variant
algorithms are generally used for energy disaggregation [6]. However, recent studies have
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introduced algorithms using machine learning (ML) technologies for energy disaggregation
in buildings.
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NILM can be divided into event-based or state-based approaches. Event-based ap-
proaches try to capture statistically significant variations of the signals. On the other hand,
state-based approaches use appliance load distribution models to disaggregate the total
power. Hidden Markov models (HMM) and combinatorial optimization (CO) are com-
monly used methods for state-based approaches. Integer programming (IP) can also be
used to disaggregate without supervised learning [7,8].

As described above, NILM is a process of analyzing energy use at home or in buildings,
and this energy use is related to the activities of the occupants. Accordingly, several studies
have been conducted on energy use analysis based on occupant behavior in various types
of buildings [9–11]. Additionally, the application of nonelectrical data is important as
nonelectrical features such as occupancy and indoor/outdoor temperature information
help improve the performance of energy disaggregation models [12].

Conventional energy disaggregation models with FHMM have limitations. According
to Kim et al. [6] and Holmegaard and Kjærgaard [13], when energy disaggregation is
performed using the FHMM, the disaggregation performance decreases as the number
of home appliances increases. FHMM also limits the pattern recognition of multistate
appliances or appliances with similar power consumption. To overcome these limitations,
machine learning technologies can be used such as recurrent neural networks (RNN). The
RNN is a dynamic system that efficiently uses time information [14]. For this reason,
it is widely used for processing time series data analysis. It is also useful to process
many input and output variables as a deep learning algorithm based on a neural network.
Disaggregation with RNN can be robust to classify various appliances and the prediction
of power consumption in buildings. Thus, this study introduced an algorithm based on a
RNN to compensate for the limitations of FHMM in energy disaggregation.

In addition, this study incorporated occupant location information as nonelectric
information in NILM to improve performance. Most home appliances including fridges,
TV, washers, and dryers are in a fixed location. Therefore, it can be thought that the occu-
pant location is closely related to the operation of the appliance in the case of appliances
interacting with the user (e.g., TV, PC, etc.), or home appliances operated by the occupants’
contact (e.g., lighting switch, a fridge, a microwave range, etc.). Accordingly, by analyzing
the energy disaggregation performance when using the information on occupant location,
the performance of the NILM can be improved. In recent years, in a smart home environ-
ment, the need to monitor infants and children as well as the elderly is increasing, and
households with cameras for home security are increasing. Therefore, in this study, we
propose a method of utilizing an existing home security camera to detect the occupants’
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location in a house. As a result, it does not require the installation of additional sensors to
acquire the occupant location information.

2. Literature Review
2.1. Occupant Localization Approach

Occupant localization in the indoor environment has been studied in various re-
search with different methodologies and purposes. Occupant localization is also related
to occupancy detection in buildings, and is used for building energy management [15,16],
managing space [17], and monitoring elderly people [18]. The information on the number
and localization of occupants inside buildings could improve the energy efficiency with
an IT network and a building automation control system while maintaining appropriate
thermal comfort for the occupants [19].

In previous research, various methods have been proposed for occupant localization
including RGB-D camera vision [20,21], floor vibration sensors [19,22], WiFi infrastruc-
ture [23,24], radio frequency identification [25], and so on. However, current methods
require the installation and maintenance of additional sensors or display markers that assist
with localization, which hinders the practical application in the field. In addition, tracking
mobile devices or wearable devices in the built environment is suggested, but it is hard to
keep asking the occupants to always carry their devices [26].

2.2. Nonintrusive Load Monitoring Approach

NILM is a low-cost approach to individual load monitoring and has been studied
intensively in recent years [6]. The NILM results provide consumers or building managers
with the opportunity to reduce their energy costs through real-time power consumption
feedback. Load information from each device can be used by electricity companies, smart
building controllers, home appliance manufacturers, and individual energy consumers to
increase the energy efficiency [27].

In NILM, appliance features are mathematically characterized, and a data collection
system is required to detect the features. There is a common principle that a mathematical
algorithm detects individual features from the total electric power signal [28]. In general,
the NILM approach can be divided into two approaches depending on the sampling rate
of the hardware that records the power and voltage for energy measurements. The first
approach is to use low-frequency hardware, and the second is to use higher-frequency
sampling hardware [28].

The approach that utilizes low-frequency hardware is based on the changes in the real
power and reactive power [29]. This method is based only on the changes in real power,
thus disaggregating only devices with a relatively large load based on the data sampled
over a long period [30]. The approach that utilizes higher-frequency sampling hardware
not only includes power change, but also a method to utilize harmonics [31,32]. One of the
conventional approaches for NILM is to use the factorial hidden Markov model.

2.2.1. Factorial Hidden Markov Model

As described above, it is possible to perform energy disaggregation with the FHMM,
which combines Markov chains that represent the state of equipment over time [13]. FHMM
is an extended HMM with a state space composed of a cross-product of state variables [5],
as shown in Figure 2. There are N sequences of the hidden states, and the shape is the same
as that of a stacked HMM [6]. In NILM, each sequence corresponds to one appliance.

Holmegaard and Kjaergaard [13] estimated the state of industrial equipment using
FHMM. Batra et al. [33], Kim et al. [6], and Yue et al. [34] compared the performance of the
matrix factorization method, long short-term memory (LSTM) model, and unsupervised
NILM algorithm along with the FHMM as a baseline, respectively.
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2.2.2. NILM with Nonelectric Information

In NILM, load signatures, which are characteristic of each appliance, can be classified
into steady-state signatures, transient signatures, and nontraditional signatures. The
steady-state signatures are load characteristics extracted when the device is in steady-state
operation. Transient signatures appear in the period between the steady-state operation and
the OFF state of the device [35]. Nontraditional signatures are features that have recently
been increasingly used in energy disaggregation including nonelectric information [35,36].

According to Abubakar et al. [36], energy disaggregation can be conducted using non-
electrical information such as temperature, time of day, and start-up time as nontraditional
signatures, and disaggregation performance can be improved when such information is
added. In addition, using nonelectric information in NILM can help identify abnormal
states in equipment operation such as peak consumption times, malfunctions, and low
efficiency due to technological obsolescence [37].

Accordingly, Kim et al. [38] and Zeifman and Roth [39] investigated various nonelectric
information including the ON and OFF duration distribution and the frequency of appliance
usage that could be applied to improve the segmentation performance.

3. Methods

The suggested approach uses RNN-based algorithms along with the occupants’ local-
ization information as nonelectric information. In order to make new models and test the
performance of the developed model, we set up and collected data in a testbed.

3.1. Experimental Setting and Data Collection

The data used in this study for NILM was collected from the Smart Living Testbed (SLT)
at Dankook University, Yongin, Korea. The SLT was designed to collect indoor environment
data under the control of various indoor climate control equipment used in residential and
commercial buildings. The SLT is a rectangular chamber consisting of one living room and
two bedrooms, as shown in Figure 3, and was equipped to monitor the energy consumption
from each piece of equipment and the indoor environment data (e.g., temperature, relative
humidity, CO2 concentrations). These data were measured every minute. The SLT was
equipped with basic facility systems including a VRF (variable refrigerant flow) system, a
floor radiant heating system, an energy recovery ventilator, and a dimming system, and an
additionally installed 14 household appliances, as shown in Table 1. Electric power was
monitored for every piece of equipment for energy disaggregation along with the total
electric power. In addition, a home security camera was installed on one side of the ceiling
in the living room.
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Table 1. List of appliances in the SLT.

Number Appliance

1 Desktop
2 Fridge
3 Air conditioner
4 Lights
5 Energy recovery ventilation (ERV)
6 Washer
7 Microwave
8 TV
9 Laptop
10 Rice cooker
11 Hot water mat
12 Hair dryer
13 Humidifier
14 Air cleaner

The data collection was performed for five days during a heating season. Two occu-
pants, one female and one male, stayed in the living testbed. Each occupant lived in the
same as their home for about 2.5 days in turn. We collected the data of the outlet-specific
electric power (W) from each appliance and the indoor video data through a home security
camera. Based on the collected power data for each appliance, the total power for the
14 appliances was added as a variable to construct a time series dataset to train and validate
the electricity consumption disaggregation model.

The input data size of the NILM model was N × 1, and the output data size of the power
(W) prediction model was N × 14 (power consumption of 14 electronic devices), while
the output data size of the state estimation model was also N × 14 (state of 14 electronic
devices). It was assumed that there was no noise represented by unknown loads.



Energies 2023, 16, 3688 6 of 22

In this experiment, it is necessary to collect indoor video data to understand the
occupants’ behavior. Therefore, the participants spent most of their time in the living room
where the camera was installed and only entered the bedroom when they needed to sleep.

Based on the collected indoor video data, a dataframe type of occupant location dataset
was constructed to be used as an input variable for an advanced energy disaggregation
model. In this process, the image data were captured every second and converted to the
time series occupants’ location data. Figure 4 shows an example of electric power data by
14 appliances from the Smart Living Testbed.
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3.2. Recurrent Neural Networks

The suggested model uses RNNs to increase the performance of the energy disaggre-
gation and the number of appliances for analysis. The recurrent neural network (RNN) is
a neural network characterized by sending the result values at the hidden layer back to
the input of the hidden layer, as opposed to the feed-forward neural network in which the
computation process in the hidden layer is directed into the output layer. The addition of a
time series concept to the general neural network has the advantage of storing previous
information in a hidden layer, making it a suitable model for learning and sequentially
predicting the structured time series data [40].

Figure 5 shows the structure of a recurrent neural network in which a memory cell is
in the concealed layer that can store the previous values, and the task of sending the current
and previous information, hidden state, to the hidden layer at the next point is repeated. As
these procedures become longer and the internal structure becomes more complex, there
is a limit due to the problem of the vanishing gradient. In addition, this repetition has a
limitation in that the problem of long-term dependencies, in which historical information
stored in the hidden layer, is not delivered to the end. More details can be found in [41].

3.2.1. Long Short-Term Memory

Long short-term memory (LSTM) is a variation of the RNN structure. It was designed
to solve the problem of long-term dependencies, a chronic problem of RNN. LSTM, like
a typical RNN, is suitable for learning and predicting the time series data. A LSTM unit
is composed of a cell state, an input gate, an output gate, and a forget gate, as shown in
Figure 6. The input gate determines whether new information is stored in the cell state.
The forget gate consists of a sigmoid function and determines what information is removed
from the earlier cell state. The output gate then derives the final output value. The detailed
architecture and explanation can be found in [42].
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3.2.2. Gated Recurrent Units

A gated recurrent unit (GRU), proposed by Cho et al., is a strain algorithm that
complements the shortcomings of a basic RNN [43]. The GRU consists of a relatively
simpler structure than the LSTM. The LSTM consists of a total of three gates (i.e., the forget
gate, the input gate, and the output gate), while the GRU consists of two gates (reset gate:r
and update gate:z), where the role of the port gate is divided into the remaining two gates,
as shown in Figure 7. These gates are vectors that determine the information to forward.
The reset gate decides how to combine the previous memory with the new input value,
and the update gate determines how much of the previous memory is to be delivered.
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3.3. Occupant Localization Based on Image Data

The suggested NILM approach uses the occupants’ location information to enhance
the performance of the RNN-based model. Localization was achieved by using CNN in
this study.

3.3.1. Convolution Neural Networks

A convolution neural network (CNN) is a class of deep neural networks most com-
monly applied to visual image analysis. A CNN is composed of the input and output layers
and several hidden layers like normal neural network algorithms [44]. The hidden layers
of CNN are composed of convolutional layers, pooling layers, and a fully connected layer.
The convolutional layer has a convolution filter and a nonlinear activation function. The
convolution filter is a common parameter to find the features of the input data. This is
usually composed of a square matrix and creates a feature map through the convolution
operation. After the convolution operation, a nonlinear activation function is applied to the
feature map [45]. In the pooling layer, the dimension of the feature map is reduced, and the
noise of the input data can be decreased by this operation. After the pooling operation, all
feature map values are connected to the input nodes of the fully connected layer [45], as
shown in Figure 8. CNNs with these characteristics are used in various fields including
image recognition and classification and natural language processing.
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3.3.2. Occupant Detection and Image Processing

In this paper, the object detection model YOLOv3 [46] was used for the detection of
occupants through the image data. The YOLOv3 is the most widely used deep learning-
based object detection model and can detect various objects including humans and animals
using a single feed-forward convolution neural network. In this study, the location was
estimated by detecting occupants, so the code was modified for the YOLOv3 model to only
detect humans. When a human is detected in the image data, a transparent bounding box
is created around the person and a specific RGB value point is displayed in the lower center
of the bounding box. The RGB value was used for the pointing process. Figure 9 shows the
input images and output images of occupant detection and the pointing processes. The
bounding box was originally transparent; however, for reference, it is marked in white in
the figure with a red dot.

In addition, a process of perspective transformation of the image was performed
using OpenCV (Open Source Computer Vision). OpenCV is a programming open source
developed by Intel for real-time computer vision. A point from the output image in Figure 9
was used to estimate the location of an occupant. Therefore, it is necessary to perform
perspective transformation and planarization based on the bottom surface of the output
image. As the perspective transformation is based on four vertices, it is necessary to
designate the vertices of the floor surface. In the case of images used in this study, there
was a limitation that all floor surfaces in the living room were invisible due to the camera
angle. Therefore, the perspective transformation was performed by estimating the position
of one vertex based on the grid on the floor. Figure 10 is an example of the result of this
perspective transformation.
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Through RGB extraction, the pointed part was converted into coordinates to create the
occupant’s location coordinates. The example is shown in Figure 11.

In this study, as the occupant’s location data were used as an input variable of the
RNN, the task of making the time series data in units of 1 min was processed as with
other input variables in the energy disaggregation model. After the distance between
each appliance was calculated based on the occupant’s location coordinates, the smallest
value among the distances between each device and the occupant for 60 s was selected and
arranged as a representative value to convert the interval of the corresponding distance
data from 1 s to 1 min. The distance dataset in units of 1 min were variables containing the
location information of the occupant; these variables were used as the input variables of
the energy disaggregation model.
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4. Results and Discussion
4.1. Experimental Cases

In this study, we suggested a new NILM approach that used a RNN with occupant
location information as the input variables. We developed a power disaggregation model
and a state estimation model separately by using the data from 14 appliances. To evaluate
the performance of the suggested method, experimental cases were designed as follows.

First, the performance could be compared for the electricity consumption disaggre-
gation and appliance state estimation with the existing FHMM. Therefore, one FHMM
and two RNN models (LSTM and GRU, respectively) were developed to evaluate the
performance of the disaggregation models and the state estimation models, respectively.

Second, in the case of evaluating the usability of the occupant location information,
the superior model was selected based on the result of the performance comparison be-
tween two RNN models (LSTM and GRU). The performance improvement of the selected
models with or without the occupant location information was evaluated based on the
performance metrics.

4.2. Performance Metrics

The electricity consumption disaggregation performance of the suggested energy dis-
aggregation model was evaluated with error metrics such as the MAE and root mean square
error (RMSE). Each metric was expressed as the following equation (Equations (1) and (2)).
The MAE and the RMSE are indices that indicate the error between the actual value and
the estimated value through the predictive model, which have been widely used for model
performance verification [47]. The MAE is less sensitive to errors with large absolute
values than the RMSE. The RMSE is more suitable for representing the model performance
than the MAE when the error distribution is expected to be Gaussian [48]. Although the
two error metrics are similar to each other, it is appropriate to present both to evaluate the
performance of the model in various ways [49].

MAE = ∑n
i=1

∣∣YActual,i − Ymodel,i
∣∣/n (1)

RMSE =
√

∑n
i=1 (YActual,i − Ymodel,i)

2/n (2)

YActual,i: Actual value, Ymodel,i: Predicted value, n: Number of samples.
In the case of the appliance state estimation, the performance of the model is ex-

pressed as a confusion matrix that is frequently used in classification performance anal-
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ysis. In addition, we also evaluated the accuracy and F1-score with a range of 0.0–1.0
(Equations (3) and (4)).

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1 − score = 2 ∗
TP

TP+FP ∗ TP
TP+FN

TP
TP+FP + TP

TP+FN
(4)

TP: True Positive, FN: False Negative, FP: False Positive, TN: True Negative.

4.3. Design of Energy Disaggregation Model

This section describes the design process of a model for energy disaggregation. In the
model design, all processes were carried out using Keras 2.2.4 version as a framework, that
is, the overall structure of the model in the Python 3.7.3 environment, and Tensorflow-gpu
version 1.14.0, a deep learning open source package, was used as the back end.

For the FHMM-based energy disaggregation model, the FHMM model of the NILMTK
package [50], a Python-based open-source toolkit, was used. In the case of the RNN-
based energy disaggregation model, the LSTM and GRU models were used as described
in Section 4.1.

In this study, holdout validation was used for model training and validation. Holdout
validation is a simple cross-validation for overfitting prevention and generalization of the
model by splitting the entire dataset into the training dataset to be used for model learning,
and the test data to be used for validation and performance testing [51]. In this study, the
datasets collected for learning the energy disaggregation model were split into training
data and test data in time series order. As shown in Table 2, the training data consisted
of about 70% of the entire dataset, 4341 rows, and the test data consisted of about 30% of
1861 rows.

Table 2. Dataset structure for learning and validation.

Dataset Period Proportion

Training data 2019.11.25 09:39:00~2019.11.28 09:59:00 70% (4341 rows)
Test data 2019.11.28 10:00:00~2019.11.29 17:00:00 30% (1861 rows)

4.4. Optimization of Hyper-Parameters

This section describes the hyper-parameter adjustment of the energy disaggregation
model based on RNN. Hyper-parameters are values that are adjusted by the user in
the model training process. The proper selection of hyper-parameters is an important
task in improving the performance of the model. In general, the optimization of these
hyper-parameters is based on grid search and random search. Grid search is a method of
organizing each set of hyper-parameters to be adjusted into an appropriate finite set and
considering the number of all cases of each finite set. The final selection of each hyper-
parameter is made by an indicator measuring the model performance, and the range of
finite sets is reasonably defined by the user [52]. In this study, the hyper-parameters of the
model were optimized using the grid search method. In the GRU model, the number of
hidden layers was set to 3, the hidden nodes were set to 64, and the batch size was set to
64. The activation function of the hidden layer was set to the rectified linear unit (ReLU)
or exponential linear units (ELUs). Adaptive moment estimation (ADAM) was used as
the optimizer. mean squared error (MSE) was used as a loss function to determine the
degree of learning, as shown in Table 3. In addition, the early stopping method was used to
prevent the model from overfitting and to use the weight at the point where the verification
loss was the smallest. This hyperparameter was applied equally to both the LSTM and
GRU, the RNNs used in this study.
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Table 3. Hyper-parameters of the RNN models.

Hidden Layers Hidden Nodes Batch Size Activation Function Optimizer Epoch

3 64, 64, 64 64 RELU and ELU ADAM 200

4.5. Results
4.5.1. Performance of Electricity Consumption Disaggregation

In this section, we compare the performance of NILM based on the FHMM, and two RNN
algorithms (LSTM and GRU). The performance when the same test dataset was applied
was compared, and the input and output variables were also the same. The input variable
of the three energy disaggregation models was the total power (W), and the output variable
was the power (W) of 14 appliances.

Performance evaluation of the electricity consumption disaggregation was based on
the result of disaggregating the electricity consumption (kWh) of each device from the total
electricity consumption (kWh) and the error metrics of disaggregating the electric power
(W) per minute by each appliance.

Figure 12 shows the electric power disaggregation results from three algorithms for
four representative devices (air conditioner, lights, laptop, and hot water mat). As can be
seen from the graph, since the FHMM-based disaggregation model has a characteristic
of inferring the electric power (W) at the time of operation with a specific value, it tends
to show a rectangular pattern. Therefore, in the case of an appliance such as the lights in
Figure 12b, it is advantageous to infer the electric power consumption. However, in the
case of a multistate appliance such as an air conditioner in Figure 12a, the inferred accuracy
from FHMM is very poor. In contrast, the RNN-based disaggregation model (LSTM and
GRU) can learn the electric power patterns that change over time, thus showing better
performance for the electric power relatively well compared to the FHMM.

Table 4 shows the results of the electricity consumption disaggregation by appliances.
The FHMM-based disaggregation model infers the electricity consumption of two devices
(lights, microwave range) close to the actual value. The RNN-based (LSTM and GRU)
models showed excellent performance in inferring that the electricity consumption of
12 devices (air conditioner, desktop, ERV, hot water mat, laptop, fridge, washer, air cleaner,
rice cooker, hair dryer, TV, humidifier) was close to the actual values.

Table 4. Results of the electricity consumption (kWh) disaggregation by appliance.

Appliances Actual Value
(kWh)

FHMM
(kWh)

LSTM
(kWh)

GRU
(kWh)

Air conditioner 27.96 9.90 15.43 19.66
Lights 9.12 8.16 12.69 14.50

Desktop 2.52 2.19 2.18 2.59
ERV 2.03 0.87 2.01 1.81

Hot water mat 0.81 3.57 0.64 0.92
Laptop 0.46 0.53 0.51 0.57
Fridge 0.40 0.71 0.44 0.46
Washer 0.27 12.72 1.15 0.90

Air cleaner 0.27 0.16 0.01 0.24
Rice cooker 0.08 3.79 0.11 0.35
Microwave 0.07 0.06 0.68 0.24
Hair dryer 0.04 0.19 0.12 1.16

TV 0.02 0.36 0.03 0.02
Humidifier 0 0.32 0.20 0.14
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Table 5 shows the results of the electric power (W) disaggregation in minutes for each
appliance of the disaggregation model based on each algorithm. The MAE and RMSE
errors are shown in the table. The electric power inferring performance of the FHMM-based
disaggregation model was found to be 103.63 on average for MAE and 177.08 for the RMSE,
while the performance of the RNN-based disaggregation model was a MAE of 50.77 and
RMSE of 78.11. In the case of the RNN-based models, the estimation performance improved
by about 51% (MAE) and about 56% (RMSE), respectively. The RNN-based disaggregation
model showed better performance than the existing FHMM-based disaggregation model in
terms of both the electricity consumption and electric power in minutes for each appliance.

Table 5. Results of the electric power (W) disaggregation by appliance.

Appliances
FHMM LSTM GRU

MAE RMSE MAE RMSE MAE RMSE

Air conditioner 595.68 855.72 432.01 623.80 284.35 378.44
Lights 85.79 200.83 161.92 203.98 178.33 213.26

Desktop 10.92 14.66 10.78 11.23 12.72 12.92
ERV 38.39 48.26 6.36 7.70 7.24 7.68

Hot water mat 119.96 169.58 37.50 71.17 33.70 58.26
Laptop 18.03 26.28 14.89 19.11 14.46 18.71
Fridge 19.80 30.81 19.61 21.79 19.78 21.75
Washer 401.43 824.36 40.59 98.38 31.07 97.25

Air cleaner 5.51 8.14 2.49 5.14 3.03 4.93
Rice cooker 121.40 172.77 6.02 30.70 13.08 30.40
Microwave 4.39 51.69 24.23 58.61 10.12 52.46
Hair dryer 7.31 42.43 5.10 42.33 38.46 75.77

TV 11.79 18.48 1.62 4.50 1.27 4.60
Humidifier 10.39 15.12 6.52 6.53 4.42 5.47

Average 103.63 177.08 54.97 86.07 46.57 70.14

The disaggregation performance between the LSTM and GRU was also evaluated.
Figure 12 shows that both algorithms learnt the electric power pattern that changed over
time, which is a characteristic of the RNN. However, in the case of the LSTM-based
disaggregation model, the electric power (W) during device operation was inferred to be
lower than that of the GRU-based model, and the electric power when not operated was
relatively high. In addition, as shown in Table 4, the LSTM-based disaggregation models
had excellent inference of the electricity consumption (kWh) of a total of five devices
(ERV, laptop, fridge, rice cooker, hair dryer), while the GRU-based models showed better
estimates of the electricity consumption (kWh) of a total of seven devices (air conditioner,
desktop, hot water mat, washer, air cleaner, TV, humidifier). The inferred performance of
electric power in minutes in Table 5 also showed that the GRU disaggregation model was
approximately 15% better in terms of the MAE and approximately 19% better in the RMSE
compared to the LSTM model.

4.5.2. Performance of Appliance State Estimation

In this section, we compare the performance of the appliance state estimation based
on FHMM, GRU, and LSTM. Figure 13 shows the confusion matrix with the appliance state
estimation results for four representative appliances by each algorithm.

Table 6 shows the accuracy and f1-score of the appliance state estimation performance
for each appliance The average accuracy of the FHMM-based disaggregation model was
0.66 and the average F1-score was 0.51, while the RNN-based models showed an average
accuracy of 0.72 and an average f1-score of 0.56. Compared to the FHMM-based model, the
RNN-based model showed better performance. Therefore, the superiority of the disaggre-
gation model based on the RNN was confirmed in the estimation of the appliance state.
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Table 6. Performance of the appliance state estimation by algorithm.

Appliances
FHMM LSTM GRU

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Air conditioner 0.70 0.69 0.84 0.79 0.89 0.85
Lights 0.82 0.82 0.88 0.87 0.89 0.89

Desktop 0.53 0.46 1.00 1.00 1.00 1.00
ERV 0.38 0.28 0.99 0.50 0.99 0.50

Hot water mat 0.56 0.52 0.46 0.46 0.52 0.52
Laptop 0.62 0.61 0.59 0.58 0.60 0.59
Fridge 0.61 0.58 0.41 0.41 0.41 0.41
Washer 0.82 0.65 0.84 0.67 0.86 0.69

Air cleaner 0.55 0.47 0.48 0.39 0.34 0.33
Rice cooker 0.51 0.36 0.49 0.33 0.51 0.36
Microwave 0.99 0.50 0.99 0.50 0.99 0.50
Hair dryer 0.99 0.50 0.50 0.34 0.50 0.34

TV 0.59 0.39 0.97 0.49 0.99 0.50
Humidifier 0.53 0.35 0.54 0.35 0.54 0.35

Average 0.66 0.51 0.71 0.55 0.72 0.56

There was no significant difference in the comparison of appliance state estimation
performance between the LSTM and GRU. However, the GRU-based model had a slightly
better performance than the LSTM-based model with an average accuracy of 0.01 and an
average f1-score of 0.01.

4.5.3. Effect of Occupant Location Information

In this section, we investigate the role of the occupant location information as non-
electric information in the NILM. The usability of the occupant location information was
evaluated by comparing the GRU model performance. Therefore, we compared the perfor-
mance when the same test dataset in the previous section was applied. The input variables
of the energy disaggregation model included the total power (W) and occupant location
information. The output variable was the power (W) of 14 appliances.

Figure 14 represents the electric power inferring results of the GRU-based disaggrega-
tion model using the occupant location information (GRU-OLI) and the GRU-based disag-
gregation model without the occupant location information. As described in Section 4.5.1,
the cases of four representative appliances are shown in the graph. It was confirmed
that the overall electric power inferring performance was stabilized when the occupant
location information was used. In particular, the results for an air conditioner showed
excellent performance, which were very similar to the actual values. In the case of a laptop,
when the appliance was not operating, it was inferred more clearly with the occupant’s
location information. Additionally, in a case of a hot water mat, electric power was clearly
inferred for ON and OFF, and the appliance and the inferring performance of the electric
power consumption increased dramatically compared to the one without the occupant
location information.

Table 7 shows the results of the disaggregation of the electricity consumption by
adding the case of the GRU-OLI disaggregation model to Table 4. The GRU-OLI model
showed excellent performance in inferring the electricity consumption in 11 out of a total of
14 appliances (appliances other than a rice cooker, microwave range, and hair dryer), which
were most similar to the actual values. In the electric power inferring performance results
by the minute, as shown in Table 8, the inferring performance when using the occupant
location information was improved by 50% for the MAE and 37% for the RMSE compared
to the model without the location information.
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Table 7. Results of the electricity consumption (kWh) disaggregation by appliance
including GRU-OLI.

Appliances Actual Value
(kWh)

FHMM
(kWh)

LSTM
(kWh)

GRU
(kWh)

GRU–OLI
(kWh)

Air conditioner 27.96 9.90 15.43 19.66 27.47
Lights 9.12 8.16 12.69 14.50 8.87

Desktop 2.52 2.19 2.18 2.59 2.50
ERV 2.03 0.87 2.01 1.81 2.04

Hot water mat 0.81 3.57 0.64 0.92 0.86
Laptop 0.46 0.53 0.51 0.57 0.44
Fridge 0.40 0.71 0.44 0.46 0.39
Washer 0.27 12.72 1.15 0.90 0.31

Air cleaner 0.27 0.16 0.01 0.24 0.25
Rice cooker 0.08 3.79 0.11 0.35 0.32
Microwave 0.07 0.06 0.68 0.24 0.16
Hair dryer 0.04 0.19 0.12 1.16 0.95

TV 0.02 0.36 0.03 0.02 0.02
Humidifier 0 0.32 0.20 0.14 0.08

Table 8. Results of the electric power (W) disaggregation by appliance including GRU-OLI.

Appliances
GRU GRU–OLI

MAE RMSE MAE RMSE

Air conditioner 284.35 378.44 131.35 215.35
Lights 178.33 213.26 55.79 74.77

Desktop 12.72 12.92 4.57 5.62
ERV 7.24 7.68 4.20 5.24

Hot water mat 33.70 58.26 15.55 40.13
Laptop 14.46 18.71 10.52 12.59
Fridge 19.78 21.75 17.43 22.23
Washer 31.07 97.25 30.79 92.63

Air cleaner 3.03 4.93 2.39 4.94
Rice cooker 13.08 30.40 12.42 28.13
Microwave 10.12 52.46 7.56 51.09
Hair dryer 38.46 75.77 31.98 61.23

TV 1.27 4.60 1.11 4.30
Humidifier 4.42 5.47 2.85 3.68

Average 46.57 70.14 23.47 44.42

The overall performance of the appliance state estimation was improved, as shown in
Figure 15. In particular, the performance of estimating the appliance OFF state improved
dramatically in the case of the laptop and the hot water mat by utilizing the occupant
location information. As a result of judging based on the average accuracy and F1-score in
Table 9, the performance of these appliances improved by 0.07 and 0.05, respectively.

Table 10 shows the performance metrics of the existing FHMM model and the model
using the GRU-based occupant location information (GRU-OLI). It was confirmed that the
performance of NILM based on GRU-OLI showed an improvement by 0.13 in the accuracy,
0.1 in the F1-score, 77% in the MAE, and 75% in the RMSE compared to the existing FHMM.
Therefore, it can be said that the occupant location information is a useful input to increase
the performance of the NILM.
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Table 9. Performance of the appliance state estimation by algorithm including GRU-OLI.

Appliances
GRU GRU-OLI

Accuracy F1-Score Accuracy F1-Score

Air conditioner 0.89 0.85 0.93 0.90
Lights 0.89 0.89 0.91 0.91

Desktop 1.00 1.00 1.00 1.00
ERV 0.99 0.50 1.00 0.50

Hot water mat 0.52 0.52 0.96 0.94
Laptop 0.60 0.59 0.67 0.65
Fridge 0.41 0.41 0.39 0.39
Washer 0.86 0.69 0.89 0.72

Air cleaner 0.34 0.33 0.47 0.43
Rice cooker 0.51 0.36 0.51 0.36
Microwave 0.99 0.50 0.98 0.50
Hair dryer 0.50 0.34 0.50 0.34

TV 0.99 0.50 0.97 0.49
Humidifier 0.54 0.35 0.81 0.45

Average 0.72 0.56 0.79 0.61

Table 10. The average value of the performance metrics for the FHMM and GRU-OLI.

Value
FHMM GRU-OLI (Suggested Method)

MAE RMSE Accuracy F1-Score MAE RMSE Accuracy F1-Score

Average 103.63 177.08 0.66 0.51 23.47 44.42 0.79 0.61

5. Conclusions

In this study, the performance of the RNN-based algorithm for NILM in a residential
environment was investigated and analyzed. The performance of the GRU model with the
occupant location information for energy disaggregation was also tested as well. Conse-
quently, when the disaggregation model was formulated with the RNN-based algorithm
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(GRU algorithm), the performance was improved by 0.06 based on the accuracy, 0.05 based
on the F1-score, 55% based on the MAE, and 60% based on the RMSE. In addition, when the
occupant location information was used, the performance improved by 0.07 for accuracy,
0.05 for F1-score, 50% for MAE, and 37% for the RMSE compared to the model without
the location information. As a result, compared to the existing FHMM-based NILM, the
suggested GRU-based model with the occupant location information showed a great im-
provement in terms of the accuracy, F1-score, MAE, and RMSE. Therefore, a RNN-based
algorithm with the occupant location information can contribute to increased performance
in the NILM.

This study has great significance in learning and validating an energy disaggregation
model with the data collected in a residential environment. It is also meaningful as it shows
an advantage of using the occupant location information as nonelectrical information that
could increase the performance of energy disaggregation. However, this study had limita-
tions in that data omission may have occurred when converting the data intervals from
seconds to minutes in the process of acquiring the occupant location data. Furthermore, the
location information could not be obtained if the occupants were covered by the furniture
or walls.

Therefore, there are future research plans to explore ways in which to improve the
energy disaggregation and localization performance of occupants using data intervals in
seconds. In addition, there are also difficulties to obtaining image data in a room including
privacy problems for occupants. Thus, our future research includes the development of an
occupant behavior detection model without using cameras. The method suggested in this
study for energy disaggregation based on a RNN with the occupant location information as
an input variable will be of great help in future NILM research such as in detecting abnormal
electric power consumption, monitoring the elderly, and increasing the power efficiency.
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