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Abstract: The installed wind power capacity is growing worldwide. Remote condition monitoring
of wind turbines is employed to achieve higher up-times and lower maintenance costs. Machine
learning approaches can be used for detecting developing faults in wind turbines in their earlier
occurrence. However, training fault detection models may require large amounts of past and present
data. These data are often not available or not representative of the current operation behaviour.
These data can be acquired with supervisory control and data acquisition systems. Note also that
newly commissioned wind farms lack data from previous operation, whilst older installations may
also lack representative working condition data as a result of control software updates or component
replacements. After such events, a turbine’s operation behaviour can change significantly so its data
are no longer representative of its current behaviour. Therefore, this paper shows that cross–turbine
transfer learning can improve the accuracy of fault detection models in turbines with scarce data
from supervisory control and data acquisition systems. In particular, it highlights that combining the
knowledge from turbines with scarce data and turbines with plentiful data enables earlier detection of
faults than prior art methods. In this way, the reuse and the knowledge transfer across wind turbines
allows us to overcome this lack of data, thus enabling accurate fault detection in wind turbines.

Keywords: condition monitoring; diagnostics; transfer learning; fault detection; convolutional neural
networks; supervisory control and data acquisition; wind turbines

1. Introduction

The globally installed wind power capacity is growing steadily, in line with efforts to
increase the share of renewable energy production around the world [1,2]. The operation
and maintenance costs of wind farms make up about one third of the electricity production
costs over the lifetime of a wind farm [3].

Condition monitoring and intelligent fault detection approaches can enable a transition
towards condition–based maintenance of Wind Turbines (WTs), thereby increasing the
up-time of the monitored WTs and reducing their maintenance costs. Fault detection
algorithms that rely on Machine Learning (ML) are designed to trigger a notification to the
operator when unusual operation behaviour is observed. This requires models of the WT’s
normal operation behaviour which can be trained on condition data from healthy WTs.

The use of condition data from the Supervisory Control And Data Acquisition (SCADA)
system was successfully demonstrated to train such Normal Behaviour Models (NBM)s
especially for fault detection tasks, as shown in [4–9].

However, this approach requires condition monitoring data to be available over a
sufficiently long operation period covering a representative range of operating conditions.
Indeed, when condition monitoring data are scarce or when they are no longer representa-
tive of the WT’s current behaviour, fault detection based on NBMs is usually not an option
because NBMs cannot then be trained. This is the case for newly commissioned WTs and
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in the initial stage of the operation life of a WT. Moreover, major changes in the operation
conditions, regardless of the WT age, can result in a lack of SCADA data representative of
the new operation behaviour. This scenario can arise, e.g., after control software updates or
hardware retrofits.

Note that usually SCADA data can be acquired for years, and are almost able to
represent the entire life of the process. However, these data are not always exploited
for fault diagnosis tasks, but only for condition monitoring purposes and sometimes for
performing statistical analysis of the fault occurrence. This is especially valid for wind
turbine installations, where SCADA systems are normally available and exploited for this
task, see, e.g., [10]. Thus, due to the availability of large amount of data for wind turbine
plants, this paper proposed the approach developed in the work, which aims at employing
the advantages of the availability of massive amount of data sequences for a wind turbine
plant. Moreover, the information acquired from this plant is transferred to a process whose
working condition data is very limited.

Therefore, the use of Transfer Learning (TL) in connection with Deep Learning (DL) is
considered in this work. In fact, DL methods are very common but require huge amounts of
data [11]. Therefore, to solve this limitation, details acquired from processes characterised
by many data are transferred to plants with scarce data. These data are often available from
SCADA systems.

In particular, this study demonstrates the potential of TL for enabling SCADA–based
fault detection with NBMs even when NBM training data are scarce. We investigate how
NBMs can be transferred from a WT with sufficient training data (source WT) to a WT
with scarce operation data (target WT) to achieve accurate NBMs and, thus, reduce fault
detection delays. The work investigates multiple TL strategies for training a NBM in the
target WT, and studies how they affect the accuracy of the trained NBM. It also analyses
how the most preferable strategy depends on the amount of training data available. The
proposed approach drastically reduces the amount of SCADA data required to train a
NBM for fault detection tasks in the target WT. It is shown that TL results in a higher
NBM accuracy and, thus, earlier fault detection when less than a year of training data
are available.

It is worth noting that the use of DL is available in many cases [12], for example
in computer vision [13], speech recognition [14]. Thus, researchers are involved in fault
detection [15,16], as in this paper. With respect to other situations, it is normal to have data
from healthy conditions and only a few sequences of the faulty ones [17]. In this paper, a
scheme was exploited to extend the knowledge acquired from different WTs to similar WTs.
WTs can be similar, but with different Working Conditions (WC)s, as shown in [18,19]. The
development of the Internet of Things (IoT) can allow the collection of data from remote
and different tools, such as SCADA devices.

Whereas typical ML models are predicated on the idea that both the training and
testing data belong to the same data distribution, TL aims to improve learners’ performance
by transferring information from a related domain. The concept of TL is influenced by how
people learn, which involves applying prior knowledge to solve difficulties. For instance, if
a person can ride a bike, learning to drive a car will be easier than starting from scratch
with no prior driving experience. As will be seen in the paper, TL allows ML models to
transfer learned information from source domains to a target domain in order to enhance
the effectiveness of the target learning function, even though both the source and target
domains have different data distributions [11].

Moreover, it is possible to transmit data samples from the source domain to the target
model to enhance learning [20]. There are still significant research gaps that need to be
filled, despite the fact that TL is becoming more and more popular and has been used in
various sectors, including defect detection.

TL for defect detection will be the sole issue covered in this paper because these are the
subjects of this research. The learnt information about defects is sent from a source machine
to a target machine in fault detection TL. The methods that are currently accessible only use
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one computer as a source [21]. In order to learn features from the source and target domains
together, domain adaptation is proposed in the study as a fault detection technique. A
support vector machine classifier is then used to predict problems [22]. In order to forecast
bearing inner race, ball, and outer race problems under fluctuating working conditions,
a TL approach was applied. In order to classify gear pitting flaws, the publication [23]
suggested an enhanced deep neural network optimized by a particle swarm optimization
methodology and a regularization method.

Although labeling data is a challenging operation when fault data is unbalanced, the
information can still be sent to a destination without labeled data. When the labeled data
was unavailable for the target, the greatest mean discrepancy was employed to reduce
the difference between the source and target domains. Several DL models, such as the
sparse autoencoder [24] or the Convolutional Neural Network (CNN) [25], are employed
for condition recognition in addition to the domain adaptation utilizing the maximum
mean discrepancy. In order to extract transferable features from the unprocessed vibration
data, the article suggested a feature-based CNN [26].

Then, to lessen the distribution mismatch of learnt transferable features, multi-layer
domain adaptation is implemented, and pseudo label learning is utilized to train from unla-
beled target domain samples [27]. Pre-trained networks, on the other hand, can be utilized
to train a deep learning network for fault classification, as demonstrated in [28]. The sensor
data is converted to picture data by plotting [29] or applying wavelet transformation [30]
to generate a time-frequency distribution, which is then used to fine-tune the high-level
network layers, and the low-level features are extracted from the pre-trained network. The
TL technique to defect detection was confirmed using lab-generated data from a bearing
data-set [31].

The existing state-of-the-art approaches do not take into account the fact that there
are certain differences between the source and target machines. Disagreements known
as negative transfer may impair the target model’s performance. Positive transfer, as
opposed to negative transfer, is the helpful information from the source, as discussed
in [11]. Combining DL and TL allows you to train nonlinear high-dimensional DTL models
with a minimal data set. There are four types of TL: instance-based DTL, network-based
DTL, mapping-based DTL, and adversarial-based DTL. To overcome the negative transfer
problem, the work [11] offered for example an instance-based DTL approach.

On the other hand, with reference to DL applied to fault diagnosis, DL–based fault
diagnosis models are relatively widespread, such as, e.g., in the deep variational autoen-
coder [32,33], multiscale deep belief network [34], hybrid deep learning [35] and stacked
denoising autoencoder [36].

The fault detection methods can also be based on the one-class model, such as the
One-Class Support Tensor Machine (OCSTM) [37,38], which has been applied extensively
in many fields. However, in the case of small-sample training, the OCSTM and other
one-class methods estimate the geometric boundary of the training sample very compactly,
and the class of the training sample is under-estimated, leading to the problems of low
recall rate of normal samples, namely a high false alarm rate and low overall detection
accuracy. To address the aforementioned problems, a fault detection scheme based on
One-Class Tensor HyperDisk (OCTHD) was also proposed, e.g., in [39].

A few application examples can be also reported here, as the objective of this paper
is to propose a methodology in wind power plant fault diagnosis. Several remarks are
made regarding the use of SCADA systems in wind turbine power plants. As highlighted
in Figure 1, SCADA systems are responsible for controlling and monitoring many of the
processes that make life in the industrial world possible, such as power distribution, oil
flow, communications, and many more. In this work, an overview of SCADA at the wind
power plant is presented, and operational concerns are addressed and examined. Notes on
future trends are also be provided. Therefore, Figure 1 summarises some important points
regarding SCADA systems and their application in the wind power plant environment.
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One of the most significant aspects of SCADA is its ability to evolve with the ever-changing
face of Information Technology systems.

Figure 1. Example of SCADA system application to wind power plant environment.

On the other hand, as depicted in Figure 2, a local control unit is placed at the bottom
of each wind turbine, which independently collects data from transducers placed across
various components of the turbine. This includes everything from the wind blades to
the gearbox and generator. From there, the local control unit performs a periodic health
check of all systems, set by the turbine operator. The supervisor tool reports back to the
SCADA system, a centralized industrial approach for monitoring and controlling machinery
distributed across large factories, mills, farms, etc. Once implemented, operators can view
the collected diagnostics from the entire wind farm due to mesh network topology, which
enables signals to be transmitted from different devices simultaneously. With the local
control unit, operators can view turbine information such as vibration, temperature, load
characteristics, force, oil pressure and more. This approach allows operators to take
preventative measures prior to become a major problem. On top of detailed insight into
each turbine, operators can set alerts to signal when a diagnostic crosses a specified set
point. For example, if the operator is alerted of a temperature increase in the generator,
someone can quickly fix the immediate issue. Previously, the entire generator may be
destroyed before realizing there was an escalating problem.

Figure 2. Example of centralised industrial SCADA approach for WT monitoring.

In particular for this research, which combines TL with DL for defect diagnosis, it
focuses on TL that allow data to be combined across numerous devices. To cope with
big data sets and capture nonlinear trends from diverse measures, an approach such as
DL is required rather than shallow machine learning models. TL with DL is used to
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transfer gained knowledge from vast fault history WT to scarce fault history WT, which
is insufficient to train typical ML models. In fact, in contrast to prior research by the
authors [40], this paper employs DL and TL methods for fault diagnostic application to WT
SCADA data. Other well–established traditional approaches showing the application of
artificial intelligence tools for fault diagnosis can be found in [41–48].

This paper is organized as follows. Section 2 reviews existing TL approaches and
how they can be beneficially applied in wind power applications. The first recently- pro-
posed applications of TL to condition monitoring tasks in wind farms are also considered.
SCADA-based modelling of the normal operation behaviour and the detection of devi-
ations from that behaviour are some of the most relevant fault detection approaches in
WTs in practice [6]. Despite its relevance, the potential of TL for this fault detection task
has not been investigated so far. This work demonstrates how TL can be beneficial for
extracting operation knowledge from WTs with sufficient training data and for re-using
this knowledge to improve the fault detection accuracy in WTs with scare training data.
Section 3 introduces new strategies for training a NBM for fault detection despite scarce
target WT training data. Section 4 discusses the results of a case study of the presented
strategies and their performances. Finally, Section 6 presents some conclusions and possible
directions for future research.

2. Problem Formulation

Fault detection methods for WTs usually assume that the training and the test data
originate from the same multivariate distribution in the same feature space. For example,
it is usually assumed that a model of the WT’s normal operation behaviour, once trained
on past operation data, will continue to perform well when applied to data from the
future operation of the WT. However, this assumption is often not correct in practice as the
distribution of the operation data can evolve over time and even change abruptly. This can
be reflected in distribution shifts, such as shifts in the power curve or in other correlated
SCADA variables. Various processes can cause these distribution changes, including control
software updates and the replacement of hardware. In such situations, SCADA data that are
representative of the current normal operation of the WT are scarce. Representative SCADA
data are also scarce after the WT commissioning and in the beginning of its operation life.
If condition data are barely available, the feature space will be populated only sparsely,
so a probability density distribution that is representative of the WT’s normal operation
behaviour cannot be estimated reliably. For instance, sufficient SCADA data might not be
available at high wind speeds, so the power generation cannot be estimated accurately.

On the other hand, after software and hardware updates, SCADA data from before
the update are often plentifully available but no longer representative of the current
operation behaviour. In this case, the feature space is comprehensively populated but the
distribution of the data does not fully reflect the WT’s current normal operation behaviour.
Nevertheless, if a NBM is trained on the past operation data, it tends to be less capable
of detecting anomalous operation behaviour and, thus, causes delays in the detection of
incipient faults [9].

TL relies on the mathematical concepts of domain and task. Formally, a domain
D = {X ,P(X )} consists of a feature space X and a marginal probability distribution P(X ).
A task T is defined by a label set Y and a conditional probability distribution P(Y|X ),
which can be estimated from a training set {(xi, yi)|xi ∈ X , yi ∈ Y}. TL considers a source
domain Ds, a target domain Dt, a source task Ts and a target task Tt, and aims to estimate
the conditional probability distribution in the target domain, P(Yt|Xt) from information
extracted from the source domain Ds = {Xs, P(Xs)} with tasks Ts and Tt [49,50].

Thus, it enables the transfer of information learnt on a source feature space and task
to a different but related target feature space and task. In this way, it can help to address
mismatches in the training and the test data. TL has shown success in situations when the
source and target data follow similar but different distributions or populate similar but
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different feature spaces; it can also be successful for applications when the source task and
the target task are similar but different [50–53].

Such situations arise frequently in machine health applications in industrial fleets.
Wind farms comprise different but similar WT types, operating conditions, and SCADA
systems. TL has a strong potential for improving WT condition monitoring tasks including
performance monitoring, fault diagnostics and machine health state prognostics. This study
demonstrates the application of TL for training accurate models of the normal operation
behaviour of WTs for fault detection tasks. The representativeness and accuracy of NBMs
is of major importance for enabling the early detection of incipient faults [9]. TL strategies
can be particularly useful when many training data in the source domain are available but
little training data in the target domain, which is the case in the situations of scarce WT
condition data considered in this study.

Few studies have investigated the re–use and transfer of knowledge across different
WTs. The potential of TL methods in wind energy applications, and notably fault diagnos-
tics tasks, has barely been studied yet. The work [54] proposed to apply a fault detection
model across WTs without retraining the model on the target WT. They made use of an
offshore source WT and multiple onshore target WTs. Fault labels were available for the
source WT and unavailable for the target WT. The model was trained on data from the
SCADA system of the source WT. The fault detection model was applied to the target
domain without retraining, the entire target domain data-set being used as a test set. The
paper [55] addressed methods for image-based blade damage detection in WTs. They
applied a TL approach to demonstrate improved feature extraction and damage detection
accuracy in the images. The work [56] applied TL to fault diagnosis tasks in WTs. They
investigated the application to gear cog belt fractures and to blade icing detection based on
SCADA data. The authors compared classical ML methods and TL with an algorithm [49]
for the two fault classification tasks, finding superior performance of the TL–based method.
The paper [57] presented a fault diagnosis method for WT gearboxes that makes use of
generative TL. They demonstrated their approach in the laboratory with accelerometer
measurements from the gearbox of a 3 kW WT. The work [58] investigated the transfer
of fault diagnosis tasks on SCADA and failure status data-sets. The authors considered
different fault types, focused on the transfer of fault diagnostics models, and demonstrated
the application of autoencoders to this end. Finally, the work [59] proposed a TL approach
based on multiple autoencoders with step-wise customization. They chose the application
field of short-term forecasting of wind power and demonstrated their proposed approach
in 50 commercial WTs.

Surprisingly, none of the existing TL methods for SCADA–based fault detection
involve normal behaviour modelling, even though it is one of the most relevant data-driven
methods for early fault detection in WTs in practice. This study investigates TL strategies
to fault detection based on NBMs. The research issues that this work aims at solving are
as follows:

• How to re–use and transfer operational knowledge across WTs;
• The effect of the transfer on the performance of fault detection models for the target WT;
• The results obtained with a one–fits–all NBM for fault detection at the target WT when

applied to a customized model;
• The improvement in the accuracy of SCADA–based fault detection with TL of a NBM

with respect to training a NBM from scratch;
• The relation between the accuracy improvement and the amount of training data from

the target WT.

3. Transfer Learning for Fault Detection

The task in this study is the SCADA–based detection of incipient faults in WTs whose
SCADA data are scarce or no longer representative of the current normal operation be-
haviour. To this end, the work demonstrates how to train a NBM and transfer it to a target
WT, as shown in Figure 3. It is sketched how TL strategies can facilitate the re–use and
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transfer of knowledge about the normal operation behaviour of a source WT to a target WT
for fault detection tasks.

Normal Behavior
Model 1 (NMB1)

NMB2

NMB3

Knowledge
Transfer

WTs with sufficient training data
from past operations (Source WTs)

WTs without sufficient training data
from past operations (Target WTs)

NBMs that can
be trained

Figure 3. Transfer learning strategy enhancement.

A NBM f is a statistical or ML model that was trained on SCADA features
x1(t), x2(t), . . . , xm(t) to learn the distribution of one or several target SCADA variables
y1(t), y2(t), . . . , yn(t) to be monitored, as shown in Figure 4. In particular, the flow chart
of Figure 4 illustrates the SCADA–based fault detection methods based on training and
application of NBMs.

SCADA features

Monitored SCADA
variables

y y(t), ..., (t)
1 n

Target value prediction

Actual & predicted
value comparison

y y(t), ..., (t)
1 n

^ ^ x x(t), ..., (t)
1 m

= f( )
x x(t), ..., (t)

1 m

Normal behavior model

� = (t) - (t)y yi i i for i = 1, ..., n

� i| |> Threshold

Yes

No
fault

No

Fault
alarm

^

Figure 4. Flow chart of the fault detection strategy.

The model f maps the SCADA features x1(t), x2(t), . . . , xm(t) to the SCADA variable
estimates ŷ1(t), ŷ2(t), . . . , ŷn(t) expected under normal operation behaviour, with m, n ∈ N.
The features x1(t), x2(t), . . . , xm(t) on which f is trained are chosen to reflect the full range
of operating conditions that can arise in a fault–free normally–functioning WT and that are
relevant for predicting the estimated values of the monitored variables y1(t), y2(t), . . . , yn(t).
The SCADA input features typically include environmental conditions, in particular the
wind speed. The SCADA target variables to be monitored should be suitable indicators of
fault conditions. For example, operation temperatures of critical components and fluids
are often selected as the SCADA target variables to be monitored for early fault detection
tasks. This is because unusual heat generation, such as from excessive friction, can indicate
operating problems and incipient faults.

Note that, as recalled in Figure 4, this paper will not consider the problem of the
evaluation of the diagnostic signals εi = yi − ŷi, with i = 1, . . . , n since it focuses on the
improvement of the accuracy of the estimates ŷi. However, it is worth noting that as already
remarked, the focus of the paper is on transfer learning approaches. The fault diagnosis
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represents a possible application, even if it is not the main point of the work. As proposed
in [60], the selection of the fault detection threshold εi can be based on a simple geometrical
test or more complicated statistical schemes. In particular for this study, the fault detection
thresholds are settled by means of the empirical solution that considers a margin of ±10%
of the minimal and maximal values of the fault-free values of εi = yi − ŷi. However, for
improving the fault detection accuracy, more complex approaches may be exploited, as
addressed in [60].

The aim of the work is the early detection of faults based on an accurate estimation of
the normal operation behaviour of the monitored WT. In a TL sense, the task to be learned
is the same on the source and the target data-sets, namely the accurate estimation of the
normal operating behaviour to enable an early detection of developing faults based on the
deviation from normal behaviour. Observations of actual WT faults are relatively scarce
and of diverse types. Therefore, many automated fault detection algorithms rely on evalu-
ating signal reconstruction errors in normal behaviour modelling approaches instead of
learning fault signatures [6,7]. Normal behaviour models were shown to successfully detect
developing faults in WT drive trains, as in [5]. They constitute one of the most relevant
SCADA–based fault detection approaches in practice [6]. Single- and multi-target NBMs
have been proposed, with multi-target NBMs being capable of exploiting the covariance
among the target variables y1(t), y2(t), . . . , yn(t) which can enable more accurate NBMs and
earlier fault detection [8,9]. In practice, a separate WT–specific NBM is usually trained and
deployed to operation for every single WT. This is performed to account for site–specific
aspects, such as wake effects, on the WT operation, to achieve a high NBM monitoring
accuracy and, thus, enable an earlier detection of developing faults. Training a NBM
requires the availability of training data {x1(t), x2(t), . . . , xm(t), y1(t), y2(t), . . . , yn(t)} that
are representative of the current normal operation behaviour of the WT under all operation
conditions. In practice, ideally at least one year of SCADA data are used for training a
NBM. However, so much representative training data are not always available. Newly com-
missioned WTs and WTs in their first year of operation naturally lack these training data.
Even older WTs may be scarce in representative SCADA data that can be used for training
a NBM. For example, this may be the case after control software or hardware updates.

To overcome the scarcity of training data, this work proposes to exploit the information
contained in the NBM of a WT abundant in training data (source WT) and to transfer that
information to the WT lacking representative training data (target WT), as remarked in
Figure 3.

On the other hand, Figure 5 summarises the different stages exploited for the deploy-
ment and the development of the proposed ML and DL strategies for WT SCADA data.

Different computational strategies will be analysed for this knowledge transfer in the
following. The NBMs trained in this study are convolutional neural networks as detailed
below. As shown in Figures 6–10, five different transfer strategies are considered.

In particular, three different transfer strategies (strategies 1–3) are compared to two
strategies in which a NBM is trained from scratch at least in part on SCADA data from the
target WT (strategies 4 and 5).

Therefore, according to transfer strategy 1 of Figure 6, the model is trained on the
training set of the source WT. The scarce training data of the target WT are used to retrain
only the last layers of the model. The network weights of the other layers are transferred
to the target WT without any changes. In more detail, the NMB has been trained and
optimised on the source WT training and validation sets. The NBM for the target WT was
initialised with the weights of the CNN trained on the source WT. Thus, the initial state
of the target NBM already comprised knowledge about the normal operation behaviour
of a WT and the covariance among the input and target variables even before the training
on the target WT’s training data started. Next, the weights of the two last layers of the
NBM were retrained on the 24 h sequences of the training set of the target WT. The last
two layers were the two fully connected layers with eight neurons in the hidden layer and
seven neurons in the output layer, as described above.
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Original SCADA data

Data pre-processing

Data sampling

Data normalisationData for
model construction

Training set Validation set

Data for
model test

Test set

Machine learning Transfer learning

CNN model

Methods

Achieved
models

Network basedStrategy 1-5

Comparison &
fault diagnosis

Figure 5. Block diagram with the summary of the proposed strategy and its stages.

Strategy 1

Source
domain

Target
domain

T
ra

n
s
fe

r

Frozen Retrained

To be
retrainedData

Figure 6. Strategy 1 for training a NMB for fault detection tasks on a target WT.

Strategy 2 in Figure 7 is the same as strategy 1, except that all the layers of the network
are retrained on the target WT data. In particular for this strategy, it requires a NBM
to be trained and optimised on the source WT training and validation sets followed by
initializing the target WT’s NBM with the thus trained CNN and its weights. Unlike
strategy 1, however, all weights of all layers have been retrained on the target WT’s
training set.

Strategy 2

Source
domain

T
ra

n
s
fe

r

To be retrained

Retrained

Data

Target
domain

Figure 7. Strategy 2 for training a NMB for fault detection tasks on a target WT.

Strategy 3 of Figure 8 involves training the model on the source WT and transferring
and applying the trained model to the target WT data without any modifications. In more
detail, a NBM has been trained on the source WT’s data as discussed above. The trained
model has been then applied to the test data of the target WT without any retraining or any
other customization to the target WT. So no condition monitoring data from the target WT
were used as part of the training or validation according to strategy 3.
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Strategy 3

T
ra

n
s
fe

r

Source
domain

Data

Target
domain

No retraining

Figure 8. Strategy 3 for training a NMB for fault detection tasks on a target WT.

Strategy 4 of Figure 9 shows that the NBM is trained from scratch on the merged
SCADA training data-sets from the source and the target WTs. In particular, this strategy
has provided that the SCADA data of the source and the target WTs have been combined
prior to the NBM training. A CNN has been trained on the merged data-set of source and
target WT SCADA data. The trained NBM has then been tested on the target WT.

Strategy 4

Training from scratch

Source
domain

Source and
target data

Target
domain

Training from scratch

Figure 9. Strategy 4 for training a NMB for fault detection tasks on a target WT.

Finally, strategy 5 of Figure 10 involves training a NBM from scratch on the scarce
training data-set of the target WT and not to make use of the NBM or of the training data
from the source WT. In more detail for this strategy, no SCADA data or other information
from the source WT have been used in the training of the target WT’s NBM. Thus, training,
validation and testing have been performed from scratch on the SCADA data of the target
WT. The performance of each strategy has been measured in terms of the Root Mean Square
Error (RMSE) of the trained NBM on the target WT test-set.

Strategy 5

Target
domain

Data

Training from scratch

Figure 10. Strategy 5 for training a NMB for fault detection tasks on a target WT.

RETRACTED



Energies 2023, 16, 3644 11 of 22

4. Simulation Results

SCADA data from six 3 MW onshore WTs were used for a case study in which
performances of the proposed TL strategies are also compared. Eight combinations of
source and target WTs were randomly selected from the six available WTs. The WTs
are commercially operated horizontal-axis variable-speed machines with pitch regulation.
Fourteen months of SCADA data were available from each WT. The SCADA data were
provided at 10 min resolution and computed as mean values over periods of ten minutes.
The location and observation time of the WTs are not disclosed to ensure the privacy of
the operator.

The SCADA target variables y1(t), y2(t), . . . , y7(t) to be monitored in the case study
considered in this work are provided in Tables 1 and 2 along with the SCADA features
x1(t), x2(t), x3(t) to estimate them.

Table 1. SCADA features.

SCADA Features xi(t)

Wind speed x1(t)
Wind direction x2(t)

Air temperature x3(t)

Table 2. SCADA monitored target values.

Monitored Target Variables yi(t)

Gear bearing temperature y1(t)
Hydraulic oil temperature y2(t)
Transformer temperature y3(t)
Active power generation y4(t)

Rotor speed y5(t)
Generator speed y6(t)

Current y7(t)

In particular, Table 2 reports the target variables yi(t) to be monitored and the features
xi(t) used for estimating the NBM based on which fault detection is performed. The
features comprise the 10 min mean wind speeds and wind directions measured at the
nacelle and the ambient air temperatures. The wind speed is the main predictor of the
target variables. Wind speed and air temperature are also relevant features to account
for the environmental conditions, including wake effects and air pressure changes. The
ambient temperature serves as an imperfect proxy of the air pressure in this study because
air pressure measurements were not available from the WTs.

It should be noted that the experimental data represent a large SCADA database of
the six WTs investigated in this work. As previously stated, these data are generated by the
WTs’ SCADA and gathered using an Open Platform Communications (OPC) protocol in
accordance with IEC 61400-25 standards [61]. As a result, the data are formatted to include
WT status, which is represented by logical variables, as well as the obtained measurements
of physical systems or subsystems. Events as well as statistical indicators are documented.
Tables 1 and 2 summarize the sensor store values. In addition, the minimum, maximum,
mean, and standard deviation values are obtained. As a result, the database includes
equivalent variables from the various sensors. The events in the database were initially
labeled with ‘0’ to indicate normal operation and ‘1’ to indicate warning or alert states (the
turbine must be diagnosed or stopped in this instance). Alarms are quite rare in any wind
turbine databases because the turbines are usually operational. An alarm may be generated
if a warning is not appropriately checked and addressed. As a result, warning and alarm
circumstances are merged in the database, reducing the problem to a two-class scenario
(normal operation and fault condition). The purpose is to predict when a WT will begin
working with possible issues, resulting in a warning or alarm condition. The variables
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in Tables 1 and 2 are used in the experiments. Smartive (http://smartive.eu, accessed on
10 February 2023) supplied the database, which was used in other publications [62,63].
Because of the true nature of the data, the collection of SCADA variables has significantly
distinct dynamic ranges between them. As a result, a pre-processing phase is required. To
accomplish this, the data is normalised by subtracting the mean value from each variable
and dividing the result by the standard deviation of that variable. The values of means and
standard deviations are saved since they are required to perform further denormalisations
of the data and proceed with the defect identification task, which will not be covered in
this work.

Once the SCADA data are normalised, this ensures that all features have a similar
order of magnitude and to enable a fast model training. Then, the data of the source and
target WTs were each split into training, validation and test sets, with 20% of both data-sets
used as the respective test sets and 10% as validation sets. The same split was applied for
training and testing all five strategies and models compared in this study.

It is worth observing also that the SCADA features xi(t), such as wind speed and air
temperature reported in Tables 1 and 2 are inherently included in the target data, since
the wind turbine control system regulates the wind turbine outputs by monitoring these
variables, as described in [64].

The SCADA features served as input to train a NBM to provide estimates ŷ1(t), ŷ2(t), . . . ,
ŷ7(t) of the target variables. A multi–target Convolutional Neural Network (CNN) model
f was trained to this end. The WTs’ normal operation behaviour was modelled with a CNN
to capture the time dependence of the WT operation patterns. Sequences with a length of
144 time steps corresponding to a 24 h period were created from the normalised time series
as input to the CNN. Thus, the CNN predicts the target values based on a sequence of past
operation states rather than on same-time observations only. The input data corresponded
to 144 time steps by three input variables and a moving window over the past 144 time
steps. The CNN was trained on the resulting sequences of the source WT’s training set to
compare strategies 1–5, as shown in Figures 6–10.

CNNs are artificial neural networks which comprise layers from which feature maps
are compiled by filters moving over the SCADA sequences with a convolution
operation [12,65]. Note that the architecture of the CNN was defined as part of a hyper-
parameter optimisation process in which a grid search was performed with regard to the
number of layers and layer sizes that resulted in the lowest validation set error. Architec-
tures with up to two convolutional and two dense hidden layers with different numbers of
neurons were compared to this end. A number of 4, 8 and 16 neurons were assessed in each
hidden layer, and convolutional filter sizes of 2 and 3 in the optimization process. The mean
squared error was chosen as a loss function for training the CNN and to compare the mod-
els’ performances. The resulting CNN architecture is composed of a convolutional layer
with 16 convolutional filters followed by a max pooling layer and a second convolutional
layer with 16 filters. The features thus extracted were passed to a dense hidden layer with
8 neurons connected to a dense output layer with seven neurons corresponding to the seven
target variables. The CNN was trained and optimized on the training and validation sets
of the source WT to establish a NBM of the source WT. The Adaptive Moment Estimation
(Adam) optimiser was employed for stochastic gradient descent [66]. The training was
conducted over 100 epochs with a batch size of 256 data.

The following TL strategies in this case study in accordance with Figures 6–10
were compared.

For strategy 1, the CNN NBM was trained and optimised on the source WT training
and validation sets as discussed above. The CNN NBM for the target WT was initialised
with the weights of the CNN trained on the source WT. Thus, the initial state of the target
NBM already comprised knowledge about the normal operation behaviour of a WT and the
covariance among the input and target variables even before the training on the target WT’s
training data started. Next, the weights of the two last layers of the CNN were retrained
on the 24 h sequences of the training set of the target WT. The last two layers were the
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two fully connected layers of the CNN with eight neurons in the hidden layer and seven
neurons in the output layer, as described above. The training was again performed with
100 training epochs and a batch size of 256.

Strategy 2 involved a CNN NBM to be trained and optimised on the source WT
training and validation sets followed by initializing the target WT’s NBM with the thus
trained CNN and its weights. Unlike strategy 1, however, all weights of all layers were
retrained on the target WT’s training set.

According to strategy 3, a CNN was trained as the NBM on the source WT’s data
as discussed above. The trained model was then applied to the test data of the target
WT without any retraining or any other customization to the target WT. So no condition
monitoring data from the target WT were used as part of the training or validation according
to strategy 3.

Strategy 4 provided that the SCADA data of the source and the target WTs were
combined prior to the NBM training. A CNN was trained on the merged data-set of source
and target WT SCADA data. The trained NBM was then tested on the target WT.

According to strategy 5, no SCADA data or other information from the source WT
were used in the training of the target WT’s NBM. Thus, training, validation and testing
were performed from scratch on the SCADA data of the target WT. The performance of
each strategy was measured in terms of RMSE of the trained NBM on the target WT test set.

An issue of particular interest was how the five strategies compare for various amounts
of training data from the target WT. The performances of the five strategies were compared
for a range of scarce training set sizes of the target WT in the case study. To this end, a
randomly selected source WT was selected from among the six WTs and the transfer to
four of the other WTs was investigated. Each of these target WTs was randomly selected in
turn to serve as the respective target WT.

Figures 11a,b and 12a,b show how the performance of the NBMs trained in accordance
with each of the five strategies vary with the size of the training data-set of the target WT.
Training set sizes of the target WT between 0.3 and 11 months were investigated.

In particular, Figures 11a,b and 12a,b summarise the accuracy of the NBM trained for a
randomly selected source WT and four randomly selected target WTs for varying amounts
of target WT training data. Each graph of Figures 11a,b and 12a,b corresponds to a different
target WT.

Subsequently, this process was repeated by randomly selecting another source WT
and four target WTs from among the six WTs, and then training the NBMs for varying
amounts of target training data. The accuracy of the NBMs resulting from the five learning
strategies are shown in Figure 13a,b, as well as Figure 14a,b for target WT training set sizes
of between 0.3 and 11 months.

In particular, Figure 13a,b, as well as Figure 14a,b depict the accuracy of the NBMs
trained for another randomly selected source WT, which are different from the ones in
Figures 11 and 12. In this case, four randomly selected target WTs for varying amounts of
target WT training data. Each subfigure corresponds to a different target WT.

A separate CNN NBM was trained for each strategy and for each of the considered
training set sizes. Random sampling of the source and target WTs were applied to assess
eight combinations of source and target WTs instead of evaluating all 30 possible combi-
nations. The sampling of eight out of 30 pairs of source and target WTs was performed
due to the significant computational cost of the analysis. Each subfigure of Figures 11–14
amounted to training, validation and testing 55 separate CNNs, which corresponded to
several hours of run time on an standard medium performance PC.RETRACTED
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RMSE

Target training data (months)
(a)

RMSE

Target training data (months)
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Figure 11. NBM accuracy for two of four randomly selected source WTs.

RMSE

Target training data (months)
(a)

RMSE

Target training data (months)
(b)

Figure 12. NBM accuracy for two of four randomly selected source WTs.
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Figure 13. NBM accuracy for two of four different randomly selected source WTs.
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(a)

RMSE
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Figure 14. NBM accuracy for two of four different randomly selected source WTs.
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In order to summarise the overall performance of the proposed strategies, Table 3
reports the accuracy of the considered algorithms, when their modelling capabilities are
considered. The modelling accuracy is evaluated as mean relative percentage error between
the measured and reconstructed outputs. The standard deviation is also indicated.

Table 3. Accuracy and standard deviation values of the algorithms.

Modelling Method Modelling Accuracy Standard Deviation

Strategy 1 99.89% ±0.27%
Strategy 2 98.78% ±0.34%
Strategy 3 98.05% ±0.66%
Strategy 4 97.68% ±0.62%
Strategy 5 96.33% ±1.39%

The proposed solutions were also verified and validated by considering more tradi-
tional (without TL) or different approaches (with TL) available in the related literature, see,
e.g., [11]. Therefore, to compare the performance of the strategies proposed in this work and
identify the effect of advantages and drawbacks with respect to different schemes, a Classic
DL (CDL) method and Network–Based TL approach (NBTL) have been implemented. The
NBTL method is inspired by the procedure proposed in [22], where trained weights of
the source Deep Neural Network (DNN) model are passed to the target DNN model. The
used DL method is the baseline traditional ML method without TL and DNN trained on
target machine data without any prior knowledge. Furthermore, the state-of-the-art TL
methods were validated on data-sets with a limited number of source domain training
samples because they were lacking the ability to avoid the negative transfer. Moreover, to
validate the proposed approaches on the state-of-the-art methods (CDL and NBTL) and
demonstrate the true potential of the proposed strategies, experiments with scarce training
samples have been considered.

Additionally, in this case, Table 4 summarises the performance of the considered
schemes when the modelling capabilities are evaluated. For each approach, the modelling
accuracy provided by the different DL and TL methodologies is computed in terms of
mean relative percentage error between measured and reconstructed outputs. The standard
deviation is also evaluated.

Table 4. Modelling accuracy and standard deviation values of the considered solutions.

Modelling Method Modelling Accuracy Standard Deviation

CDL 82.35% ±1.04%
NBTL 91.56% ±0.77%

Strategy 1 99.24% ±0.19%
Strategy 2 98.34% ±0.20%
Strategy 3 97.65% ±0.57%
Strategy 4 96.60% ±0.51%
Strategy 5 94.48% ±1.20%

The results of all seven methods are summarised in Table 4, when no TL occurs (CDL)
or if the knowledge is transferred from scarce source samples (NBLT and strategies 1–5).
The detailed results for all methods are thus provided in Table 4. In particular, the mean
and the standard deviation values are calculated over 100 repeated experiments, and the
improvement is observed with the strategies 1–5, with respect to CTL and DBTL. The CTL
method observes notable deterioration, whilst NBTL shows quite consistent results with
strategy 5. Therefore, the improvement from the base case CDL method is quite interesting
when compared with the NBTL method, but significant if strategies 1–5 are also considered.
It can be concluded that the results of this experimental analysis indicate an excellent
performance of the proposed strategies 1–5. They outperform conventional DL and more
complex DL approaches, such as NBTL.
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Finally, with reference to the algorithmic complexity, it depends on the complexity
of the CNN models. Given the high variability within each class and high similarity
between certain data classes, an appropriately large number of convolutional layers and
fully connected dense layers are needed to be able to accurately distinguish between the
four classes. The model consists of a series of alternating 2D convolutional layers and
max-pooling layers. The final two layers consist of fully connected dense layers. The first
dense layer consists of 64 dimensions and the second layer consists of four dimensions
representing the four classes. The highest value of the final dense layer, which consists
of a 1D array of length 4, indicates the prediction of that model for given pattern and
target data.

The models were trained for about 200 epochs with a learning rate of 0.0005. Slow
learning was preferred in these models due to their complexity. Slow learning also allowed
for size constriction within the models, as previous attempts in the training process with a
faster learning rate required significantly larger models to achieve comparable results.

Using smaller models was thus found to be more resource, memory, and time-intensive.
The resulting model consisted of 60,772 trainable parameters, which is 99.78% smaller than
the average number of parameters of the models with TL.

5. Final Discussion and Remarks

The results show that the TL schemes (strategies 1 and 2) drastically improved the
accuracy of the NBMs for fault detection tasks with scarce target training data when
compared to strategies 3 and 5. The latter ones are referred as naive strategies in the
sense that they only use either the operation knowledge of the source WT or the scarce
operation knowledge of the target WT. Strategy 3 involves training a NBM on the source
WT and applying that model to the target WT without any modifications. Strategy 3 can be
considered a simple TL strategy because the NBM is directly transferred and applied to the
target WT without any customisation. This strategy provides a constant NBM accuracy on
the target WT as the model training does not involve any SCADA data from the target WT.
Strategy 5 provides that a NBM of the target WT is to be trained from scratch on the scarce
training data of the target WT.

As highlighted in Figures 11–13, this strategy performs by far the worst among all
investigated strategies in case of scarce target WT data. It results in the lowest NBM
accuracy on the target WT test set. The scarcer the target training data, the worse the
performance of strategy 5 in absolute and relative terms compared to the other strategies.
With increasing amounts of target WT training data, the performance of strategy 5 starts to
approach the performances of the other four strategies and to converge with them at about
8–10 months of target WT training data. At the same time, applying the source WT model
without modifications (strategy 3) tends to be outperformed by the other four strategies
at these target WT training data sizes. This is because strategy 3 is the only strategy that
does not consider any operational data from the target WT in the target NBM training. This
reduces its performance relative to the other strategies when more and more target WT
training data become available.

The study also highlighted that strategies which make use of the combined operational
knowledge from both the source and target WTs outperform the naive strategies 3 and 5.
The performance of TL strategies 1 and 2 and of strategy 4 tends to increase with larger
amounts of target WT training data, as expected. If training data are scarce, the naive
strategies 3 and 5 result in lower NBM accuracy and, therefore, in larger fault detection
delays in the target WT than the other strategies. The latter also include strategy 4 which
requires the NBM training to be performed on the combined training sets of the source and
target WTs. Strategy 4 achieves similar NBM accuracy and, thus, similar fault detection
delays as strategies 1 and 2, and thereby clearly outperforms the naive strategies. Transfer
learning strategies 1 and 2 perform very similarly, with strategy 1 (retraining the last layers
only) being moderately outperformed by strategy 2 (retraining all layers) in the case of
more dissimilar source and target WTs as measured by the accuracy of the NBM trained
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following strategy 3. Strategies 3 and 4 converge towards identical training data-sets and,
thus, the same degree of accuracy as the size of the target WT training set is decreased.

The main research issues investigated in this work concern the following issues. The
re–use and the transfer operational knowledge across WTs. The effect of this procedure on
the performance of fault detection models with respect to the target WT. The improvement
of the accuracy provided by TL for the case of SCADA–based fault detection when scarce
target WT training data compared to training from scratch, and if so, the varying of the
accuracy improvement with respect to the size of the target WT training set. The effect
of one-fits-all NBM used for fault detection relatively to a NBM customized to the target
WT. These topics were analysed by considering five knowledge transfer strategies and
investigated in six commercial multi–MW WTs.

The major advantages of TL that were demonstrated in other fields include its ability
to enable the training of models for the target system even if few or no training data are
available for that system [52]. Hence, less training data are required and more accurate
model predictions can be given with the scarce training data. The work confirmed these
advantages in the performed case study. Comparing the performances of our five proposed
strategies, it was found that the TL strategies 1 and 2 and strategy 4 which involves training
on the combined source and target data outperform the naive strategies 3 and 5. Thus,
strategies that make use of the combined operational knowledge available from both the
source and the target WTs outperform the naive strategies in case of scarce training data of
the target WT. Strategies 3 and 5 make use of training data from only the source or the target
WT, which results in less accurate normal behaviour models and larger fault detection
delays when target WT training data are scarce. It was demonstrated that operators
and asset managers can overcome a lack in representative training data by re–using and
transferring operational knowledge across WTs by adopting the proposed TL strategies 1
and 2 or strategy 4. Therefore, knowledge transfer across WTs can drastically improve the
accuracy of SCADA-based normal behaviour models and fault detection, thus, reducing
fault detection delays in the case of scarce target WT training data. This improvement is
particularly pronounced when compared to training a NBM from scratch on the scarce
target WT training data. In fact, the scarcer the target WT training data, the more strongly
strategies 1, 2 and 4 outperform the training from scratch on the target WT (strategy 5).
NBMs trained with strategies 1, 2 or 4 also tend to outperform one-fits-all NBMs trained on
the source WT and applied to the target WT without modifications (strategy 3).

Even though SCADA data from the source WT tend to provide only an imperfect
description of the NBM of the target WT, they are plentifully available and can be used
to train a more accurate NBM for the target WT in case of scarce training data. The
results demonstrated that even small amounts of target WT training data can be applied
beneficially to fine-tune and improve the performance of the NBM of the target WT. It
was also found that a NBM should be customized for each individual WT. A one-fits-all
NBM for all WTs in the wind farm (strategy 3) and training from scratch despite lack of
training data (strategy 5) are the worst performing ones of the five compared strategies.
The developed knowledge transfer strategies facilitate the early fault detection in WTs with
scarce SCADA data. Thereby, they help to improve the up-time of WT fleets by facilitating
earlier and more informed responses to unforeseen maintenance actions, in particular for
target WTs with limited availability of past condition monitoring data.

Finally, it is worth highlighting the overall key achievements and results gained
from this study. Implementing machine learning and deep learning algorithms for WT
FD based on SCADA data can represent a relevant opportunity to reduce the operation
and maintenance costs of wind farms. The development of practically implementable
algorithms requires addressing the issue of their scalability to large wind farms. Two
of the main challenges here are reducing the training times and enabling training with
scarce or limited data. Both of these challenges can be addressed with the help of TL
methods, in which a base model is trained on a source WT and the learned knowledge is
transferred to a target WT. This paper has suggest different TL frameworks also designed
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to transfer a FD task between turbines. As a reference model, DL structures have been
proven to perform well on the single turbine FD task. The TL frameworks have been
tested for transfer between WTs from the same farm, and possibly from different farms.
It is concluded that for the purpose of scaling up training for large farms, a simple TL
approach basically representing a transformation of the target predictions is an attractive
high performance solution. For the challenging task of TL based on scarce target data, it
is shown that the considered TL frameworks can outperform other methods. The scheme
can be also extended in order to enable the evaluation of different TL frameworks for FD
without the need for labeled faults, even if this point requires further investigation.

6. Conclusions

Data-driven fault detection in wind turbines requires sensor data that are representa-
tive of the past and present normal operation behaviour of the monitored turbines. Such
data are often unavailable, for example, after the commissioning and in the first months of
operation of the turbines, but also after major turbine updates. Fault detection models can
barely be trained under these conditions. To overcome these limitations, the paper proposed
and demonstrated the re-use and transfer of knowledge about normal operation behaviour
from turbines with sufficient training data to turbines with scarce samples. Therefore, the
paper showed that transfer learning between wind turbines from the same wind farm was
possible via a simple and computationally efficient approach using deep learning. This
framework could be therefore used to scale up the training of large wind farms by training
on one source wind turbine only instead of individually on each turbine. Moreover, the
developed strategy was able to outperform other frameworks including different deep
learning schemes. On the other hand, these algorithms outperformed training from scratch
with limited data of the target turbine. In this way, the suggested methodology could
also be exploited for evaluating and comparing if transfer learning approaches is possible
even in the absence of labelled faults, if the reference or normal behaviour model for fault
detection was defined. It was thus concluded that transfer learning algorithms enabled
scalable and reliable fault detection for wind turbines based exclusively on supervisory
control and data acquisition devices. Future studies will investigate transfer learning
strategies for varying degrees of operational similarity between machines of the same fleet
and across different fleets. Moreover, transfer learning strategies might be employed to
reduce the amount of data storage needed for condition monitoring tasks. Future studies
should also investigate this use case in more detail. Another important open problem that
will be pursued in the future is the challenge of optimizing the goodness of transfer by
an appropriate selection of the source turbine. The results seem very encouraging, but
determining how to select the optimal source wind turbines for the knowledge transfer of
machine health monitoring tasks will be also investigated.
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