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Abstract: In order to accurately calculate the geometric characteristics of the twin-screw compressor
and obtain the optimal profile parameters, a calculation method for the geometric characteristics of
twin-screw compressors was proposed to simplify the profile parameter design in this paper. In this
method, the database of geometric characteristics is established by back-propagation (BP) neural
network, and the genetic algorithm is used to find the optimal profile design parameters. The effects
of training methods and hidden layers on the calculation accuracy of neural network are discussed.
The effects of profile parameters, including inner radius of the male rotor, protection angle, radius of
the elliptic arc, outer radius of the female rotor on the comprehensive evaluation value composed of
length of the contact line, blow hole area and area utilization rate, are analyzed. The results show
that the time consumed for the database established by BP neural network is 92.8% shorter than
that of the traditional method and the error is within 1.5% of the traditional method. Based on the
genetic algorithm, compared with the original profile, the blow hole area of the screw compressor
profile optimized by genetic algorithm is reduced by 54.8%, the length of contact line is increased
by 1.57% and the area utilization rate is increased by 0.32%. The CFD numerical model is used to
verify the optimization method, and it can be observed that the leakage through the blow hole of the
optimized model is reduced, which makes the average mass flow rate increase by 5.2%, indicating
the effectiveness of the rotor profile parameter optimization method.

Keywords: screw compressor; geometric characteristics; genetic algorithm; BP neural network

1. Introduction

With the development of industry and society, the problems of excessive energy con-
sumption and environmental pollution have become increasingly prominent [1,2]. Relevant
research shows that industrial energy consumption accounts for about 40% of electric en-
ergy consumption [3]. Therefore, reducing the energy consumption of industrial systems is
of great significance for reducing energy consumption. As an industrial general machinery,
improving the energy utilization rate of compressors is an important way to reduce energy
consumption [4]. As the main component of gas compression, the twin-screw compressor
is widely used in refrigeration, battery and other fields because of its simple structure, high
reliability and exhaust pressure not limited by outlet pressure [5]. As the main parameter
of twin-screw compressors, rotor geometric characteristics play an important role in the
performance evaluation and optimization of twin-screw compressors [6].

In 1958, Frank Rosenblatt proposed the use of neural networks to identify and analyze
the calculated database. Gan et al. [7] combines RBF neural network response surface and
NSGA-II algorithm to propose a multi-objective optimization method for low noise design
of multi-stage orifice plates. Wang et al. [8] used an artificial neural network for lithiumion
battery temperature prediction which compared three neural network modeling techniques.
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Justin et al. [9] has used deep learning to develop partial differential equation (PDE) models
in science and engineering.

In 1975, Professor Holland [10] from the University of Michigan first proposed the GA
algorithm. He applied the principle of survival of the fittest in genetics to computational
iteration and selected the best condition points by selection, crossover and mutation. Com-
pared to particle swarm optimization and evolutionary algorithms, genetic algorithms have
better global exploration capabilities, allowing all examples to move towards the optimal
solution. Hernandez et al. [11] proposed an effective optimization design method com-
posed of electromagnetic theory and intelligent algorithm, which can obviously promote
the utilization efficiency and stability of YBCO coated conductors. Ahmed et al. [12] used
an NSGA-II algorithm to optimize the design of GPU-3 Stirling engine. Wu [13] proposed a
hybrid intelligent framework combining random forest and non-dominant classification
NSGA-II to optimize shield construction parameters. Armin et al. [14] established an
isothermal one-dimensional model of a fixed-bed reactor for oxidative dehydrogenation of
propane over a V,0Os/graphene catalyst, for which multi-objective optimization of propy-
lene and COy yields was carried out. Erin et al. [15] examined the extent to which social
disconnectedness and perceived isolation have distinct associations with physical and
mental health among older adults. Ma et al. [16] selected three design variables related to
the geometry of the blade and volute, such that the total head, efficiency and solid particle
size of the pump were used as objective functions for parallel optimization. Sun et al. [17]
used three different machine learning models to construct the approximate functional
relationship between impeller solidity, stagger angle, skew and sweep parameters, and
target values. However, no one has applied it to the screening of screw profiles. Li et al. [18]
couples and clarifies NSGA III and SVM, and applies them to the whole machine MAP
optimization. Researchers have also used other methods to optimize the profile parameters.
Wu and Fong [19] used the SUMT (sequential unconstrained minimization technique)
method to study parameters of the rotor profile optimization and non-undercut limits.

Due to the complexity of its structure, the characteristics of a screw compressor are
not only affected by the basic laws of thermodynamics, but also by the production process
and device structure, which makes it difficult to establish a high-precision simulation
model [19]. Most of the simulation studies of twin-screw components focus on water
injection lubrication [20], oil injection [21], rotor clearance [22], noise reduction [23], etc.,
and there are few detailed parametric analysis studies on the profiles.

For the twin-screw compressor, the traditional optimal profile parameter search calcu-
lation method is time-consuming and difficult to calculate. In this paper, a profile parameter
optimization method was proposed, in which back-propagation (BP) neural network is
used as data prediction and genetic algorithm as optimization. The purpose is to propose
an accurate calculation method for the geometric characteristics of a twin-screw compressor,
which makes the design of profile parameters more convenient. Firstly, the neural network
model of geometric characteristics of a twin-screw compressor with the highest calculation
accuracy is determined to predict the geometric characteristics of screw compressor quickly.
Secondly, the comprehensive value of contact line length, leakage triangle size and area
utilization coefficient are used as the evaluation index to find the optimal profile design
parameters. Finally, the simulation software is used to compare the calculated parameters
to verify the accuracy of the model.

2. Two-Screw Compressor Geometric Characteristics
2.1. Profile Parameters

Taking the Gute-Hoffnungs-Huette (GHH) modified profile as an example, after
determining the line segment composition of the rotor profile and the number of rotor teeth,
the geometric characteristics of the profile depend on several key parameters, including the
pitch radius of the female rotor (R;), the inner radius of the male rotor (R;), the outer radius
of the female rotor (R,), the protection angle (0), the screw lead (), radius of the elliptic arc
(a), etc., as shown in Figure 1a.
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Figure 1. Twin-screw rotor (a) End face diagram (b) Stereogram.

2.2. Calculation Method of Geometric Characteristics

The length of the contact line (L) refers to the spatial curve formed by the contact
between the tooth surfaces of the two rotors when the rotor is engaged, as shown in the
blue line segment in Figure 1b. The expression is:

n
L= \/(xi —xi31)? + (Wi — yir1)* + (21 — zi1)’ 1)
i=

In the formula, x;, y;, z; represents the curve parameter equation.

The blow hole area (Ay) refers to the triangular leakage channel between the top of
the contact line and the cylinder when the vertex of the contact line fails to reach the
intersection line of the cylinder holes of the male rotor and female rotor. It is represented
by the yellow line segment in Figure 1b. The expression is:

tit1
Ab://t‘ lyi'x; — xi'y;|dtdZ,, ()

In the formula, Z;, represents the leakage surface, x;’, ;" represents the derivative of
the curve equation to the parameter, and f; and t; ; | represent the starting point and end
point parameters of the curve.

The area between teeth (A) refers to the gas area that can be accommodated by a single
male rotor and female rotor tooth on the end surface, which is surrounded by multiple
smooth curves and the head and tail of the tooth top arc, as shown in the orange area of the
male rotor and female rotor in Figure 1a. The expression is:

i tivq
A= ;0-5/t_ vi'x; — xiyi]dt ®)

Area utilization rate (Cj) refers to the utilization degree of the total area within the
range of rotor diameter. The expression is:

Z1(A1 + Az)
Cn = T 4)
In the formula, Z; represents the number of teeth of the positive rotor, D; represents
the diameter of the positive rotor, and A; and A; represent the volume between the teeth of

the positive rotor and the negative rotor, respectively.

2.3. Optimization Procedure

In this paper, the modified GHH profile is used as the optimization object, and the
BP neural network is used to establish a rapid calculation data model of the geometric
characteristics of the twin-screw compressor. The genetic algorithm is used to find the
optimal design parameters under different operating conditions. The simulation model
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is used to verify the influence of the optimized profile on the rotor operation, and the
effects of the profile parameters on the screw seal and volume characteristics are calculated
and analyzed. In this process, the influence of the number of hidden layer neurons and
the training function on the accuracy of geometric feature calculation is analyzed, and
the influence of parameters such as population number and iteration number on the
convergence of genetic algorithm is analyzed. In this paper, the BP neural network model
and genetic algorithm model code written by MATLAB software are used to realize rapid
calculation of geometric features and optimization of profile parameters, as shown in

Figure 2.
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Figure 2. The flow chart of genetic algorithm rotor optimization based on BP neural network.
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3. Discrete Point Number Independence Verification

By comparing the profile results obtained under different discrete points and time steps
with the profile results generated by SolidWorks software, the accuracy of the mathematical
model calculation is verified. The tooth profile parameters of the control group are shown
in Table 1.

Table 1. Type line input parameters.

Parameter.

V4

VA R, (mm) R;(mm) 6(°) R, (mm) a (mm) T (mm)

Value

5 50 24 0 1 12 300

Profiles were generated with the discrete point numbers of 600, 1200, and 2400. Profile
parameters and computation time were obtained and compared to choose the relatively
optimal discrete point number, as shown in Table 2. As the number of point coordinates
of the drawn profile increases, the calculated geometric feature error is smaller. However,
when the number of point coordinates increases from 1200 to 2400 and from 2400 to 3600,
the calculation time increases by two times but the calculation error decreases by 1.5%
and 0.6%, respectively. Considering the influence of calculation time and calculation error,
2400 points are selected as calculation parameters.

Table 2. Results of discrete point number independence verification.

PaI;l::rflll:er Calculation Specification Value De‘(/;/e:;mn
600 176.64 0.56
Discrete 1200 175.65 0.00
L (mm) point number 2400 175.65 0.00
3600 175.65 0.00
Results from SolidWorks 175.65 /
Discrete 600 29124 —5.72
point number 1200 3.0213 —2.19
Ay (mm?) 2400 3.0698 —0.62
3600 3.0851 0.002
Results from SolidWorks 3.089 /
Discrete 600 0.45679 0.02
. 1200 0.45674 0.00
Cn point number 2400 0.45673 0.00
3600 0.45672 0.00
Results from SolidWorks 0.45672 /
600 95.91 /
Calculation Discrete 1200 110.11 /
time (s) pointnumber 2400 349.86 /
3600 1079.34 /

4. BP Neural Network

In this paper, the BP neural network [24] is used to train the data set, including four
input parameters: the inner radius of the male rotor (R;) from 20 to 26 mm, the outer radius
of the female rotor (R,) from 0 to 2 mm, the protection angle (6) from 0 to 10° and the radius
of elliptic arc (a) from 8 to 12 mm; and three output parameters: blow hole area (A}), length
of the contact line (L) and area utilization rate (Cy).

The reliability of the trained neural network is verified by interpolation and extrap-
olation. Data interpolation can test the predictive ability of neural networks within the
training range. Data extrapolation can reflect the predictive ability of neural networks
outside the training range.
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4.1. Parameter Definition of BP Neural Network

The total number of samples in the model is 2485. The 2236 samples were selected as
the training sets. The 249 samples were randomly selected from the training samples as the
interpolation set. The remaining 249 untrained samples were used as the extrapolation sets.
Because the input packet array is small and the values of geometric features are relatively
close, when only one mathematical model is established, the training effect is poor and
the calculation is prone to large errors. Therefore, three separate BP neural networks are
trained to predict blow hole area (Ap), length of the contact line (L) and area utilization rate
(Cn) under different profile parameters.

Therefore, three separate BP neural networks are trained to predict blow hole area
(Ap), length of the contact line (L) and area utilization rate (C,) under different profile
parameters. According to the empirical formula, the number of hidden layers is calculated

as follows:
M+ N

<H<M+N+10 (5)

In the formula, M represents the number of input neurons, N represents the number
of output neurons and H represents the number of hidden neurons.

In order to evaluate the accuracy of the calculated network, mean square error (MSE)
and goodness-of-fitting index (R) are used as performance evaluation indicators. The
calculation formula is:

MSE = f (ki — ki’)zx% 6)
1
n 2
Y (k" — ki)
R= -~ 2 @)
;(ki —ki’)

In the formula, k represents the sample value, k;” represents the average value of the
sample and k;” represents the predicted sample value. n represents the number of samples.

4.2. Effects of Number of Hidden Neurons and Training Method on the Prediction Accuracy

Based on the Equation (5), the number of hidden neurons is determined to be eight
to 18, and training is performed within this range to select the optimal number of nodes.
For the training model, this paper considers three methods, the Levenberg-Marquardt
method, the Bayesian regularization method and the Quantized conjugate gradient method.
They use trainlm function, trainbr function and trainscg function as training functions,
respectively. This is because the size of the problem type represented by the data is not clear
before calculation. The trainscg function suitable for large problems, the trainlm function
suitable for medium problems and the trainbr function suitable for small problems are
selected, respectively. They have the advantages of high memory efficiency, fast calculation
speed and wide application range, respectively. The calculation results are shown in Table 3.

In order to reduce the contingency of BP neural network calculation, each group of
parameters was calculated 10 times. Five groups of data with the closest calculation results
were selected from 10 groups of data. The average of these five sets of data is used as the
calculation result.

It can be seen from Table 3 that for the neural network that calculate the blow hole area,
the goodness-of-fitting index (R) increased, while the mean square error (MSE) decreased
when the number of hidden neurons (H) increased. The Bayesian regularization method is
more accurate than the other two methods. When H is 16, the model trained by the Bayesian
regularization method has the highest calculation accuracy. For the neural network that
calculate the length of contact line, the calculation accuracy is independent of H. The
calculation accuracy of the three methods is similar. The Levenberg-Marquardt method has
the highest calculation accuracy when H is 16, the Bayesian regularization method has the
highest calculation accuracy when H is 16, and the quantitative conjugate gradient method
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has the highest calculation accuracy when H is 12. For the neural network that calculate
the area utilization rate, the calculation accuracy is independent of H. Among them, the H
is 16, while the model trained by Bayesian regularization method has the best calculation
accuracy.

Table 3. Effects of training method and number of hidden neurons on calculation results.

Parameter H=8 H=12 H=16

MSE R MSE R MSE R

Training 1.3 x 1073 0.67 1.9 x 1073 0.60 1.1 x 1073 0.71
L-m Interpolation 4.1 x 1073 0.46 3.0 x 1074 0.87 3.0 x 1074 0.89
Extrapolation 5.0 x 10~* 0.83 6.0 x 1074 0.78 5.0 x 1073 0.47
Training 2.0 x 10~* 0.95 2.0 x 1074 0.96 59 x 1074 0.98
Ap/mm? B-r Interpolation 1.5 x 1073 0.85 1.0 x 1073 0.96 8.7 x 1074 0.93
Extrapolation 4.3 x 102 0.19 52 % 1073 0.26 3.6 x 1073 0.84
Training 1.6 x 1073 0.53 21 x1073 0.56 14 x 1073 0.63

Q-c-g Interpolation 5.3 x 1073 0.48 4.0 x 1074 0.79 5.0 x 1074 0.81
Extrapolation 7.0 x 1073 0.70 4.0 x 1074 0.80 4.7 x 1073 0.43
Training 14 x 1073 0.64 1.8 x 1073 0.62 14 x 1073 0.66
L-m Interpolation 1.0 x 10~* 0.93 1.0 x 1074 0.95 42 x 1073 0.52
Extrapolation 4.8 x 1073 0.46 7.0 x 1074 0.79 1.0 x 1074 0.93

Training 1.1 x 1073 0.70 1.4 x 1073 0.69 1.0 x 1074 0.99

L/mm B-r Interpolation 9.0 x 10~* 0.83 22 %1073 0.75 6.0 x 1074 0.88
Extrapolation 4.7 x 1073 0.50 1.0 x 1073 0.71 1.3 x 1073 0.66
Training 1.6 x 1073 0.58 1.5 x 1073 0.60 2.0 x 1073 0.56

Q-c-g Interpolation 2.0 x 104 0.89 55 x 1073 0.38 7.0 x 1074 0.72
Extrapolation 5.5 x 1073 0.40 2.0 x 1074 0.90 4.0 x 1074 0.81

Training 7.6 x 1073 0.69 1.2 x 1072 0.56 1.8 x 1073 0.93

L-m Interpolation 1.2 x 1073 0.85 1.4 x 1073 0.60 1.0 x 1074 0.98
Extrapolation 1.1 x 102 0.60 21 %1078 0.54 2.0 x 107* 0.99
Training 1.1 x 1073 0.96 4.0 x 1074 0.98 1.0 x 1073 0.96

Cn B-r Interpolation 2.4 x 1073 0.87 1.5 x 1073 0.91 33x1073 0.85
Extrapolation 5.3 x 103 0.38 6.9 x 1073 0.90 54 x 1073 0.64

Training 1.1 x 1072 0.24 1.3 x 1072 0.32 1.3 x 1072 0.29

Q-cg Interpolation 3.5 x 1073 0.32 1.2 x 1072 0.41 6.7 x 1073 0.43
Extrapolation 4.2 x 1072 0.22 1.3 x 1072 0.08 1.2 x 1072 0.25

Three groups of models with the highest calculation accuracy were selected to establish
a complete geometric feature BP neural network. Compared with the original calculation
program, the calculation time is changed from 50 s to 3.6 s, which saves 92.8% of the
time, and the calculation error is within 1.5%, which meets the accuracy requirements in
engineering calculation.

5. Configuration Optimization

The four parameters of the inner radius of the male rotor (R;), the outer radius of the
female rotor (R,), the protection angle (9) and the radius of elliptic arc (a) are selected as
optimization parameters. The fitness function is used as the evaluation criterion to find
the optimal design parameters, and the effects of different population numbers, iteration
times, crossover operators and mutation operators on the iterative convergence speed are
analyzed. The fitness (F) function expression as the evaluation criterion is:

F=Icx —+4+1Iy X — 414 X
¢ Cnc L 0 A Abc

®)

In the formula, I¢, I} and I4 represent the effects coefficient of area utilization rate,
length of contact line and blow hole area, respectively. Cy, L; and Ay represent area
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utilization rate, length of contact line and blow hole area of treatment group, respectively.
Apo, Cno and L, represent area utilization rate, length of contact line and blow hole area of
optimization group, respectively.

The GHH correction profile of five—six teeth is selected as the optimization object.
Before screening the optimal parameters, it is necessary to define the upper and lower
limits of the parameters and the step size definition as shown in Table 4.

Table 4. Control group parameters and population variation range table.

Parameters Upper Lower Step
R; (mm) 26 20 1
Ro (mm) 0.2 1 0.2

6 (°) 0 2 0.1
a (mm) 8 12 1

5.1. Parameter Definition of Genetic Algorithm

There are more than 2000 different parameter groups in the whole population. Firstly,
the number of initial populations and the number of iterations that have a great effect on
the speed of iterative convergence are discussed, followed by the crossover operator and
the mutation operator. The population size (ps) is 50, the number of iterations (1;) is 10, the
crossover operator (O.) is 0.4 and the mutation operator (Op,) is 0.2. Considering that the
three geometric features have a great influence on the rotor, the formula for calculating the
influence coefficient of the rotor evaluation is:

o Vimax — Vinin
I B Vmax+vmin (9)
2

In the formula, Vax is the maximum value of geometric characteristics and Viyiy, is
the minimum value of geometric characteristics. The effects coefficient of area utilization
rate (I¢) is 0.7, the effects coefficient of blow hole area (I5) is 0.14 and the effects coefficient
of contact line (I) is 0.16 by calculation.

5.2. Effects of Population Size and Number of Iterations on the Population

Considering that population size (ps) and number of iterations (1;) both have a greater
effect on population parameters, the data analysis is carried out at the same time.

Figure 3a shows that the optimal value (Oy) curve of the population gradually flattens
out when the population size (ps) increases and O, gradually reaches the theoretical optimal
value (TOy) when the number of iterations (#;) increases. When p; is less than 50, Oy of the
initial iterative population is quite different from the TOy. When #; is 10, Oy, reaches TOy
or the theoretical suboptimal value.

Figure 3b shows that the average value (Ay) curve of the population gradually becomes
gentle when the population size (ps) increases and Ay gradually decreases when the number
of iterations (1;) increases. When the p; is 20, the initial deviation is too large, but when ps r
is greater than 30, the population can achieve better calculation results.

By comparing the number of six populations, it is found that the increase in population
size (ps) helps to quickly find the theoretical optimal value (TOy). By comparing the
number of 10 iterations, it is found that the number of iterations (1;) is helpful to the overall
optimization of the population. In order to ensure the accuracy of the calculation and
considering that the calculation time is linearly positively correlated with the ps and n;, the
calculation in this paper will use ps is 50 and n; is 10 as the calculation data.
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Figure 3. Effects of population size and number of iterations on the population. (a) Optimal value of
population (b) Average value of population.

5.3. Effects of Crossover Operator and Mutation Operator on Population

Considering the randomness of crossover and mutation, the effects of crossover opera-
tor (O) from 0.1 to 1 and mutation operator (Or,) from 0.05 to 0.5 on population parameters
is analyzed.

Figure 4a shows that the optimal value (Oy) curve of the population and the average
value (Ay) curve of the population gradually approach the theoretical optimal value (TOy)
when the crossover operator (O.) increases. When O is 0.7, 0.8 and 0.9, Ay and Oy reach
TOy at the same time. However, when the O, is 1, the parameters of the optimal profile
group of each generation are destroyed, so that A, and Oy cannot reach TO,.
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Figure 4. Effects of population on crossover operator. (a) Optimal value and average value (b) Popu-
lation value.

Figure 4b shows that the population value curve is gradually gentle when the crossover
operator (O.) increases. Due to the fact that the more sufficient the crossover, the more
comprehensive is the population screening, the easier it is to find the theoretical optimal
value (TOy). However, when the O, is 1, the optimal value (Oy) of each calculation is
destroyed such that Oy cannot reach TOy.

Figure 5a shows that the optimal value (Oy) curve of the population and the average
value (Ay) curve of the population gradually approach the theoretical optimal value (TOy)
when the mutation operator (On) increases. When Op, is 0.15 and 0.2, Ay and Oy, reach TOy,
at the same time. However, when Oy, increases from 0.2 to 0.3, Ay cannot reach TOy; Oy is
still in the optimal solution. The optimal profile group parameters of each generation are
destroyed, so that Ay and Oy cannot reach TOy.
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Figure 5b shows that the population value curve is gradually gentle when the mutation
operator (Op,) decreases because the mutation is to optimize the population by introducing
new values when the crossover has little effect on the population optimization. However,
when Op, exceeds 0.3, the optimization effect of crossover on the population will be reduced;
the optimal value (Oy) will be far away from the theoretical optimal value (TOy).

By comparing the effects of 10 crossover operators (O.) and 10 mutation operators
(Om) on the calculation, considering the accuracy of the calculation, O, of 0.8 and Oy, of
0.15 are the calculation parameters.

5.4. Optimization Result

The optimal profile design parameters of the improved GHH profile are found: the
inner radius of the male rotor (R;) is 26 mm, the outer radius of the female rotor (R,) is
0.4 mm, the protection angle (0) is 0 and the radius of elliptic arc (a) is 10 mm.

It can be observed that the tooth thickness of the female rotor decreased while that
of the male rotor increased on the tooth profile after optimization in Figure 6. On the
geometric characteristic parameters, the length of the contact line is 178.89, which increased
by 1.57%; the blow hole area is 1.39, which is reduced by 54.8%, and the area utilization
rate is 0.458, which increased by 0.32%.

Decreasein the _
Tooth thickness -~ .

(a) o (b) : / N

( N ¢ Increasein the
\ N\ \ tooth thickness
\ — ‘-‘,“
A T— S ¥ .“'f Fa
\ / | "\ "/ |

Female rotor (Treatment ) Male rotor (Treatment) Female rotor (Optimized) Male rotor (Optimized )

Figure 6. Rotor diagram. (a) Treatment group profile (b) Optimized group profile.

6. CFD Simulation Results

The calculated optimization results only analyze the numerical changes of geometric
characteristics. In order to understand the effects of the rotor before and after optimization
more intuitively, the mesh model of the twin-screw component is established, and the
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fluid—solid coupling method is used to analyze the operation state of the rotor before and
after optimization.

6.1. Model and Control Method

The working fluid is ideal gas, and the standard k-epsilon model is used to simulate
the fluid turbulence model. The inlet condition is set as pressure inlet, the outlet condition
is set as pressure outlet and the other boundary surfaces are set as wall surfaces. The speed
linear solver uses conjugate gradient squared. The pressure linear solver uses algebraic
multi-grid solver. While the simple method was used to solve the pressure—velocity
coupling problem, numeric scheme is upwind, sweeps is 50, linear solver tolerance is 0.1
and diagonal relaxation is 0.3.

The screw compressor model consists of five parts: male rotor, female rotor, cylinder,
suction port and exhaust port, as shown in Figure 7. It is assumed that the pressure,
temperature and density in the chamber are uniform within the control volume. Using the
transient ns equation to solve the mass and kinetic energy conservation [25]:

Male rotor Exhaust port Cylinder Suction port

Female rotor

Figure 7. Simulation model of screw compressor.

Continuity:

a
po (/) de+/np(v—vg)da:O (10)
Q(t o

Kinetic energy:

%/ de+/p((v—vg)on)vd0':/?ijonda—/pond(r—!—/fdﬁ (11)

Q) o o

Stress tensor: i p i
~ u; uj  2du
Tj= () (5 + 5L — 2558) (12)

dx )i dxl- 3dx k g
In the formula: p represents average local fluid density, v represents fluid velocity,
vy represents mesh velocity, # represents surface normal, o represents surface of control
volume, €)(f) represents control volume as a function of time, t represents time, 7;; represents
effective shear stress, f represents body force, i1 represents dynamic viscosity, y; represents
turbulent dynamic viscosity, J;; represents Kronecker delta and p represents static pressure.

6.2. Mesh Independent Verification and Time Independent Verification

Before calculation, the simulation model needs to determine the parameters of the
rotor, as shown in Table 5.
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Table 5. Parameters of the rotor.

Parameters Value Parameters Value
Rotor speed (r/m) 4800 Wrap angle (°) 250
Suction pressure (MPa) 0.1 Rotor clearance (mm) 0.03
Exhaust pressure (MPa) 0.3 Axial clearance (mm) 0.04
Center of rotor (mm) 91.67 Radial clearance (mm) 0.06

Based on the time step of 8 x 107> s, the mesh independent verification is carried out
to compare the simulation accuracy under different mesh sizes. The results show that the
difference between the simulation results is only 1.5% at 0.5 mm and 0.25 mm mesh size;
see Table 6. This indicates that mesh independent results could be achieved with the mesh
of 0.5 mm.

Table 6. Mesh independent verification.

Mass Flow (kg/s)
Mesh Sizes (mm)
Value Error
2 0.0350 8.8%
1 0.0368 4.2%
0.5 0.0375 1.5%
0.25 0.0381 /

Based on the mesh sizes of 0.5, the time independent verification is carried out to
compare the simulation accuracy under different time steps. The results show that the
difference between the simulation results is only 1.2% at 8 x 107> s and 4 x 10~° s time
steps in Table 7. This indicates that time step independent results could be achieved with
the time of 8 x 107> s.

Table 7. Time independent verification.

Mass Flow (kg/s)
Time Step (s)
Value Error
1x 1074 680.0368 3%
8 x 107> 0.0375 1.2%
4 x107° 0.0379 /

6.3. Optimization Comparison

Figure 8a shows that the pressure of the rotor chamber before optimization is lower
than that after optimization at the same rotation angle. The reason is that when the contact
line length and area utilization rate change little, the blow hole area of the optimized rotor
is reduced by 54%, and the gas mass leaking from the high-pressure chamber to the low-
pressure chamber on the compression side is reduced by 54% under the same pressure, so
that the optimized rotor chamber pressure is slightly higher than that before optimization.
The reduction can be observed in Figure 8b.

It can be seen from Figure 9 that when the rotor rotates stably, the average mass
flow rates of the rotor exhaust before and after optimization are 0.0229 and 0.0240 kg/s,
respectively, an increase of 5.2%. The maximum values of exhaust mass flow rates are
0.0448 and 0.0446, respectively, an increase of 3.2%. The optimized leakage decreases and
the mass flow increases, which proves the effectiveness of the optimization model.
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Figure 8. Comparison of treatment group and optimized group. (a) Rotor pressure (b) Interface
pressure.
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Figure 9. Rotor exhaust port mass flow variation diagram.

7. Conclusions

In this paper, a mathematical model of profile parameter optimization based on BP
neural network and genetic algorithm is established. Because the original calculation time
is long, the BP neural network database is established. The geometric characteristics of a
twin-screw compressor are interpolated and extrapolated to verify the predictive ability of
the database. Then, the neural network database is brought into the genetic algorithm to
find the optimal profile parameter group. The calculated optimal group and the treatment
group are compared with the rotor performance in the simulation model. The following
conclusions are drawn:

(1) The BP neural network for predicting the geometric characteristics of a twin-screw
compressor is established. The effects of three training methods and four hidden neurons
on data prediction accuracy are compared. The error between the predicted data and the
actual value is within 1.5%, and the calculation time is shortened by 92.8%.

(2) The genetic algorithm is used to determine the optimal GHH profile parameters in
specific situations. After optimization, the contact line is increased by 1.57%, the blow hole
area is reduced by 54.8% and the area utilization rate is increased by 0.32%.

(3) The simulation model is used to verify the optimized mathematical model. The
average mass flow rates of the rotor exhaust end before and after optimization were 0.0229
and 0.0240 kg/s, respectively, an increase of 5.2%. The maximum mass flow rates at the
exhaust end were 0.0448 and 0.0460 kg /s, respectively, an increase of 3.2%.

8. Prospect

This article mainly provides an optimization method for the profile, considering only
the sealing performance and volumetric performance of the rotor without considering
other influencing factors, such as stress. For example, due to not considering the influence
of force, the thickness of the tooth tip of the optimized female rotor is significantly reduced.
When the pressure difference in the chamber is too large, it may cause the rotor to deform
under the action of force. In the next stage, the influence of other factors on the rotor will
be added to the calculation to enrich the evaluation mechanism of the profile.
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Nomenclature

a radius of the elliptic arc (mm)

A area between teeth (mm?)

Aq cross-sectional area of the single male groove (mm?)
Ap cross-sectional area of the single female groove (mm?)
Ap blow hole area (mm?)

Apt blow hole area of treatment group (mm?)

Apo blow hole area of optimization group (mm?)

Ay average value

BP back-propagation

c step length

Cn area utilization rate

Cnt area utilization rate treatment group

Cno area utilization rate optimization group

D; diameter of the positive rotor (mm)

f body force

H number of hidden neurons

I effects coefficient

Ic effects coefficient of area utilization rate

Iy, effects coefficient of contact line

Ia effects coefficient of blow hole area

k sample value

Ky’ average value of the sample

k” predicted sample value

L length of the contact line (mm)

Ly length of the contact line of treatment group (mm)
Lo length of the contact line of optimization group (mm)
M number of input neurons

My minimum value

MSE mean square error

N number of output neurons

n surface normal

n; number of iterations

Oy optimal value

Oc crossover operator

Om mutation operator

P static pressure (Pa)

Vs population size

R goodness-of-fitting index

R; inner radiuses of the male rotor (mm)

Ro outer radius of the female rotor (mm)

Ry pitch radius of male rotor (mm)

Ry pitch radius of female rotor (mm)

s sample size

t time

ti, tis1 starting point and end point parameters of the curve
TOy, theoretical optimal value

Vmax maximum geometric characteristics

V min minimum geometric characteristics

Xi,¥i,Zi curve parameter equation
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X',y derivative of the curve equation to the parameter
VA number of male rotor teeth
Zy the leakage surface
0 protection angle (°)

average local fluid density (kg/m?)
v fluid velocity
Vg mesh velocity
o surface of control volume
Q(t) control volume as a function of time
T screw lead (mm)
Tij effective shear stress
U dynamic viscosity (Pa/s)
Ut turbulent dynamic viscosity (Pa/s)
511' Kronecker delta
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