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Abstract: The solid oxide fuel cell (SOFC) system is complicated because the characteristics of gas,
heat, and electricity are intricately coupled. During the operation of the system, problems such as
frequent failures and a decrease in the stack’s performance have caused the SOFC system to work less
well and greatly shortened the SOFC’s practical life. As such, it is essential to accurately forecast its
remaining useful life (RUL) to make the system last longer and cut down on economic losses. In this
study, both model-based and data-driven prediction methods are used to make predictions about the
RUL of SOFC. First, the linear degradation model of the SOFC system is established by introducing
degradation resistance as the index of health status. Using the Kalman filtering (KF) method, the
health status of SOFC is evaluated online. The results of the health state estimation indicated that the
KF algorithm is accurate enough to provide a good basis for the model-based RUL prediction. Then,
a long short-term memory (LSTM) network-recursive (data-driven) method is presented for RUL
prognostics. The multi-step-ahead recursive strategy of updating the network state with actual test
data improves the prediction accuracy. Finally, a comparison is made between the LSTM network
prediction approach suggested and the model-based KF prognostics. The results of the experiments
indicate that the LSTM network is more suitable for RUL prediction than the KF algorithm.

Keywords: SOFC; remaining useful life prediction; Kalman filtering; long short-term memory network

1. Introduction

The solid oxide fuel cell (SOFC) is used in many scenarios because of its near-zero
pollution, high power density, fuel adaptability, and high efficiency [1,2]. However, per-
formance degradation or even failure in actual operation makes SOFC systems poor in
durability, which inhibits their widespread commercialization. The SOFC system is com-
plicated, with multiple physical (electrochemical, thermodynamic, mechanical, fluidic),
spatial, and temporal scales [3]. The precise degradation mechanism of the stack is still
not fully understood. Moreover, the stack’s performance is significantly impacted by the
frequent fluctuations in operating conditions [4–6]. In addition, some other failures, such
as carbon deposition, chromium poisoning, and deterioration of BOP (balance of plant)
elements, will also contribute to the short service life of the SOFC system [7]. To guarantee
the safety and stability of the system, the development of prognostics and health man-
agement (PHM) techniques has received considerable attention. As the key of PHM, the
remaining useful life (RUL) prediction is fascinating. Its goal is to check on the health of
the SOFC and figure out how long it has left before it breaks down [8]. Therefore, even
though material deterioration is unavoidable, a precise prediction can help people take
steps early on to slow down the process [9], thus maximizing the system’s availability and
reducing operating costs.
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Much effort has been put into RUL prediction from various fields, such as mechanical
systems (e.g., bearings) and electrochemical ones (e.g., batteries, proton exchange mem-
brane fuel cells (PEMFCs)). However, little work has been done for the SOFC RUL. This
makes it meaningful to screen the main ideas of other research objects for potential use in
SOFC. In general, the prognostic approaches for RUL prediction can be put into one of the
following three groups: model-based, data-driven, or hybrid [10]. The hybrid prognostics
method, because it can combine the advantages of various methods and compensate for
each other’s deficiencies, has gradually become the focus of current RUL forecasting re-
search. Ge et al. [11] reviewed the hybrid RUL prediction of lithium batteries. Most hybrid
approaches either integrate several data-driven methods or combine model-based and
data-driven methods. Liu et al. [12] came up with a strategy for predicting RUL for aircraft
auxiliary power units (APU), which merged an artificial intelligence-based model with
a physics-based model. The experimental findings show that this approach can improve
the precision and stability of RUL prediction not only for the aircraft APU but also for
other complex systems. A fusion prognosis technique based on a long short-term memory
(LSTM) network and a particle filter (PF) was reported by Xie et al. [13]. The results of
the experiments demonstrated that it could produce better prognostic performance than
a single prediction method. Some new forecasting problems are well solved with the
hybrid approaches described above, but it is essential to comprehend the characteristics of
a single method first. Simultaneously, figuring out how to combine them and change the
parameters is also challenging.

The model-based approach aims to set up a model that matches how the system degrades
over its entire life cycle so that the RUL can be predicted. Model-based methods require
fewer data and directly reflect the fuel cell’s decay process, making them more practical [14].
Electrochemical models, equivalent circuit models (ECMs), and empirical models are common
deterioration models [15]. Lyu et al. [16] showed a method for predicting the RUL of lead–
acid batteries that uses a PF method combined with an electrochemical model. However,
since fuel cell degradation is a complex, unobservable problem, it is usually hard to make
a precise physical degradation model, particularly when the stack operates in unknown
surroundings. Gallo et al. [17] reported a diagnostic approach integrating electrochemical
impedance spectroscopy (EIS) with model-based aging estimation for SOFC RUL prediction.
A stack aging model was developed by merging similar features from ECM parameters
to simulate fuel cell degradation. The parameters of the fuel cell ECMs are often estimated
utilizing EIS measurements [18]. However, EIS needs extra equipment to be measured, and the
cost of the measurement is quite high. The empirical model is simpler to build and adaptable
to a wider variety of scenarios than the other two models [19]. Chen et al. [20] constructed
an empirical voltage degradation model for fuel cells. Using this model and the unscented
Kalman filter (UKF) method, they predicted the degradation trend well. The limitation is
that the measured voltage is selected as the degradation indicator. It is widely known that
the system’s working environment significantly impacts the output voltage. Therefore, it
becomes difficult to tell if the voltage decrease is due to the stack’s deterioration, the workload
alteration, or if it is a response of the system due to the controller [21]. To improve the
prognostics accuracy, Dolenc et al. [22] introduced area-specific resistance (ASR) as a health
indicator to estimate the RUL, and a linear Kalman filter (KF) was employed to identify the
parameters used in the empirical model.

With the significant increase in the computing capacity of computers, data-driven
methods have steadily become the focus of RUL prediction research. The goal of data-
driven methods is to investigate the potential association between sensor measurement data
and the RUL value based on previous data [23]. However, the accuracy of the data-based
algorithms mainly depends on the constructed mapping relationships that are sensitive
to historical data [24]; in other words, when the quantity or quality of historical data is
insufficient, data-driven methods may not achieve the expected results. However, this type
of method does not require any prior knowledge of the system’s degradation mechanism or
the creation of a reliable degradation model [25]. It is easy to implement and has excellent
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predictive power with the help of superior machine learning techniques. Javed et al. [26]
put forward a summation-wavelet extreme learning machine (SW-ELM) model to estimate
the RUL of PEMFC. Experimental results demonstrate the adaptability of this approach
with limited data. Support vector machine (SVM), as a typical representative of the machine
learning algorithm, is widely used in RUL prediction [27]. The performance of the SOFC
stack was forecasted via three algorithms by Song et al. [28]. The comparison results
indicated that the neural network (NN) prediction effect is better than the machine learning
(SVM). The LSTM network [29] is a particular type of recurrent neural network (RNN).
By incorporating a sigmoid layer known as the forget gate layer, the LSTM network is
able to avoid the problems that traditional RNNs have with gradient disappearance and
explosion [30]. The application of the LSTM network in the RUL estimation of lithium
batteries [31] and turbofan engines [32] proves its potential for time sequence prediction.
Liu et al. [33] employed an LSTM-RNN approach to deal with the PEMFC degradation
issue. The fuel cell RUL was predicted quickly and accurately. However, the prediction
was made only one step ahead, which is insufficient for most practical uses.

Each research approach has its own strengths and weaknesses and can be more or
less useful depending on the circumstances. In general, RUL prediction has gotten a lot of
attention from many various fields, and there have been many research findings. However,
prognostication of SOFCs, the process that comes after monitoring and diagnostics, is still a
young field of scientific investigation [34]. There have been relatively few studies conducted
in the area of RUL prediction for SOFCs [17]. To close this gap, both model-based and
data-driven prediction methods are used to figure out the RUL of SOFC. These methods
take into account the characteristics of SOFC, and the existing available data [35] provide
an essential basis for verifying the methods. The primary contributions to this work are
as follows:

(1) The Kalman filtering (KF) and LSTM networks are used to predict the RUL of SOFC,
respectively. Moreover, the prediction effects are compared and analyzed in detail.

(2) The linear degradation model of the SOFC system is established by taking the degra-
dation resistance as the health index, and the accurate KF estimation provides a good
foundation for predicting SOFC RUL.

(3) The multi-step-ahead recursive strategy of updating the network state with actual test
data improves prediction accuracy, enhancing the practical application value.

The following describes the arrangement of this paper: In Section 2, the experiment
configurations and data preparation are illustrated; in Section 3, two RUL prediction
methods for fuel cells are presented; and the analysis and comparison of the RUL prediction
results using the above two methods are displayed in Section 4. The conclusion is in
Section 5.

2. Experimental Configurations and Data Acquisition
2.1. Experimental Platform

Prior to estimating the RUL of a SOFC stack, the stack’s durability test should be car-
ried out first. As given in Figure 1a, this paper developed an independent SOFC test bench
in the Fuel Cell Research Center of Huazhong University of Science and Technology [35].
The stack is installed in the oven. The anode reductant of the stack is hydrogen, and the
cathode oxidizer is dehumidified air.

The investigated stack adopts a single anode-supported SOFC, as depicted in Figure 1b.
The cell’s dimensions are 11 cm× 11 cm× 1 mm, and its cathode-active area is 9 cm × 9 cm.
The anode-supported material is Ni–YSZ (Yttria Stabilized Zirconia). Table 1 briefly
overviews the fuel cell [35], including the materials for other composition sections. More
specific details about the fuel cell manufacturing method can be found in Ref. [36].
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Table 1. Experimental configuration.

Parameter Value Parameter Value

Related to fuel cell

Thickness of YSZ electrolyte 10 µm Thickness of anode
functional layer 10 µm

Thickness of anode support 1 mm Thickness of
YSZ-based cathode ≤3 µm

Related to operating conditions
Stack temperature 750 ◦C Air flow rate 2 NL/min
Hydrogen flow rate 2 NL/min Load current 0.37 A/cm2 (30 A)

2.2. Experimental Data Acquisition

In the anode atmosphere of 5% H2 + N2, the stack was heated to a stable temperature
of 750 ◦C [35]. Following the stabilization of the open circuit voltage (OCV), the i-v curve
(Figure 2a) was plotted by discharging the stack at different currents to see how well it
worked, after which it was subjected to a constant discharge current to assess the stack’s
durability, as shown in Figure 2b.

Figure 2c displays the stack deterioration curve under steady-state operation con-
ditions (750 ◦C and 0.37 A/cm2). The testing was carried out for close to 4000 h. The
original voltage rose from 0.86 V to 0.87 V in 120 h before falling to 0.85 V. Over the next
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1800 h, the voltage dropped steadily to 0.83 V. At the 2500th hour, the voltage decreased
relatively quickly, eventually reaching around 0.81 V. After that, the fuel cell stack voltage
stabilized at 0.8 V. The test experiment was interrupted after an unexpected external power
failure occurred in the 3770th hour. During this time, the oven was forced to return to
room temperature.

Some interferences, such as electromagnetic interference, may lead to inaccurate
calculations during the test. Moreover, too much data will cost much computing time, so
it is necessary to preprocess the original data. By setting the sampling period to 1 h and
removing the out-of-range values that changed a lot by hand, a 3750-h data set was finally
selected for subsequent health assessment and life prediction. Figure 2d shows the voltage
data after pretreatment. The voltage in the 3750th hour is around 798 mV. It can be seen
from the figure that the processed data not only retains the primary trend of the original
information but also effectively removes noise and spikes.
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3. RUL Prediction Methods
3.1. The Model-Based RUL Prediction Method

For the model-based RUL prediction, the system’s degradation law or failure mecha-
nism is used to build a matching physical model. Then, RUL forecasting can be performed
with the physical model. This method is very applicable to research items with clear
degradation mechanisms, and the degradation model can correspond to physical quantities
one by one, which has strong interpretability. The model-based RUL prediction processes
are presented in Figure 3, which are as follows: Choose a degradation index; model the
degradation process; estimate the health state; forecast RUL; and evaluate performance.
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3.1.1. SOFC Degradation Model

The SoH (state of health) of SOFC is a crucial performance parameter used to char-
acterize the degree of its performance deterioration. The most common way to choose
health indicators is to use the voltage as a status indicator and calculate the remaining life
when the stack voltage obviously drifts. However, the stack voltage is extremely sensitive
to operational conditions. For the performance prediction to work well in real operating
conditions, there needs to be an appropriate indicator.

The internal resistance is a result of many chemical reactions happening simulta-
neously on the stack, and it carries crucial information about the SoH of the stack. As
described in the literature [21,37], they used area-specific resistance (ASR) as a health indi-
cator. One of the benefits is that the ASR value of the fuel cell is invariant to the operating
conditions of the system. It means that static operation is not necessary. On the other hand,
it can weaken the voltage difference caused by various reactant components (CH4, H2, CO2,
CO, H2O, and N2) [37]. Therefore, this work chose degradation resistance as an index to
evaluate SOFC health status.

In the state of SOFC performance degradation, its electrical characteristic equation can
be written as follows [38]:

Vs = (Enernst −Vact −Vcon −Vohm)− IsRs (1)

where Vs and Is represent the output voltage and current, respectively. Rs is the lumped
degradation resistance, indicating the SOFC resistance’s increased value as performance
degrades. Nernst voltage Enernst is calculated by the following equation [38]:

Enernst = 1.286− kE(Ts − T0) +
R∗ · Ts

2F
ln

PH2 P0.5
O2

PH2O
(2)

where R* denotes the universal gas constant; F is Faraday’s constant; Ts indicates the stack
temperature; and PH2 , PO2 , and PH2 O represent hydrogen, oxygen, and water vapor partial
pressures inside the stack. The activation polarization voltage Vact can be expressed as [38]:

Vact =
R∗ · Ts

F

(
sinh−1

(
is

2i0,a

)
+ sinh−1

(
is

2i0,c

))
(3)

where is denotes the current density; and i0,a and i0,c are the exchange current density of the
anode and cathode, respectively. The concentration polarization loss Vcon can be obtained
by [38]:
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Vcon =
R∗ · Ts

neF
ln
(

1− is

2iL

)
(4)

where iL is the limit current density and ne represents the number of free electrons. The
ohmic polarization voltage Vohm is computed as [38]:

Vohm = isTse
a1
Ts +a0 (5)

where a0 and a1 are constants. Table 2 lists some parameters of the above formulas.

Table 2. Model parameters [38].

Parameter Value Parameter Value

kE 2.304 × 10−4 T0 298.15 K
R* 8.314 J·mol·K−1 F 96,485 C·mol−1

iL 1 × 104 A·m−2 ne 2
I0,a 5300 A·m−2 io,c 2000 A·m−2

a0 −25.855 a1 7509.6

Because the SOFC degradation mechanism is unknown and constant thermodynamics
are assumed, this paper uses the linear drift model below to describe the degradation
process [21]. The model’s foundation is the idea that things should be as simple as possible
and empirical analysis of experimental results.

R(t) = αkt + bk (6)

where, αk denotes the slope, bk indicates the intercept, and R(t) represents the ohmic
resistance.

The Taylor series can be utilized to explain this linear model. The Taylor expansion is
a common method for linearizing nonlinear functions, with the first two terms used to ap-
proximate the function. Thus, the trajectory of R(t) can be approximated and characterized
by a linear function. The linearity of the drift model allows the KF algorithm to estimate its
parameters with adequate precision.

3.1.2. Health State Estimation Based on the Kalman Filter

This paper uses KF to predict the RUL of a single SOFC stack within a model-based
framework. KF is a special optimal estimation algorithm, especially for linear systems. It
determines the unbiased minimum variance of the system state based on input and output
and integrates the state equation with the measurement equation [39]. The state equation
expresses the change law of the state, but if only use the state equation, the error will not
converge quickly. As such, to make the state estimation more accurate, it is vital to combine
the measurement equation and use the measured data to correct the state error. The frame
diagram of the KF recursive algorithm is described in Figure 4.
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Firstly, convert the degradation model into a two-state discrete state space model [40]:

xk = [
Rk
αk

] (7)

xk+1 = Axk + wk (8)

yk = Hxk + vk (9)

where x indicates the degradation state; α is the aging factor, also known as the gradient of
a linear function; and the additional components wk and vk are both zero-expected white
noise, and their covariances are the matrices L and M, respectively. A represents the state
transition matrix for system degradation; y denotes the measurement output, which in this
case is the resistance; and the matrix H relates the state to the measurement yk.

A =

[
1 ts
0 1

]
(10)

yk = Rk (11)

H =
[
1 0

]
(12)

ts denotes the sampling period, here ts = 1 h. The following is the algorithm of the KF:
Initialization:

x0|0 = E(x0) (13)

P0|0 = Var(x0) (14)

Time update:
x̂k|k−1 = Ax̂k−1|k−1 (15)

Pk|k−1 = APk−1|k−1 AT + L (16)

Measurement update:

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + M)
−1

(17)

x̂k|k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1) (18)

Pk|k = (1− Kk Hk)Pk|k−1 (19)

Equations (15) and (16) represent time-based updates. Based on the optimally esti-
mated value of the previous time x̂k−1|k−1, the estimated value of the system’s current
moment x̂k|k−1 and the covariance of the system prediction error Pk|k−1 are obtained. Kk is
the Kalman gain. The measurement update equations in Formulas (18) and (19) update the
current state prediction x̂k|k−1. More details about the KF are given in Refs. [21,41].

It is challenging to obtain process noise and measurement noise in practice. To make
the KF approach noise-tolerant and fast-convergent, after a series of parameter adjustments,
L and M are set as:

L =

[
10−4 0

0 10−12

]
and M = 10−3 (20)
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3.1.3. Estimation Results from the Kalman Filter

The results of health state estimation using the KF algorithm are displayed in Figure 5a.
According to Figure 5a, the resistance value estimated by KF can track the measured one
well. In most cases, the predicted value is very close to the observed value, except at
specific peaks where the difference between the estimated and observed data is significant.
In addition, the estimated value of degradation resistance includes time drift, which will
be utilized to calculate RUL in the future. These verify the viability and effectiveness of
modeling SOFC deterioration behavior as a linear model. In addition, as time passes, the
stack further deteriorates, and the internal resistance grows. KF gives an accurate estimate
of the degradation resistance of SOFC by eliminating oscillations caused by measurement
noise while keeping the overall trend. Hence, we can say that using KF to estimate the
model state is practical and accurate.
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Figure 5b and c show the estimated values of the aging factor α(t) and Kalman gain K
obtained by the KF algorithm, respectively. α(t) is the second state of the suggested KF, and
the degradation rate increases quickly at first and then slowly decreases. The convergence
of the KF algorithm can be judged by observing how the Kalman gain changes over time.
It is evident from Figure 5c that the KF algorithm tends to converge when t = 3000 h. The
residual result of the resistance is displayed in Figure 5d. The diagram illustrates that the
maximum residual value is less than 10−4. This result indicates that the KF estimation is
accurate enough to lay a good foundation for the following RUL prediction step.

3.2. The Data-Driven RUL Prediction Method

Within the framework of data-driven forecasting, we used the LSTM network method
combined with a recursive strategy to make the RUL prediction. The scheme of the LSTM–
Recursive prognostic approach is given in Figure 6. Details of the related contents will be
shown below.
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3.2.1. LSTM Network Model

As seen in Figure 6b, the LSTM has three layers: an input layer, a hidden layer, and
an output layer. The most important thing about LSTM is that tiny linear interactions can
change a cell from its previous state Ct−1 to its current state Ct [9]. The LSTM transmission
state is determined by three gates, which can be expressed as three stages.

(1) The forgetting process. The first step is to determine which data the network
needs to throw away or which data from the previous node it needs to forget. This is
accomplished through the forget gate ft, with the following calculation formula:

ft = σ(W f · [ht−1, Xt] + b f ) (21)

where σ denotes the activation function and in cell state Ct−1, the forget gate reads the
previous step’s output ht−1 and the current step’s input Xt. It then sends out a vector
between [0, 1] that indicates which data is kept and which data is discarded.

(2) The selection/memory stage. At this stage, the input is selected and stored, and
the input gate controls the information that has just been saved. The formulas for the
calculation are as follows:

it = σ(Wi · [ht−1, Xt] + bi) (22)

∼
Ct = tanh(WC · [ht−1, Xt] + bc) (23)
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where it is the input gate and
∼
Ct indicates the updated value of the cell status. When data

passes through the input gate, the internal state of the network needs to be updated. The
update rule is to choose through the forget gate to throw away some of the last moment’s
internal state information and then make a selection through the input gate so that new
unit information Ct can be generated. The update process has the following mathematical
form:

Ct = ft � Ct−1 + it �
∼
Ct (24)

(3) The output stage. At this stage, the present state of the cell is evaluated by the
output gate ot, which then makes a decision on the cell’s output. The calculation formulas
are shown below:

ot = σ(Wo[ht−1, Xt] + bo) (25)

ht = ot � tanh(Ct) (26)

where the weights matrix is denoted by Wf, Wi, Wo, and Wc, while bf, bi, bc, and bo represent
the deviation vectors, and � indicates the element dot product.

In the output gate, the inputs Xt and ht−1 are calculated by a sigmoid function to
figure out whether or not the information can pass, so as to obtain the judgement condition.
The tanh function takes the unit state Ct and turns it into a vector ranging from −1 to 1.
This vector is then multiplied by the judgement condition to get the final output of the
LSTM. More information about LSTM can be obtained in Ref. [13].

3.2.2. Prognostics Implementation with the LSTM-Recursive Method

As can be seen in Figure 6c, we used a recursive strategy to make the LSTM multi-
step-ahead prediction. The distinctive property of this approach is that the accumulation of
errors can be largely avoided by using the actual value instead of the estimated value of
the previous step to conduct the prediction process.

The specific prognostics process with the LSTM–Recursive method is as follows:

(1) Data standardization.
(2) Data splitting. The voltage data was split into training sets and test sets.
(3) Prepare training input and response. The response was designated as a new sequence

formed by moving the values of the training sequence by four steps. In other words,
at each time step of the input sequence, the LSTM network learns to predict the value
of the following fourth-time step. Naturally, you can also move more steps to forecast
the voltage situation at a further moment in the future.

(4) Define the LSTM network structure and parameters. The specific values are given below.
(5) Training the network. The “trainNetwork” library in MATLAB (MathWorks, R2021b)

software trains the network using the training input and response.
(6) LSTM prediction. Use the “resetState” function to reset the network state so that

the predictions of the new data sets are not affected by the previous predictions.
Then initialize the network state by predicting the training data. Further, use the
“predictAndUpdateState” function to update the network status. The test data is used as
the function’s input for each prediction, and the predicted stack voltage is the output.
This process is iterative until the end of the test set traversal.

The code for the LSTM–Recursive prognostic model was completed in the script file
built by MATLAB. The LSTM network parameters are configured as follows: the solver is
set to ‘Adam’, and the network is trained for 250 epochs. The gradient threshold is set to 1
to prevent explosions of gradients. It starts with a learning rate of 0.005 and decreases by a
factor of 0.2 after 125 rounds. The choice of an LSTM hidden unit is typically determined
by engineering experience between 100 and 1000. In this work, 200 hidden cells are chosen
to achieve the lowest possible error rate.
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4. Results and Analyses
4.1. Performance Evaluation Criteria

Root mean square error (RMSE) and mean absolute error (MAE), two statistical mea-
sures, are applied to judge the accuracy of predictions and compare how well the two
forecasting approaches work. The smaller the two values, the more accurately the algorithm
can forecast.

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (27)

MAE =
1
m

m

∑
i=1

|yi − ŷi|
|yi|

(28)

where m denotes the test data size, yi represents the actual value, and ŷi indicates the
predicted result.

4.2. RUL Prediction

A system’s RUL is the time left until it fails, where failure means it cannot perform
a specified function. Further, the prognostic process is split into two parts: the first is
figuring out how healthy the system is right now and predicting how it will change until
the preset failure threshold is achieved. Then, the RUL at time t RULpre(t) is determined by
subtracting the time when the prognosis began from the anticipated end of life (EOL).

RULpre(t) = Epre(t)− t (29)

where Epre(t) is the moment when the predicted results intersect with EOL. EOL can vary
depending on the task and application, and its value can differ [21]. For example, drops in
output voltage (e.g., should not exceed 10%) [26], power output (e.g., 4%) [42], or power con-
version efficiency are all viable definitions of EOL. Here, the failure threshold EOL = 800 mV
was selected (about a 9.2% drop from the initial voltage), which is reasonable and acceptable. t
denotes the beginning point of life prediction, corresponding to the EOM (end of monitoring).

4.3. Analysis and Comparison of RUL Prediction Results

After determining that EOL is 800 mV, considering the uncertainty and a specific
confidence interval, we can find that the real failure moment Ereal(t) is approximately
2771 h. Combined with the training of data sets, t = 1500, 2000, 2300, and 2500 h are chosen
as the starting points for a comprehensive evaluation of the prediction effect under different
conditions. Figure 7 illustrates the RUL prediction results of the KF method. The red solid
line in the first half of KF represents the KF state estimation result, while the red dashed
line in the second half denotes the KF prediction result. The blue solid line throughout the
entire period reflects the observed value. The EOM represents the prediction starting point,
which means that from this point forward, the state parameters are fixed, and the RUL of
the stack is predicted.

Since the filter cannot get the voltage observation data during the prediction stage, it
is unable to correct the prior estimation, making it relatively hard to update. The prediction
effect is a straight line, which cannot predict the local nonlinear change in voltage and track
the voltage degradation trend well. The slope of the prediction straight line depends on the
state estimation value of the prediction starting point.

Table 3 displays the specific performance criteria of the KF method. At t = 1500 h and
t = 2000 h, the KF prediction effect is poor, with a significant prediction error. At t = 2300 h,
the RMSE predicted by KF is 1.7692, and the MAE is 0.0018. The prediction effect of t = 2500 h
is comparable to that of t = 2300 h, with an RMSE of 1.7582, slightly less than t = 2300 h, and an
MAE of 0.0018, which is consistent with t = 2300 h. It can also be seen from the corresponding
graph that when t = 2300 h and t = 2500 h, the slope of the prediction straight lines between
EOM and EOL matches the linearity of the degraded data well.
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Table 3. The RUL prediction results of the two approaches.

Method Forecast Starting Point/h RULreal/h RULpre/h RMSE MAE

KF

1500 1271 1337 4.2324 0.0042
2000 771 1241 7.3568 0.0078
2300 471 441 1.7692 0.0018
2500 271 307 1.7582 0.0018

LSTM

1500 1271 / 7.8885 0.0074
2000 771 / 6.4721 0.0069
2300 471 698 2.1802 0.0022
2500 271 287 1.4373 0.0015

In order to compare with the KF prediction results, the beginning points for the
prediction have also been set at t = 1500, 2000, 2300, and 2500 h. The multi-step-ahead
degradation prediction with LSTM is presented in Figure 8. In the figure, the blue line
depicts the observed voltage, whereas the red line shows the predicted result. The first and
second halves of the dotted line reflect the training and prediction stages, respectively. The
figure shows that LSTM can well capture the trend of voltage degradation and predict the
local nonlinear change of voltage. In addition, the observation was that the measurement
data was effectively fitted in the early stage, but the prediction error increased somewhat
as the prediction time increased. This finding suggests that the LSTM model may not have
been overfitted to some extent.

Notably, when the prediction starting point is t = 1500, 2000, or 2300 h, the model’s
predicted voltage value is slower than the actual one, its predicted voltage value is usually
higher than the actual value, and the predicted voltage did not reach the failure threshold
EOL before the moment of Ereal(t). The later the starting point of prediction is, the more
training data is used to train the model, and the more accurate the prediction effect will
be. Specific performance indicators are also shown in Table 3. At t = 2500 h, the overall
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prediction curve matches the actual degradation trend well, and the overall prediction
error is at its lowest, with RMSE = 1.4373 and MAE = 0.0015.
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Comparing and analyzing the LSTM prediction results based on data with the KF
prediction results based on the model, we can see that LSTM multi-step-ahead degradation
prediction can capture the details of voltage deterioration and the overall degradation trend.
Additionally, the later the prediction starting point, the more data is used for training, which
will make the prediction more credible. However, the KF forecast accuracy mainly depends
on the linearity of degradation data; it cannot track the local fluctuation and degradation
trend of voltage. As such, we can say that the data-driven LSTM approach is more suitable
for RUL estimation than the KF approach.

5. Conclusions

This paper presents two prognostic methods for RUL prediction of SOFC. In order
to verify the effectiveness of the proposed methods, the aging data sets were obtained
from an experimental platform built by our laboratory. For the model-based KF method,
a linear deterioration model uses degradation resistance as an indicator of SOFC health
status. The degradation estimation is then implemented to check the health status of SOFC
online. The maximum residual value of the resistance is less than 10−4 indicates that the
KF estimation is accurate enough to lay a good foundation for predicting SOFC RUL. The
KF prediction results suggest that it can only predict the short-term degradation trend,
and the forecast accuracy mainly depends on the linearity of degradation data. For the
data-driven (LSTM network–Recursive) method, the multi-step-ahead recursive strategy
of updating the network state with test data increases the prediction accuracy. The RUL
forecasting outcomes show that the suggested LSTM technique can capture the details of
voltage deterioration and make the prediction more credible with more training data. The
comparison results of the two approaches reveal that the LSTM network is more suitable
for RUL prediction than the KF algorithm. Currently, the SOFC RUL prediction verification
under stable operating conditions has been implemented. Future work will improve the
prediction’s generalization ability while operating under a dynamic load.
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