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Abstract: The main objective of this paper is to propose two innovative monitoring methods for
electrical disturbances in low-voltage networks. The two approaches present a focus on the clas-
sification of voltage signals in the frequency domain using machine learning techniques. The first
technique proposed here uses the Fourier transform (FT) of the voltage waveform and classifies the
corresponding complex coefficients through a multilayered neural network with multivalued neurons
(MLMVN). In this case, the classifier structure has three layers and a small number of neurons in the
hidden layer. This allows complex-valued inputs to be processed without the need for pre-coding,
thus reducing computational cost and keeping training time short. The second technique involves the
use of the short-time Fourier transform (STFT) and a convolutional neural network (CNN) with 2D
convolutions in each layer for feature extraction and dimensionality reduction. The voltage waveform
perturbations taken into consideration are: voltage sag, voltage swell, harmonic pollution, voltage
notch, and interruption. The comparison between the two proposed techniques is developed in two
phases: initially, the simulated data used during the training phase are considered and, subsequently,
various experimental measurements are processed, obtained both through an artificial disturbance
generator and through a variable load. The two techniques represent an innovative approach to this
problem and guarantee excellent classification results.

Keywords: convolutional neural networks; electrical disturbances; short-time Fourier transform;
multilayer neural networks with multivalued neurons; power quality

1. Introduction

Power quality is a significant issue due to the increasing presence of nonlinear loads
in power systems. For example, as shown in [1,2], electric vehicle charging stations and
renewable energy production systems highly affect the power quality of the grid. Since
these sectors are rapidly growing to contain the greenhouse gasses emission, several efforts
have been made to minimize the impact of these power quality disturbances (PQDs). The
fast and automatic classification of PQDs allows for properly taking countermeasures
to be able to maintain the stability of the grid, avoiding plant shutdowns and economic
losses. The EN 50160 [3], IEC 61000 [4], and IEEE-1159 [5] standards provide a detailed
description of all PQDs. A graphical representation is shown in Figure 1, while the main
characteristics are summarized in Table 1. Several papers related to PQD detection and
identification are available in the literature. A summary is shown in Table 2, where the
type of identified disturbances and a brief description of the implemented technique is
described. The identification process of the disturbances consists of the extraction of
parameters by applying a particular signal processing technique and then performing the
classifications. The Fourier transform (FT) is the simplest technique for feature extraction
from the sampled signal [6]. This is a powerful technique for periodic time series where
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the characteristics of the signal do not change with time [7]. In practice, the disturbances
lead to nonstationary signals. To overcome this issue, short-time Fourier transform (STFT)
was used, introducing a sliding window to obtain time and frequency information [8].
Alternative techniques are based on Wavelet transform (WT). In this method, the sampling
window is changed depending on the frequency content of the signal [9]. A short window
is used for high frequencies, while a long window is used at low frequencies. This window
adaptation makes this technique particularly suitable for monitoring transient behavior
and discontinuities in the signal, but it is more complex than FT base approaches and it is
sensitive to noise [10-13].
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Figure 1. Disturbance classes. (a) Normal. (b) Sag. (c) Swell. (d) Harmonics. (e) Notch. (f) Interruption.

Table 1. Types of Power Quality Disturbances.

Range
.Type of Duration Subsystem Time
Disturbance Min Max
Frequenc Slight Deviation 10 495 Hz 50.5 Hz
4 y Severe Deviation S 47 Hz 52 Hz
Short 10 ms-1s
Sag Long 1 s-1 min 01U 09U
Long-term Disturbance >1 min
Under Voltage ihort <§ mm 099U
Voltage ong >5 min
Temporary Short 10ms-1s
Temporary Long 1 s-1 min 1.5kV
Swell Temporary Long-time >1 min 11U
Over Voltage <10 ms 6kV
Harmonics and Harmonics - THD > 8%

other Information

Information signals -

Included in other disturbances
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Table 2. Feature Extraction and Machine Learning Techniques Literature Overview.
. Machine
Ref. Feature Extraction . Number of Layers and Neurons
Learning
Combines raw signal information and physical
[7] Fourier Transform Multifusion CNN features based on fast Fourier transform, in which two
types of features are merged into one layer.
Learning Vector
[10] Wavelet Transform Quantization Network -
Support Vector .
[11] Wavelet Transform Machine (SVM) 30 inputs, 4 SVM layer, 4 output layer.
The first artificial neural network (ANN) has an input
[12] Wavelet Transformation Fuzzy ARTMAP vector with dimension 30. The second ANN has an
Neural Network input vector with dimension 30. The third ANN has
an input vector with dimension 60.
. Combination of Univariate The datapath is made up of three layers, two for the
Discrete Wavelet .. . S
[13] Transformation Randomly Optimized Neural hidden layer and one for the output layer, which is
Network and Fuzzy Logic connected in feedforward architecture.
A two-layer feedforward neural network is used for
. learning the feature vectors, with 30 neurons in the
[14] S-Transformation Feedforward Neural Network .
hidden layer. The output layer has ten neurons, one
neuron for each class.
. . N The number of convolutional kernels in the 3 different
[15] Wigner-Ville Distribution CNN convolutional layers are 32, 64 and 64, respectively.
[16] Stockwell’s Transform Decision Tree -
. .. The feedforward neural network has five inputs,
[17] Higher-Order Statistics Feedforward Neural Network twenty neurons in the hidden layer and ten outputs.
[18] Space Phasor SVM and RBF network 5 training vectors for both techniques.
Five 1D-MIR Modified Inception-Residual ~ The network consists of a five-layer one-dimensional
[19] modules (MIR) Network and a modified Inception-Residual Network (ResNet)
Deep CNN (ID-MIR) and a three-layer full-connection tier.
Adaptive Linear Network The feedforward architecture is composed of
[20] p Feedforward Neural Network 22 inputs, 30 neurons in the hidden layer, and
(ADALINE)
4 outputs.
The TCN is used to capture temporal dependencies
and the CNN is employed to mine latent features. The
Convolution via Residual TCN consists of 1 flatten layer and 1 dense layer. The
. . CNN and TCN (Temporal number of neurons in the dense layer is 16. The CNN
[21] Blocks and Convolution via . . .
Sliding Filters (kernels) Convolutional Network) has a 2D input with 28 rows and 28 columns. The
& CNN consists of 1 Conv2D layer, 1 flatten layer, and
1 dense layer in sequence. The number of neurons in
the dense layer is 16.
One-dimensional CNN (1D-CNN) based on vanilla
architecture. The 1D-CNN model consists of two 1D
[22] Convolution via Sliding CNN convolutional layers, a max-pooling layer, and a fully
Filters (kernels) connected layer followed by a SoftMax classifier and
an output layer. A constant kernel size of 1 x 7 is
applied to the convolutional layers.
Hilbert Transformation, The paper is focused on voltage sags. There are three
[23] Discrete Wavelet CNN types of linked layers: convolution layers, pooling

Transformation, and DFT

layers, and fully connected layers.
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Table 2. Cont.

Ref.

Feature Extraction

Machine
Learning

Number of Layers and Neurons

[24]

Multiple Synchronous
Reference Frame (MSRF) and
Low-Pass Filters

Long Short-Term Memory
(LSTM) and CNN

Three methods are proposed: the first consists in
the use of a low-pass Butterworth filter and a
linear Finite Impulse Response (FIR)-based
prediction. In the second method, the prediction
is performed through an LSTM. Finally, in the

third method, a deep convolutional neural
network combined with an LSTM is used to filter
and predict at the same time.

[25]

Four classifiers are considered, based on
Explainable Artificial Rectified Linear Units (ReLU), max pooling
Intelligence (XAI) layers, batch normalization layers, and CNNs
with different kernel sizes.

Proposed
Technique 1

Discrete Fourier 3 layers, 50 Multivalued Neurons in the hidden

MLMVN

Transformation layer, 6 Multivalued neurons in the output layer.

Proposed
Technique 2

CNN architecture with 6 layers of convolutions
incrementing filter size on each layer and

Short-Time Fourier reducing the dimensionality using max pooling

CNN

Transformation layers. The classification is conducted using a

fully connected layer with 100 hidden layers and
6 outputs.

To improve the noise incentive, the S-transform (ST) technique was developed. Al-
though this technique overcomes the limitations of FT, STFT, and WT, its adoption is limited
due to high computational costs [14]. Additional techniques have been proposed over
the years based on statistical approaches [15-18] or by including machine learning for
feature extraction [19,20]. In this paper, the FT and the STFT were used to extract the
information from the sampled signal. This information was used to perform the classifi-
cation process. As shown in Table 2, these two signal processing techniques allow for a
good percentage of detection and classification of disturbances. In addition, since they
represent simpler solutions from the computational point of view, they can be practically
implemented in a real-time application. After the extraction of the parameters from the
signals using the previous technique, the classification of disturbances is performed. As
shown in Table 2, machine learning techniques are particularly suitable for this purpose. In
particular, numerous studies have shown that convolutional neural networks (CNNs) have
strong learning and generalization capabilities, making them the most used techniques.
CNN s have a grid-like structure that allows the limitation of data preprocessing. In these
structures, a 2D convolutional operation is used to extract features. Through the pooling
layer, a subsampling is then carried out, which increases the processing speed. In this
paper, a comparison between MLMVN and CNN is presented. The MLMVN used in this
paper allows the classification of the voltage signal based on its amplitude and phase in
the frequency domain. This type of neural network has a feedforward structure in which
inputs and weights are complex numbers. One of the main advantages of using this neural
classifier is the absence of a step between the calculation of the FT and the classification
phase. The CNN proposed in this paper combines the image recognition capability of
convolutional networks with the short-time Fourier transformation, guaranteeing excellent
results compared to other solutions present in the literature. This paper proposes a training
procedure completely based on simulated data for both classifiers. Subsequently, an ex-
perimental validation using real measurements is presented, where the abnormal voltage
waveforms are obtained through a Grid Disturbance Generator Asterion 4503 and other
nonlinear loads.
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To complete the literature review about the detection of power quality disturbances,
other methods based on machine learning techniques need to be considered, such as
that presented in [26], where two algorithms with low computational cost are presented.
Compared to the artificial neural network (ANN) and support vector machine (SVM)
proposed in [26], this work offers the use of a neural classifier with complex neurons
characterized by a derivative free learning algorithm that guarantees a simple and fast
training procedure. Furthermore, the complex nature of this classifier allows the use of the
DFT instead of the Wavelet transform in the preprocessing stage, obtaining comparable
classification results. The Wavelet transform is also used as a feature extraction technique
in [27,28] with excellent results. Compared to the classification techniques proposed
in [28], the use of the CNN presented in this paper shows a different implementation
of convolutional layers combined with STFT. Furthermore, all the training algorithms
presented in Table 1 of [28] are based on gradient rules, the Levenberg-Marquardt technique,
and other backpropagation procedures that involve the use of derived terms. The MLMVN-
based classifier proposed here avoids these terms by reducing the risk of minimum local
errors. It is necessary to highlight that the neural algorithms proposed here work under
the single failure hypothesis to classify the main disturbances proposed by the IEEE-1159
standard. Thus, the main objectives of this paper can be summarized as follows:

e To propose and evaluate the use of an MLMVN in the classification of PQDs. This
technique requires a frequency domain analysis based on the FT. The main advantage
of the proposed method is its simple structure consisting of three layers and a small
number of neurons in the hidden layer, leading to a very low computational effort
and short learning time. In addition, since this neural network can directly process
complex valued inputs, no coding operations are necessary.

e To propose and evaluate the performance of a convolutional neural network (CNN)
with 2D convolutions in each layer for feature extraction from STFT coefficients. The
main advantage of this solution with respect to the CNN in the literature is that the
frequency component of the time signal is added to the input by means of a Fourier
transform, thus adding one more dimension of information to the input signal and
exploiting the CNN's feature extraction capabilities.

e  To perform an extensive experimental validation of the previous techniques through a
real test bench able to emulate the PQDs. The proposed test bench allows the automatic
generation of a great variability in disturbances, simulating critical situations typical
of industrial contexts with high precision.

The paper is organized as follows: in Section 2, the main theoretical aspects of the
proposed classifiers are presented; in Section 3, the training results are shown; in Section 4,
the experimental setup used to verify the performance of the two techniques is presented;
Section 5 shows the experimental validation and highlights positive and negative aspects
of the classifiers; in Section 5, the conclusions and future developments are reported.

2. Machine Learning Techniques

This section presents the main theoretical aspects of the two proposed classifiers and
highlights the characteristics of the learning procedures. The MLMVN employed here
contains three layers and allows the use of a reduced number of neurons in a single hidden
layer, thus speeding up the learning phase and limiting the computational cost. Thanks
to its complex nature, it can be easily used in the solution of electrical problems, where
all quantities are expressed by phasors. The CNN in this paper is used in conjunction
with the STFT to convert the 1D signal into a 2D matrix and extract its time—frequency
components as in [29]. Additionally, this is done so the signal can be treated as an image,
to exploit the feature extraction capabilities of this architecture and obtain the desired
results. Furthermore, in many recent applications, CNNs are used in real time to classify
signals of different natures [30], diagnose faults in various electrical machines [31], and
predict the evolution of numerous systems and electrical quantities [32]. This has led to
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the development of many frameworks and toolboxes for real-time implementation, which
allows for the immediate acquisition of signals and their classification.

2.1. Convolutional Neural Network Short-Time Fourier Transform

In this work, the use of CNNs was studied by means of an STFT. The STFT was
used to extract the spectral component of the input voltage signal along with its temporal
component. This was then used to classify the input voltage signal using the CNN. The
STFT for classification using the CNNs has been previously used in other applications
to improve CNN classification results, as shown [33-35]. CNNs are feedforward neural
networks that use 2D convolutions in each layer for feature extraction and dimensionality
reduction. The 2D convolution is:

M M
S[ny,na] = Em11:1 Zmzzzl x[my, molk[ny — my, ny — my) 1)

The CNN works by adjusting the kernel denoted by parameter k during training to find
the optimum kernel weights for the feature extraction of signal x for each corresponding
filter in each convolutional layer. Figure 2 shows the function of the 2D convolutional
layer where the kernel moves in a sliding window manner through the input matrix. A
max pooling layer is then added to the convolutional layer to reduce the size of the image,
extract the most important parts of the image, and reduce the training time. Pooling layers
of a CNN implement a spatial dimensionality reduction operation designed to reduce the
number of trainable parameters for the next layers and allow them to focus on larger areas
of the input pattern [36]. The max pooling layer can be defined as the summary statistics
of the output of the preceding convolutional layer. The max pooling layer identifies the
maximum of a given section and sets it as the reduced output of the convolutional layer.
Figure 3 describes the function of the max pooling layer in a CNN. Each section is denoted
by a specific color: the maximum value of a section is the value of that specific section in
the reduced output.

0 0 0 0 0 0 0T 01—
R 1142
. 410 > 15 1o 51|78 | 87 | 68| 74 | 46
913 6 71519 o
BN s s S EE 61|94 |83 |66 74|70
31 s f-e-foc
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Figure 2. Convolutional layer example where x is the input, k is the kernel, and y is the output.
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Figure 3. Max pooling layer example where the input to the layer is reduced to the statistical summary.
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Frequency (kHz)

Frequency (kHz)

Normal

CNNs were originally created for image classification tasks. To create a 2D, image-
like signal, the use of an STFT was explored to convert a 1D signal into a 2D matrix.
This is done to exploit the CNN'’s image feature extraction capabilities. The STFT is
a discrete Fourier transform in a windowed section of the signal. The STFT permits
frequency analysis in the time domain using a sliding window. The STFT is an enhanced
mathematical methodology, derived from the discrete Fourier transform (DFT), to explore
the instantaneous frequency as well as the instantaneous amplitude of localized waves
with time-varying characteristics [34]. This method allows the time signal to be converted
into a time—frequency signal i.e., a 2D matrix. Some of the disturbances in power quality
studied in this work involve the injection of undesired frequency components (harmonics
distortion and notch). The other disturbances involve the deviation of voltage levels from
their nominal values, which can also be shown in the STFT. Figure 4 shows each converted
disturbed voltage signal seen in Figure 1 with its time-frequency counterpart. The heatmap
represents a yellow color for a high level of a frequency component and a blue color for
a low level of a frequency component. In Figure 4, all signals have a high level at 50 Hz,
which corresponds with the supply voltage frequency. The harmonic distortion and the
notch show other frequency components, and the sag, swell, and interruption show a
decrease or an increment in intensity at 50 Hz. The STFT is shown in (2), where x is the
input signal and w is the window function. The window function used in this work is
the Blackman window. The equation of the Blackman window is shown in (3), where
apg=(1—a)/2,a1=1/2,ay = x/2,and o = 0.16.
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Figure 4. Disturbance classes. (a) Normal STFT. (b) Sag STFT. (c) Swell STFT. (d) Harmonics STFT.
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Since the classification task involves multiple classes, the CNN has the same number
of classes as outputs. The output of the CNN involves a fully connected layer with six
outputs. Each output represents each class. The output is then converted to a probabilistic
density function by means of a SoftMax function. SoftMax functions are most often used
as the output of a classifier with the aim of representing the probability distribution over
n different classes [37]. The SoftMax function converts the output of each neuron into a
probability using (4), where e is the exponential output of a given neuron and Z]K:l e’
is the sum of all the exponential outputs denoted by K. The sum of all the outputs of the
SoftMax equals 1. Figure 5 shows an example of the SoftMax function which classified a
given voltage signal with a probability of harmonic distortion of 99% and a probability of

other disturbances of 0.2%. .
e 1

P=jlx) = = @)
LK e
j=1

o

o

o =

o~ g o
=] & o™ c
o o o A2 - =
= : = o =
© o o o = >
E 2 @ = = I
o 0 < © o =
prd )] ac prd -

— | /) | — | —1

Figure 5. SoftMax probabilities example.

Since this is a classification task and it is a multiclass problem, the loss function is
a cross entropy loss shown in (5). In this formula, P(7;|x) is the output of the SoftMax
function and y; is the training label.

CE = Z,C yilog(P(gi]x)) (5)

The gradient during training is calculated and the CNN is updated using the Adaptive
Moment Optimizer (ADAM optimizer). The ADAM optimizer is an adaptive learning
rate optimizer that uses first- and second-order moments of the gradients for updating
the individual parameters. In this work, the input voltage signal was converted to a
time—frequency matrix and then classified using the CNN. To achieve this, a dataset of
voltage signals with disturbances was generated and transformed into its time—frequency
counterpart using the STFT. The CNN was trained using the time—frequency dataset,
obtaining a probability of each disturbance with the SoftMax function. Using the cross-
entropy loss function, the output was measured with the labeled classes and the weights
were adjusted using the ADAM optimizer.

2.2. Multilayer Neural Network with Multivalued Neurons

One of the most innovative aspects presented in this paper is the use of an MLMVN in
the classification of electrical disturbances. This paper represents the first application of a
neural classifier based on multivalued neurons on the field of power quality evaluation.
The MLMVN structure used in this work is the classic three-layer configuration presented
in [38], while the use of binary neurons in the output layer, the introduction of the “Winner
Takes All” rule, and the choice of processing complex coefficients obtained through the
FFT of the sampled voltage waveforms are specific aspects of this application. This type
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of neural network is based on a feedforward neural network structure and a derivative
free backpropagation procedure during the training phase [38]. The absence of derivative
terms makes the correction of the weights very fast compared to other machine learning
techniques. Additionally, the complex nature of the MLMVN makes it easily adaptable
to electrical problems. In fact, the electrical quantities in power transmission and distri-
bution grids are characterized by alternating waveforms and therefore are represented
by phasors. Since each electrical standard has a single frequency value, line quantities
can be expressed as complex numbers characterized by magnitude and phase. For these
reasons, the MLMVN has been used with good results in failure prevention for electrical
infrastructures [39] and analog circuits [40]. From a general point of view, this classifier
is a three-layer neural network in which the elementary unit is the multivalued neuron
(MVN) described in [38], and the inputs and weights are complex numbers. Figure 6 shows
the global structure of the MLMVN where, for example, Wik’m is the i-th complex-valued
weight of the k-th neuron belonging to the layer m, Nj,_1 is the number of the neurons
belonging to the hidden layer, N, is the number of the neurons belonging to the output
layer, and (X1, X3, ... , X;;) are the complex-valued inputs.

Hidden Layer
Input Layer (m-1)
1m-1
C y " Output Layer
1

0

m

P

1

&

X (-]

I Ny 1.m—1 1m

n VI/I m-—1

P

u

L K i3,
s - W,

Nyp—1,m-1
W, YN,y m-1

Figure 6. Global structure of the MLMVN-based classifier.

In this paper, the complex-valued inputs (X1, X5, ..., X;) were obtained from the
discrete Fourier transform (DFT) of the sampled line voltage with a frequency of 8 kHz.
During the training phase, the time domain samples of the waveforms were processed
using a fast Fourier transform (FFT) algorithm, and each complex term obtained was used
as an input of the MLMVN. Figure 7 summarizes this procedure.
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Figure 7. Procedure for creating the dataset.

Since the correction of the weights is based on a supervised learning algorithm, many
sample signals must be used with the corresponding desired classifications. Therefore, the
structure of the dataset matrix used during the training phase is:

: ©)
(Ns)  x(Ns) (Ns)

X7 XXyt 5

where the last column contains the indices of the fault classes, n is the number of points

used in the fast Fourier transform algorithm, and Nj is the total number of examples.
Each term X, withk=1, ..., n,is calculated as

N .
Xe = Y vwy Y @)
j=1
in which V; is a voltage sample and Wy is obtained using (8).
Wy = 6(72m‘)/n 8)

Once the complex-valued inputs are calculated, all the weights are initialized to
random values and the dataset matrix shown in (6) is processed one row at a time. The
element in the last column of each sample is used to calculate the corresponding desired
output D, while the inputs (X1, X, ... , X;) are processed through the two layers of neurons
of the MLMVN. Neurons belonging to the hidden layer are characterized by a continuous

activation function: z

P(z) = ¢ Arg(z) _
(2) E

)

where z is the weighted sum of the inputs as follows:

z=Wy+ Z Wi X; (10)



Energies 2023, 16, 3627

11 0f 28

where Wy is the weight of the bias input, W; is the i-th weight of the considered neuron,
and X; represents the corresponding i-th input. On the other hand, the output layer of the
MLMVN contains only discrete neurons, which have a finite number of possible outputs.
Each of these neurons divides the complex plane into k equal sectors, and the output
corresponds to the lower border of the sector containing z. From a mathematical point of
view, given the total number of sectors k, the output of the neuron is equal to the lower
limit of the j-th sector if the argument of the weighted sum is between 27t/k and 2n(j + 1) /k.

P(Z) =Y =¢ =e?U/k if 2mj/k <arg(z) < 27m(j+1)/k (11)

Therefore, the combination of the output neurons is used to define the global classi-
fication results. In this sense, it is necessary to mention that the output neurons used in
this paper are binary. This is a specific solution chosen for this kind of application which
involves the use of a neuron for each electrical disturbance in the output layer. Therefore,
each neuron has only two possible outputs: (1 + i0) or (—1 + i0). The first value corresponds
to the lower border of the sector [0 7t), while the second term is that of the interval [, 271).
This setting allows the reduction in misclassifications between consequential sectors but
requires the introduction of a specific method for selecting outputs. In fact, the single failure
hypothesis is assumed, and this means that only one neuron can be activated by detecting
the corresponding disturbance. If, during the training phase, more than one neuron is
activated, the “Winner Takes All” rule is used. This means that only the neuron with the
lowest error is kept in the activated state. Therefore, each output neuron is associated
with a specific voltage disturbance, and the upper-half plane [0 7) is used to describe its
absence, while the lower-half plane [, 27) is used to indicate the problem. For example,
the first neuron belonging to the output layer focuses on sensing the voltage sag, as shown
in Figure 8.
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Figure 8. Example of function of a binary discrete neuron and output coding.
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Therefore, one neuron for each disturbance is used in the output layer. To facilitate the
interpretation of the results, the first sector of each output neuron is encoded by the value
“0”, and the second sector by the value “1”. Table 3 summarizes the organization of the
output layer.

Table 3. Output Neurons and Fault Classes.

Fault Class Description Output Combination
0 No disturbances 0 0 0 0 0 0
1 Voltage sag 1 0 0 0 0 0
2 Voltage swell 0 1 0 0 0 0
3 Harmonics distortion 0 0 1 0 0 0
4 Voltage notch 0 0 0 1 0 0
5 Interruption 0 0 0 0 0 1

As stated before, the MLMVN falls in the category of feedforward neural networks,
and the training is performed in a supervised manner. The first step in this procedure is to
map the correct combination of desired outputs to each example belonging to the dataset.
All the outputs equal to “0” are converted into the complex number (1 + i0), while the
outputs equal to “1” become (—1 + i0). These values are used to calculate output errors and
initiate the backpropagation procedure. Given D}, the desired output of the k-th neuron
belonging to layer m obtained by processing the samples (s=1, ..., N), the corresponding
error is the difference between D} | and the current output Y .

These values are normalized with respect to the number of neurons of the previous
layer as shown in (12).

D li,m - Yli,m

o3 =t SR 12
km Ny_1+1 ( )

These errors, calculated on the output neurons, are backpropagated from the last layer
to the input one through the mathematical rule presented in (13), as shown in [36].

o 1 & im -1
Sem1 =N 11 i;‘ﬁm (Wk ) (13)

m

This standard correction procedure allows the adjustment of the weights by using (14),

S

AWE™M = Sk % mYim—1 (14)
(N1 + 1)z,

where AWl.k’m is the correction for the i-th weight of the k-th neuron belonging to the layer
m, &, is the corresponding learning rate, Ny, is the number of the inputs equal to the
number of outputs of the previous layer, z§ = is the magnitude of the current weighted sum,

03 . is the output error, and Y?,m,l is the conjugate-transposed input for the output layer
neurons and inner hidden layer neurons (if any) or a reciprocal input for the first hidden
layer neurons. Equation (14) is used individually for each weight, and it represents the
main difference between neural networks based on multivalued neurons (MVNs) and those
based on real-valued neurons, because it does not contain derivative terms. This guarantees
the low computational cost and very fast training phase of the MLMVN compared to other
algorithms. To obtain a further reduction in the training time, the standard correction rules
were replaced with a batch algorithm [41]. In this case, the output errors are calculated as
shown in (12) and backpropagated as shown in (13) for each row of the dataset without
adjusting the weights. Once all the examples belonging to the dataset have been processed
and the corresponding errors have been defined, i.e., at the end of each training epoch,
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the corrections of the weights are calculated through a batch algorithm such as the QR
decomposition. Each error is then saved in a specific matrix:

1 O3 O
5%,171 5%,111 U 5%,111 (15)

Ns ¢Ns N;
él,m 51,111 e 5","1

and a corresponding oversized system can be written as shown in (16), because the number
of samples is greater than the number of corrections representing the unknowns.

Y(AW") — 5k (16)

This system must be solved through a linear least square (LLS), method obtaining the
best corrections to meet the following condition,

AWK = argmin”Y(AI/Vk) —5k|)2 = yrot (17)

-1
where the superscript k indicates the number of the neuron considered, Y* = (YTY) YT

is the pseudo-inverse of the matrix ¥, and Y7 is its conjugate transpose. In this work, QR
decomposition is used, and the error matrix shown in (15) for the hidden layer consists
of the backpropagated terms. To improve the classification performance of the MLMVN
proposed in this paper, the “soft margin” rule was adopted [42]. In this case, the training
phase is changed to bring the weighted sums as close as possible to the bisector of the
desired sectors. This technique avoids the misclassification of the z-terms that fall close to
the edge between two successive sectors. From the computational point of view, there are
no differences compared to the standard procedure, because the only change is the use of
bisectors as desired outputs Dy . Therefore, the goal of the weight correction is not only
the positioning of the output in the correct sector, but also the minimization of the distance
with respect to the bisector of that sector.

3. Training Results

This section presents the main results obtained during the training phase of the ma-
chine learning techniques described above. The data used during the training phase were
generated by a simulation procedure on Matlab and Simulink environments. Therefore,
a Matlab script was used to create a large variability in electrical disturbances in a very
short time, starting from the sinusoidal function of the line voltage, which is characterized
by a frequency of (50 Hz % 0.2%) and a root mean square value of 230 V. The amplitude
and the frequency components of these signals were modified to create all the different
disturbances following the formal definitions presented in Section 1. Starting from the
normal sinusoidal signal shown in Figure 1a, the value of the maximum amplitude was
chosen randomly in the interval (23 = 207) V to simulate the presence of a voltage sag.
This problem, in fact, causes a reduction in the phase voltage between 10% and 90% of the
nominal value. Similarly, examples of voltage swell were created by considering increases
in the maximum amplitude from 10% to 50% of the nominal value. As for the harmonic
disturbances, signals with frequencies multiple of the fundamental frequency (50 Hz) were
generated up to the eleventh harmonic and then added to the line voltage. Notch is a
condition when the magnitude of voltage decreases towards zero for a short period of
time, usually microseconds. This condition was simulated in Matlab by adding impulsive
components at specific instants of the nominal voltage waveform. Finally, interruptions
were simulated by reducing the maximum voltage value below 10% of the nominal value.
Note that the voltage frequency variations considered acceptable by the technical standard
CEI EN 50160 were included in the formation of the dataset, and this means that the
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classifiers are robust with respect to these perturbations, which do not represent power
quality problems.

Furthermore, other examples of PQDs were generated through the Simulink model
proposed in [29] by the authors. In this way, it was possible to simulate, with a high level
of accuracy, distortions caused by faults in low-voltage distribution networks. A waveform
with a duration of three periods (60 ms) was created for each signal, and 250 examples
were generated for each fault class (nominal condition, voltage sag, voltage swell, harmonic
distortion, notch, and interruption). A total of 200 of these examples were generated using the
Matlab script, and the remaining 50 using Simulink. Therefore, a set of 1500 simulated signals
were used to train the neural classifiers described above. The simulated voltage waveforms
were sampled with a frequency of 8 kHz, resulting in 480 samples for each example. These
data were used to create two matrices ensuring the properties presented in Section 2. In
order to clearly show the results obtained for each PQ disturbance taken into consideration,
the hold-out validation technique was used, and this means that the training procedure
was divided into two phases: a learning phase and a validation phase. During the learning
phase, 80% of the dataset was chosen randomly and used for the correction of the weights.
Subsequently, the remaining 20% was used in validation to verify the classification results.
In both phases, the index used to evaluate the performance is called the Classification Rate
(CR), and it corresponds to the ratio of correctly classified samples to the total number of
processed samples. The comparison between these two classification results is the basis of the
heuristic approach used to define the structure of the classifiers avoiding overfitting problems.
Additionally, to provide accurate performance evaluation, the hold-out validation results
shown in the following subsections were verified through a cross-validation method. This
means that the division of the dataset described above was repeated five times to use all the
data both in the learning phase and in the validation phase. The overall classification rate was
then analyzed to identify limits in the generalization capabilities.

3.1. Training CNN-STFT

The CNN training procedure requires a dataset containing the electrical voltage dis-
turbance in their time—frequency domain. Therefore, the simulated voltage disturbances
were converted to their time—frequency domains via the STFT, as shown in Section 2.1. The
used CNN architecture has an input of 500 rows and 5 columns. This means 500 frequency
components and 5 cycles. The CNN reduces the input using the max pooling layers and
at the same time increases the filter size. The training was completed, and the precision
and recall were calculated for each class. The precision of the CNN resulted in 100% in
all classes except the normal, which had a classification rate of 99.3% with the training
data and 98.9% with the validation data. The results are shown in Table 4. The recall
resulted in a 100% classification rate in all except for the sag and swell, which resulted in
99.6% and 99.7%, respectively, for the training, and 99.7% and 99.2%, respectively, for the
validation. The results are shown in Table 5. The CNN has an overall accuracy of 99.89%
for the training dataset and overall accuracy of 99.82% for the validation dataset.

Table 4. Training and Experimental Results for CNN.

Disturbance Class Trg;;:/:lg Val(ljcll{izon
0—Normal 99.3 98.9
1—Sag 100 100
2—Swell 100 100
3—Harmonics 100 100
4—Notch 100 100

5—Interruption 100 100
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Table 5. Recall Results for CNN.

Disturbance Class Trél;:/fg Valécli{izon
0—Normal 100 100
1—Sag 99.6 99.7
2—Swell 99.7 99.2
3—Harmonics 100 100
4—Notch 100 100
5—Interruption 100 100

The idea of using the CNN in this work is to take advantage of the already-developed
frameworks and toolboxes to incorporate in a real-time environment. These frameworks
already optimize the classification process in a deep learning pipeline. As shown in
Figures 9 and 10, the proposed method has lower memory space requirements than already
implemented architectures, obtaining a high accuracy in the classification process. Due to
the use of a fully connected layer, the CNN-STFT has a high number of parameters that
makes it slow in the training process, but it has a low number of layers, which makes it
faster than the other architectures for classification in a real-time environment.

Bubble Chart Comparison
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Figure 9. Accuracy with respect to the number of layers for various deep learning techniques
extracted from the literature.

3.2. Training MLMVN

The MLMVN training procedure requires a matrix-like dataset, shown in (6), con-
taining a large variability in electrical disturbances expressed in the frequency domain.
Therefore, the discrete Fourier transform was applied using a fast Fourier transform al-
gorithm to the samples of the voltage waveforms generated in Matlab. In this paper,
256 points were considered for the DFT, and the corresponding complex values were used
as inputs of the MLMVN. Table 6 summarizes the results obtained using 50 neurons in
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the hidden layer of the MLMVN. As stated before, the output layer contains five binary
neurons, one for each electrical disturbance, and the nominal conditions correspond to a
combination of five zeros.

Bubble Chart Comparison
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Figure 10. Accuracy with respect to the number of parameters for various deep learning techniques
extracted from the literature.

Table 6. Training Results for MLMVN.

Fault Class Tréllil(:/?g Val(l;li{i;:on
0—Normal 100 100
1—Sag 100 100
2—Swell 100 100
3—Harmonics 100 100
4—Notch 100 99.19
5—Interruption 100 100

Note that the size of the hidden layer was chosen by comparing the classification rate
of the learning phase and that of the validation phase as the number of hidden neurons
varies. The results of this heuristic approach are shown in Figure 11. When the classification
results of the learning phase are excellent but those of the validation phase decrease, this
situation can be considered as an index of overfitting. Therefore, it is necessary to reduce
the number of neurons in the hidden layer. Finally, it should be noted that the results
reported in Table 5 are also confirmed through the cross-validation method. In fact, by
repeating the training procedure five times while modifying the data used for learning and
validation, the overall classification rate obtained is 98.94%.

Before proceeding to the experimental validation of the performances, during the train-
ing phase, a comparison was proposed with some computational intelligence techniques
derived from those reported in Table 2. Some of these results are shown in Table 7.
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Figure 11. Method used for the selection of hidden neurons.

Table 7. Comparison with other classification methods.

Computational Intelligence

. Main Characteristics
Technique

Training CR%

Validation CR%

In this case, a standard CNN is used to process
time domain samples of the voltage waveforms.
This is a neural network architecture that uses
layers of convolution, pooling, and batch
normalization for feature extraction. The
convolutional layer is accompanied by a pooling
layer, which is a type of downsampling that
helps with processing speed. Basically, the CNN
performs a convolution of the input signal with
a kernel.

Convolutional Neural
Network (CNN)

89.22

89.05

In this case, the three-layer feedforward
architecture of a complex value network is used.
Sampled waveforms are not processed before
classification. Each sample in the time domain is
considered to be the phase of a complex number
with unit magnitude.

Feedforward Complex
Neural Network

80.92

73.133

AlexNet is a milestone in deep CNN and it is
based on eight layers (five convolutional layers
and three fully connected layers).

AlexNet

A quadratic SVM is used to directly process time
domain samples of 8 kHz sampled voltage
waveforms. A degree two polynomial kernel is
used as the mapping function to make the
samples separable.

Support Vector Machine

89.15

88.77

A quadratic SVM is used to process samples in
the frequency domain. The same procedure
explained above is followed. The voltage
waveforms used for training are sampled at
8 kHz and then discrete Fourier transform is
applied. The coefficients obtained are classified
as real values by the SVM.

FFT + Support Vector Machine

96

95.22
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Table 7. Cont.

Computational Intelligence

. Main Characteristics Training CR% Validation CR%
Technique

In this case, the fine-tree algorithm of the MatLab
classification learner library is applied on the
coefficients of the discrete
Fourier transformation.

FFT + Decision Tree 84 83.3

4. Experimental Setup

The experimental testing of the training results was carried out by generating an experi-
mental dataset of the electrical quantities of interest. These datasets contain phase voltages
and currents and some derived quantities that are needed for the disturbance recognition.
Once the dataset was generated, it was fed to the classification algorithm for testing.

The experimental setup is shown in Figure 12. The proposed setup can reproduce
multiple network disturbances with different spectral contents, durations, and amplitudes,
allowing us to evaluate the detection accuracy of the proposed neural networks. To
simulate a grid with power quality disturbances, the Asterion 4503 A1/3PH by Ametek
programmable AC source was used. It has a maximum power of 4500 VA and can generate
arbitrary waveforms at a frequency of up to 5 kHz. Its dynamic characteristics allow
the simulation of any type of network disturbance. To acquire the current and voltage
waveforms, a SIRIUSi-HS-4xHV-4xLV was used. The acquisition system can acquire eight
channels at a maximum sampling rate of 50 kHz. The purpose of the experimental setup was
to reproduce most of the power quality disturbances that may affect industrial plant and to
guarantee the repeatability of the electrical dynamics and accuracy of the measurements
for each experiment so that the comparison is consistent. Moreover, thanks to the flexibility
of the systems used, it can be adapted to any new configuration required for the testing of
detection and classification algorithms.

Experimental Setup
éd Disturbance Generator Meter Dewesoft \
Load

Asterion 4503 SIRIUSiI

Figure 12. Experimental test bench for PQ disturbance generation.

5. Experimental Validation of the Classification Techniques

This section proposes further validation by using real voltage measurements to high-
light the advantages and disadvantages of both techniques. Therefore, different examples
of disturbances were generated by the two experimental setups described above, and the
corresponding voltage waveforms were sampled with a frequency of 8 kHz. Finally, a
comparison of a specific sequence of electrical disturbances is presented.
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5.1. Validation of the MLMVN with Real Measurements

The first voltage waveform used to validate the performance of the MLMVN-based
classifier is shown in Figure 13, where the voltage sags and nominal conditions alternate
with different durations.

v(t)

400
300
200

T e

—-200 | i ‘
—300 Tm L \1“‘\ il W ‘

0 1 2 3 4 5

time (s)
Figure 13. Real voltage waveform used during the validation procedure: succession of voltage sags
and normal conditions with different durations.

The time window proposed in Figure 13 has a duration of five seconds and, therefore,
it contains 250 sinusoidal periods, each of which is made up of 8000 samples. One of
the most important aspects in the evaluation of classification results is taking the time
interval into consideration. For example, the signal shown in Figure 14 can be processed
using five consecutive time intervals of one-second durations. The proposed monitoring
method assesses the DFT for each interval and classifies them. As shown in Figure 14, this
procedure allows the perfect classification of the considered voltage waveform. Note that
the second time window, 1 to 2 s, is correctly classified as sag because the perturbation
affects the initial part of this observation.

v(t)
400

300
200
100
0
—100 MmN
—200
—300
—400 °
0

5
Classification Results time (s)

5 — Interruption
4 — Notch

3 — Harmonics

2 — Swell
1—Sag

0 — Normal

Figure 14. Classification results obtained through MLMVN on real measurements.
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However, there are some situations in which the MLMVN misclassifies, for example in
the case of a brief perturbation. Figure 15 describes this condition: the time interval taken
into consideration is classified as normal, but it presents a voltage sag of 60 ms.

v(t)

400
300}
200 |

100
0
—-100

—200
—300
—400

0.2 0.4 0.6 0.8 1
time (s)

Figure 15. Example of a voltage waveform that produces a classification error.

To overcome this limitation, it is possible to reduce the duration of the time interval
used for the classification procedure. In this way, short disturbances are identified with a
high classification accuracy, and the exact moment they start is detected. Figure 16 shows a
classification example in which a voltage waveform is processed using 60 ms time intervals.
Note that the excellent classification results shown in Figure 16 can also be obtained by
considering the other fault classes. Table 8 summarizes the classification performances
obtained using different time interval durations.

J

Figure 16. Classification results obtained through MLMVN considering time intervals of 60 ms.
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Table 8. Classification Results with Different Time Intervals.
Time Interval
Disturbance 0.06 5 0.6s 1s 2s
1—Sag 98.5% 90% 80% 66.6%
2—Swell 97% 87.5% 79.5% 66.6%
3—Harmonics 99.25% 90% 84% 75%
4—Notch 97% 90% 80% 68%
5—Interruption 98.5% 90% 80% 70%
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These results were obtained considering real voltage measurements of 25 s, and they
confirmed the excellent performance when the waveform is processed using a short time
interval. On the other hand, the classification rate decreases as the number of periods pro-
cessed simultaneously increases. It should be noted that the classification of the harmonic
disturbance is slightly better than that of the other perturbations when using time intervals
of 1 s and 2 s. The reason for this result is that the presence of a voltage component with
frequency higher than 50 Hz introduces significant variation in the Fourier analysis. As
shown in Figure 17, in the magnitude representation, several lines are introduced with
respect to the normal condition, each of which corresponds to a frequency component.
These contributions are also present in the case of a short-duration harmonic perturbation
and therefore make the classification slightly easier. As for the other voltage disturbances,
they focus on the 50 Hz component, and this makes it difficult to recognize brief problems.

vl
120

100
80

60

100 150 200 250 0 50 100 150 200 250
n points n points

(@) (b)

Figure 17. DFT results. (a) Magnitude in the case of a voltage waveform with harmonic disturbance
of 0.15 s. (b) Magnitude of a normal voltage waveform.

In addition, it should be noted that some of the errors in detecting voltage sags and
interruptions using a short time interval (0.006 s) correspond to class 4 misclassifications.
In fact, in the instant in which the voltage drop begins, features very similar to those of
a notch can occur. This means that the MLMVN can detect the starting point of these
disturbances, but sometimes classifies it as a notch. Figure 18 describes this situation.
Without considering these errors, the classification rate would be over 99%.
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5.2. Validation of the CNN-STFT with Real Measurements

The same voltage waveform described in the previous section was used to validate
the performance of the CNN-based classifier shown in Figure 2, where the voltage sags
and nominal conditions alternate with different durations using the voltage disturbance
generator. For the validation of the CNN, the signal was converted to its time—frequency
domain using the STFT and then classified as a 500 x 5 image. The dimensions of the
time-frequency matrix represent 250 frequency components of 3 cycles, or 60 ms, with
a sliding window of half a cycle, which makes 5 DFT. The validation of the CNN-STFT
resulted in 4 misclassifications out of 479 classifications, which makes it 99.16%accurate.
Misclassifications in this experiment occurred in transitions between normal and sag or
sag and normal. This is due to high-frequency components being found at each transition,
which led to a harmonic classification. Figures 19-22 show the classification results. The
top plot shows the voltage signal to be transformed and classified. All figures show at least
one sag that transitions to normal or vice versa. As shown in the STFTs, the transitions
create high-frequency components which often lead to a harmonic classification, as shown
in Figures 19-22.

Voltage signal

L
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Time (ms)
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05 1 15 2 25 3 35
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w 3Harmon|cs
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Figure 19. Experimental signal generated with the disturbance generator (top). The STFT of the
experimental signal (middle) and the classification results using the CNN (bottom).
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Figure 20. Experimental signal generated with the disturbance generator (top). The STFT of the

experimental signal (middle) and the classification results using the CNN (bottom).
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Figure 21. Experimental signal generated with the disturbance generator (top). The STFT of the

experimental signal (middle) and the classification results using the CNN (bottom).
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Figure 22. Experimental signal generated with the disturbance generator (top). The STFT of the

experimental signal (middle) and the classification results using the CNN (bottom).
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5.3. Comparison between MLMVN and CNNSTFT

Finally, a comparison between CNN-STFT- and MLMVN-based classifiers is presented.
For this comparison, a voltage signal containing all five categories of disturbances was
generated. The rated voltage value is that of the Italian distribution network (Vs =230V,
f =50Hz).

This signal was generated as shown in Section 4 and sampled with a frequency
of 8 kHz. The goal of the classification is to determine the power quality by studying
60 ms (three cycles) at a time. Therefore, the sampled signal was divided into groups of
480 samples, and each of them was assigned the corresponding classification. Figure 23a
shows the overall signal and the correct classification of the 16 groups of the analyzed sam-
ples, while Figure 23b,c present the classification results obtained through the
two techniques.
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Figure 23. Comparison between MLMVN and CNNSTFT on experimental measurements. (a) Voltage
signal characterized by the five disturbances. (b) Classification results obtained through MLMVN-
based classifier. (c) Classification results obtained through CNNSTFT-based classifier.
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The MLMVN-based classifier misclassified in the first sample. This is a very complex
situation to recognize because the voltage sag situation occurs in the last half-period of the
three taken into consideration. Figure 24 shows this situation. It can be said that by using
one FT for each sine cycle, i.e., by analyzing one cycle at a time, this type of error can be
eliminated, ensuring 100% accuracy.
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Figure 24. First group of samples used for the validation procedure.

It is necessary to highlight that the experimental data were also used to evaluate the
robustness of the classifiers with respect to the measurement noise. Therefore, random
noise signals were added to all the real measurements taken into consideration, obtaining
signal-to-noise ratios between 20 dB and 50 dB. The classification performance decreases as
the noise increases, but both classifiers are robust and guarantee an overall classification
rate greater than 82%, even in the worst case.

In conclusion, a consideration of the classification techniques presented in Table 8 can
be introduced. The two techniques that offer the best results during the training phase were
used on the experimental data. Both the quadratic SVM and the AlexNet show excellent
performance on four fault classes, while misclassifying all examples of nominal conditions
with notch type disturbances.

As for the CNN-STFT, the transition from normal to a disturbance results in a high-
frequency component which can be interpreted as another disturbance, as shown in the
previous section. This is also the cause of the errors presented in Figure 23. Figure 25 shows
a comparison of the STFT of two waveforms: the left side of the figure shows the STFT
of a normal signal generated with the noise generator, while that of a sag is shown in the
right side. The transitions shown on the image inject high-frequency harmonic components
that, in some instances, disrupt the classification process, leading to some misclassifications
in the validation. Comparing the results obtained with those of some important works
in the literature, such as [43,44], it is noted that the performance in the case of individual
disorders is comparable. In fact, classification results higher than 98% are obtained for the
individual fault classes. Further modifications in the output layers of the two proposed
algorithms will be implemented to deal with multiple failures, as in [26-28].
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Figure 25. Comparison with the STFT of a transition from sag to normal and vice versa: STFT of a
normal part of the signal generated with the disturbance generator (left); STFT of a sag part of the
signal generated with the disturbance generator (right).

6. Conclusions

In conclusion, it can be stated that the two proposed techniques allow the monitoring
of the power quality in a low-voltage distribution network with an excellent level of
accuracy. The short training time and the use of common techniques, such as the Fourier
transform, in the data processing phase make the two classifiers very versatile and easily
adaptable for the recognition of other electrical disturbances.

Compared to other techniques, they allow the analysis and classification of a voltage
signal in time and frequency. This can further enhance the feature extraction capabilities
due to the addition of the frequency dimension. The use of the STFT was to transform
the 1D signal into a 2D matrix to exploit the CNN'’s feature extraction capabilities and its
benefits for classification tasks. The STFT was chosen in this work because it uses a discrete
Fourier transform, which is a simple algorithm to implement in a real-time application
compared to other time—frequency transformation algorithms.

Future developments could be focused on improving performance when processing a
larger number of cycles per classification and introducing additional types of disturbances
that are very frequent in industry. Furthermore, the real-time applications of these two
approaches will certainly be studied in the future to develop an effective monitoring tool
for electric grids. Therefore, the possibility of integrating the proposed techniques in
embedded electronics and directly classifying the quality of the voltage waveform will be
studied. This will certainly make the two techniques usable together with other systems for
improving energy quality. To adapt the proposed classifiers to different acquisition devices
in many other electrical systems, a measurement noise treatment will be introduced during
the training phase. Finally, a very interesting future development will be improving neural
algorithms to work under multiple failure hypotheses to classify disturbances consisting of
multiple distortions.
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