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Abstract: Recently, the development of integrated inverters for photovoltaic systems has been widely
performed to reduce overall system size, costs, and losses. Thus, integrated inverters have emerged
as a prominent solution for replacing two-stage power conversion composed of a step-up converter
and a voltage source inverter. Thereby, this paper proposes an integrated inverter topology for
single-phase grid-tied photovoltaic systems. The proposed power converter, called a Single-Phase
Integrated Zeta Inverter (SP-IZI), can boost the input voltage and inject a sinusoidal and regulated
current into the mains with low harmonic distortion. The SP-IZI is based on integrating modified
DC-DC Zeta converters, designed and controlled to operate in a discontinuous conduction mode,
and presents similarities with the Modified Zeta Inverter (MZI). In this way, this paper compares
the main parameters of both topologies and provides a complete study of the SP-IZI, involving
both quantitative and qualitative studies as well as a small signals analysis. The feasibility and
functionality of the proposed SP-IZI inverter are presented and evaluated through experimental
results, which demonstrate that the SP-IZI presents the following advantages compared to the MZI:
(i) the voltage in coupling capacitors is 13% lower; (ii) voltage stresses in switches and diodes are 40%
lower; and (iii) static gain is similar to the traditional Zeta converter.

Keywords: DC-AC power conversion; integrated inverter; integrated zeta inverter; photovoltaic
systems; zeta converter

1. Introduction

Research and technological development involving renewable energies have been
growing considerably in the past years [1–4]. This growth is mainly motivated by the
necessity of expanding electricity generation and distribution by employing technologies
that cause less environmental impact than traditional energy sources, such as those based
on fossil fuels and mineral coal [3,5]. In this way, regulatory agencies are fundaments in reg-
ulating, inspecting, and promoting environmentally friendly electrical energy sources [6,7].

Particularly, photovoltaic (PV) systems can be widely used in various commercial/
residential and industrial applications. However, PV panels present low efficiency, about
27% in the more efficient structures. Different materials have been used in PV panel
building in the last years, reaching higher efficiency [8].

On the other hand, these sources produce direct current (DC) power, so it cannot
be directly integrated into the conventional AC utility grid. Hence, it is necessary to
make adequate the level and waveform of their voltages to achieve proper uses. Thus,
the conditioning of this energy source can be performed using electronics-based power
topologies to achieve DC-DC and DC-AC conversion [9–16].
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Traditionally, a step-up DC-DC converter is associated with the voltage source inverter
is performed to interface the PV system to the mains. This setup is characterized as a
double-stage power conversion and is widely employed due to its simplicity. However,
as disadvantages, this kind of conversion may present reduced efficiency, as well as a
higher weight and size once a higher number of electrical and electronic components are
needed [9,11,17–21].

Techniques to decrease issues in the DC-DC converter were proposed in [22,23]. In
Refs. [22,23], a topology was suggested for PV applications that use multiple input sources
and a single output; then, the circuit can operate with failure in some input sources. In
addition, the converter structure can supply a higher or lower voltage in its output than
the inputs. In Ref. [24], current and voltage oscillations in a PV generation connected to a
single-phase utility grid were analyzed. The initial approach to reduce the oscillations is by
using huge decoupling capacitors. However, an average current mode control is proposed
for double-stage power conversion, reducing the second-order harmonic propagation.

A microinverter used to interface a PV module into the utility grid has been proposed
in [25], which is deployed by the cascade association of a DC-DC flyback converter to the
full-bridge inverter. Similarly, an association of an isolated DC-DC Zeta converter with
multiple outputs, each connected to a voltage source inverter, is proposed in [26].

On the other hand, major research has been conducted to overcome the disadvantages
mentioned above in the field of single-stage power conversion topologies [11–21]. The
main advantage of the integrated inverter is its ability to perform the boost of the input PV
voltage and simultaneously provide a regulated and controlled AC voltage or current in its
output. Furthermore, in most cases, the integrated topologies employ fewer components
and/or present a distinct topology configuration that leads to lower weight, size, and
losses. However, combining the power stages and the presence of non-minimum phase
characteristics can lead to significant difficulties in voltage and/or current control [27–29].

In Ref. [30], a submodule based on an isolated Ćuk converter has been proposed. The
system analyzed includes a marine energy source, PV generation, battery storage, AC grid,
and vessel supply. The main goal is to decrease dependence on fossil fuels in the shipping
industry. The converter topology allows for bidirectional power flow and output voltage to
be higher or lower than the input, as well as providing galvanic isolation.

In Ref. [31], an integrated topology based on a Zeta inverter is also proposed and
designed to operate in continuous conduction mode (CCM) or discontinuous conduction
mode (DCM). A feedback controller associated with a feedforward control loop and repet-
itive control was proposed to deal with different system dynamics once the converter
operates in CCM and DCM. An integrated converter topology based on a DC-DC Ćuk
converter presenting galvanic isolation and the capability to perform high voltage gains
is proposed in [32]. On the other hand, the power converters presented in [33,34] have
reduced switching devices. In Ref. [33], a microinverter is proposed based on the isolated
DC-DC Zeta inverter. In Ref. [34], an inverter is shown derived from the Ćuk and Watkins-
Johnson converter, which minimizes the problems related to parasite capacitances; it can
operate either grid-tied or autonomously (off-grid). In addition, a buck–boost dual-leg-
integrated step-up inverter for the AC microgrid is proposed in [35]. In this case, during
one switching period, the topology presents four operation stages in each stage operation,
where two switches are turned on while the other two remain turned off. Nevertheless, the
inverter design can be complex. Considering the traditional step-up DC-DC converters, in
Ref. [27], a family of integrated inverters is presented. This family of integrated inverters
works with the same number of switching devices compared to the traditional two-stage
power converters.

To improve the traditional boost inverter, a dual-input dual-buck inverter with in-
tegrated boost converters is proposed in [36]. The topology uses two integrated boost
converters and two inverters’ legs. Once the topology works symmetrically, an integrated
boost and an inverter leg are used in the positive half-cycle output. In contrast, the other
part of the topology is accountable for operating in the negative half-cycle.
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In addition, integrated inverters also can be employed for three-phase grid-tied PV
applications, which can step-up the input voltage and inject a three-phase sinusoidal
current into the mains. The power from the PV array is transferred equally to three-phase
mains. Therefore, this topology is commonly employed for higher power levels when
compared with single-phase systems [21,27,37,38].

More recently, new topologies have been proposed, such as the Modified Zeta Inverter
(MZI) in [39,40], which is based on the modified DC-DC Zeta converter. The MZI presents
three operation stages during each switching period. However, its third stage differs from
the conventional DC-DC converters operating at DCM. The currents through the input
inductors from MZI present three steps. First, the current starts at zero and grows linearly
to the peak value. In the second, it decreases linearly to zero. In the third, it is kept at zero.

On the other hand, the current through the output inductor acts as CCM. The current
starts at a minimum value in the first operation stage and grows linearly to the maximum.
After, the current decreases and reach the minimum value at the end of the switching period.
Besides the distinct third operation stage, compared to conventional DC-DC converters,
the voltages across some elements—such as the power switches, diodes, and coupling
capacitors—can be higher and not easily determined.

This paper proposes an integrated inverter topology able to interface the PV array
and the single-phase mains. The proposed topology combines the modified DC-DC Zeta
converters, and is called a Single-Phase Integrated Zeta Inverter (SP-IZI). The SP-IZI can
perform both the input voltage boosting and inject a sinusoidal current into the mains with
low total harmonic distortion (THD). The entire analysis and development of the proposed
SP-IZI are evaluated and validated from experimental results.

This paper is organized as follows: Section 2 describes the functionality, operation, and
modeling of the proposed SP-IZI, while Section 3 compares the main differences between
the proposed SP-IZI and the MZI. Section 4 presents and discusses the results obtained
from experimental results. Finally, Section 5 presents the conclusions.

2. Functionality, Operation, and Modeling of the Proposed SP-IZI

As mentioned earlier, the proposed inverter can connect the PV array to the single-
phase mains through an integrated converter topology. The system can simultaneously
perform the DC PV-voltage boost while injecting a sinusoidal current into the mains by
extracting the maximum energy available at the PV array, as illustrated in Figure 1.
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Figure 1. Scheme of the SP-IZI circuit: (a) electrical circuit; (b) control diagram block.

The SP-IZI is built by integrating modified DC-DC Zeta converters, each operating
in a semi-cycle of the utility grid. The topology is designed to work in discontinuous
conduction mode (DCM). In this operation mode, the static gain is linear. Thus, the
proportional–integral controller gains can be easily tuned. The SP-IZI injects an active
and synchronized current into the single-phase utility grid, attending to power quality
standards and requirements [41,42]. The SP-IZI is controlled by employing a multiloop
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control, in which the inner control loop regulates the injected current into the grid and is
designed with a higher bandwidth than the outer loop. In contrast, the voltage control
loop is set to be slower than the current control loop. It is responsible for maintaining the
PV array voltage according to the reference provided by the MPPT algorithm. The SP-IZI
control, the MPPT, and the PLL algorithms are addressed in Section 2.7.

2.1. Operation of the SP-IZI

The SP-IZI has three stages of operation during a switching period. In a simplified
way, the division of the half-cycles of the utility grid voltage allows the topology to present
the same operation stages as the traditional DC-DC Zeta converter. Figure 2 illustrates the
three operation stages of the SP-IZI circuit.
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Figure 2. SP-IZI operation stages for the positive half-wave cycle of the mains: (a) DaTs; (b) DbTs;
(c) DcTs.

Analyzing the positive half-wave cycle and disregarding the component losses, the
switch S1 is turned on in the first stage of operation (DaTs), and the switch S2 is turned on
during the entire positive half-wave cycle, but in this stage of operation, it is not sending
current through the diode D2, which is placed in series with switch S2.

The voltage across the inductor Lm1 is equal to the voltage across the capacitor Cdc1.
Ideally, it represents half of the PV voltage amplitude (vPV/2). At the same time, the
inductor Lm2 voltage is equal to half of the PV array voltage plus the sum of the voltage
across the capacitors C1 and C2, such that vLm2 = vCdc1 + vC1 − vC2. When vC1 = vC2, the
voltage across the inductor Lm2 is equal to vCdc1. Furthermore, the output inductor (Lo)
presents a voltage equivalent to the sum of the voltages across the capacitor Cdc1, capacitor
C1, and capacitor Co, such as vLo = vCdc1 + vC1 − vCo. The current flowing through the
capacitor C1 is the sum of the currents that flow through the inductors Lm2 and Lo. The
current through the capacitor C2 is equal to the inductor Lm2 current for the entire positive
half-cycle of the grid. This operating stage can be seen in Figure 2a.

The second operation stage (DbTs) initiates when the switch S1 is turned off. Thus,
the accumulated energy in the inductor Lm1 is transferred to the capacitor C1 through the
switch S2 and diode D2.

The voltage across the inductor Lm1 is the same as that of the capacitor C1 (vLm1 = −vC1).
The energy accumulated in the inductor Lm2 is transferred to the capacitor C2. Thus, the
voltage across the inductor Lm2 is the same as that of the capacitor C2 (vLm2 = −vC2). Since
the voltages across capacitors C1 and C2 are equivalent, the inductors Lm1 and Lm2 will be
magnetized with the same ratio in DaTs and proportionally demagnetized in DbTs. For
DbTs, the current through the capacitor C1 is the same as in inductor Lm1. The voltage
across the inductor Lo is equal to that of the capacitor Co (vLo = −vCo). This stage is
visualized in Figure 2b.

The third stage (DcTs) starts when the currents through the inductors Lm1 and Lm2
decrease to their minimum values, and the sum of their currents cannot polarize the diode
D2 to operate in conduction mode. At this moment occurs the current change between the
inductors. All the diodes are blocked in this stage, causing the current to flow only through
the passive elements. Hence, the voltage across the inductors is nearly null, resulting in
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voltage equality between the capacitors C1 and C2. This operation stage is visualized in
Figure 2c.

By driving the switches S3 and S4, the operation analysis of the SP-IZI for the negative
half-cycle of the grid voltage is performed similarly to the operation of the converter in the
positive half-cycle.

2.2. Static Gain of SP-IZI Structure

From the description of the SP-IZI operation, it is possible to derive the voltage
equation of the inductor Lm1 during one switching period. Knowing the average voltage in
the inductor is null in steady-state, the following relationship can be obtained:

VLm1av = Vdc1Da −VC1Db + (VC2 −VC1 + VLm2)Dc = 0 (1)

The average voltage across the inductor Lm2 is null and calculated as follows:

VLm2av = (Vdc1 + VC1 −VC2)Da −VC2Db + (VLm1 −VC1 + VC2)Dc = 0 (2)

As analog from (1) and (2), the average voltage in the inductor Lo is derived as:

VLoav = (VCdc1 + VC1 −VCo)Da −VCoDb + (VLm2 + VC2 −VCo)Dc = 0 (3)

Equaling (1)–(3), the result is that the average voltages across the three capacitors are
the same, i.e., VC1 = VC2 = VCo. Analyzing the third operation stage, the sum of the voltages
across the inductors Lm1 and Lm2 is equal to the sum of the voltages across the coupling
capacitors VLm1 − VLm2 = VC1 − VC2, resulting in equality between Lm1 and Lm2 voltages.
In this stage, the output inductor voltage also can be described as the sum of the voltages
across the inductor Lm1 and capacitors C1 and Co, resulting in VLo = VLm1 + VC1 − VCo.
Since the average voltages in these capacitors are equal, the absolute voltages in Lm1 and
Lo must be nearly the same in the third operation stage. Therefore, the voltages across the
three inductors in this stage are ideally null.

In the operation stage DcTS, considering the voltages across the inductors are null, the
operation stages DaTS and DbTs can be related by:

VCdc1Da = VC1Db (4)

In the charging interval (Da), the current through the switch S1 is the sum of the three
inductors’ currents. As mentioned, the average voltages across the capacitors present the
same value. Consequently, all inductors are charged with half of the input voltage during
this stage.

The current through the switch S1 flows only in the first operation stage. Considering
the charge of the inductor, the average value of this current is calculated as follows:

IS1av =
IpDaTs

2
=

Vcdc1Da2Ts

2

(
1

Leq

)
(5)

where Ip is the current peak in the semiconductors and Leq is the parallel association of the
inductors Lm1, Lm2, and Lo.

In Ref. [43], a converter modeling approach that uses an effective resistance (Re) to
represent the processed power was proposed. The power dissipated on this resistance is
equivalent to the output power. In the SP-IZI, this power can be calculated by the product
to half input voltage, or ideally Vcdc1, and the average current through the switch S1. Thus,
Re is defined as:

Re =
2Leq

Da2Ts
(6)

The proposed topology acts as an integrated inverter, injecting current into the utility
grid. Therefore, the balance of power can be expressed as:
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Pin = Pout =
Vcdc1

2

Re
=

Vg
2Pout

vg2 (7)

The static gain is the relation between the output and input voltages, considering the
voltage peak of the utility grid (Vp); using (6) and (7), the static gain as expressed as:

Ge = Vp

√
1

2RePout
= VpDa

√
1

4LeqPout fs

(8)

where fs is the switching frequency.
The voltage across the capacitor C1 is nearly equal to the utility grid. Therefore, using

(4) and (8), the second operation stage is determined as:

Db =

√
4PoutLeq fs

Vp
(9)

2.3. Waveforms Concerning the Utility Grid

The SP-IZI operates as an integrated inverter that performs the interface between a
PV array and the single-phase utility grid. The output current of SP-IZI is controlled to
guarantee that a sinusoidal current is injected into the grid. Hence, each switching device
of SP-IZI presents distinct modulation. Figure 3a shows the commutation signals used in
SP-IZI for the entire grid voltage period.
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through the inductors; (c) voltages across the capacitors.

The voltage across the capacitor C1 presents the same value as the utility grid but
with some voltage ripple. Similarly, the capacitor C2 also presents the same grid voltage
waveform grid. Figure 3c shows the voltage waveforms of the capacitors C1 and C2 and
the utility grid voltage waveform.

Considering the equal voltage across the capacitors C1 and C2, the resulting inductors’
Lm1 and Lm2 voltages are the same. Thus, in each switching period, both inductors are
magnetized and demagnetized with the same intensity, presenting the same current ripple.

On the other hand, during the whole positive half-wave cycle of the utility grid, the
currents through the inductor Lm2 and capacitor C2 are the same, and the average capacitor
current is null. Consequently, the average Lm2 current also is null at this half-wave cycle.
By symmetry of the topology, the average Lm1 current is null at the negative half-wave
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cycle. Figure 3b presents the current waveforms of the inductors for a complete utility
grid period.

2.4. State-Space Model for the Inner Control Loop

Using the generalized switch-averaging modeling approach, the equations for the inter-
nal control loop in state-space is derived. The corresponding equations for the outer control
loop are obtained, taking into account the power balance between the extracted PV array
power and the injected power into the mains. Once the equations are obtained, the SP-IZI
is analyzed for the operation in conjunction with the adopted MPPT and PLL algorithms.

During each switching period, the SP-IZI has three operating stages, DaTs, DbTs, and
DcTs. Due to the symmetric operation of the proposed inverter, the same behavior for the
positive half-wave cycle is equivalent to what occurs in the negative half-cycle. In this way,
it is possible to simplify the converter structure for analysis such as the one acting in a
half-cycle. It is noticed that, during a switching period, the current is divided between the
inductors Lm1 and Lm2, as compared to a conventional Zeta converter, where this current
flows through the inductor Lm, which is equivalent to a parallel association of Lm1 and Lm2.
Once both inductors present the same inductance, it is possible to write Lm = Lm1

2 . The
current is also divided between capacitors C1 and C2, resulting in the coupling capacitor
(Ca) for the conventional Zeta converter. The capacitor Ca is assumed to be the parallel
between C1 and C2, and if C1 = C2, the equivalent capacitor is equivalent to Ca = 2C1.

The average state-space model is widely employed for modeling dynamic systems
by its simplicity. The state-space model can be obtained for the static converters operating
in both CCM and DCM [43–47]. The SP-IZI presents the behavior as very close to the
conventional Zeta converter operating in DCM. Thus, converter modeling is adopted as
an equivalent model for the SP-IZI. The utility grid, vg, can be represented as an input
system in the matrix “B” in the state-space modeling. The voltage across the capacitor
Cdc1 also can be considered an input in this matrix. Furthermore, the line inductance (Lg)
and resistance (rg) between the inverter and the utility are also taken into account. These
considerations for converter modeling ensure a better system response. Thus, Figure 4
presents the equivalent model used in the SP-IZI modeling.
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In Ref. [33], the state matrix of the converter operating in DCM was adequate through a
modification in the matrix concerning the inductor current to represent the system behavior
in discontinuous operation.

In addition, a generalized switch-averaging technique is adopted in [31,47], which is
associated with the average state-space model to overcome the problems of representing
the dynamical characteristics of the converter operating in DCM.

The employed modeling is based on the linearization of the state variables around the
quiescent operating point, in which small oscillations are considered in the mean value.
Hence, a generic variable x is represented by a mean term (DC) plus a first-order AC term,
x = X + x̂, with X representing the DC term and x̂ the AC term. There are considerations
that the DC terms are much greater than the AC terms, |X|” |x̂| [43].

The average state-space model is initially adopted for modeling the SP-IZI according
to Equation (6).

.
x = MAmx + Bmu (10)
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where x is the state vector, u is the input vector, Am is the average state matrix for a
switching period, Bm is the average input matrix, and M is the corrected matrix to DCM.
The corrected matrix M can be obtained for the state-space averaging model of the SP-IZI
operating in DCM as follows:

M =


1−Db

Da
0 0 0 0

0 1 0 0 0
0
0
0

0
0
0

1 0 0
0 1 0
0 0 1

 (11)

Performing the state-space averaging model and considering the adequacy matrix [see
Equation (10)], the equivalent circuit representation for the SP-IZI presented in Figure 4 is
determined as follows:

.
iLm.
iLo.

vCa.
vCo.
iLg




0 0 a1 a2 0
0 0 a3 a4 0

Db−D2
b

CaDa
0
0

Db−1
Ca
1

Co
0

0 0 0
0 0 −1

Co

0 1
Lg

−rg
Lg




iLm
iLo

vCa
vCo
iLg

+


Da
Lm

0
Da
Lo

0
0 0
0 0

0 −1
Lg


[

vCdc1
vg

]
(12)

y =
[
0 1 0 0 0

]


iLm
iLo

vCa
vCo
iLg

 (13)

where a1 = −(Lm+Lo)Db−LmDc
Lm(Lm+Lo)

; a2 = LmDc
Lm+Lo

; a3 = (Lm+Lo)Da−LmDc
Lo(Lm+Lo)

; a4 = −(Da+Db)(Lm+Lo)−Lo Dc
Lo(Lm+Lo)

;
and y represents the output vector.

If the equivalent circuit operates in CCM, the adequacy matrix has a unit value
associated with eliminating the DcTs operation step, which results in an averaging model
also valid for the operation in CCM.

By manipulating (12) and (13), it is possible to determine the transfer function that
relates the current in the inductor Lo to the duty cycle as follows:

Gid(s) =
îLo(s)
d̂(s)

= C
(

s−MAm +
Bdks MCm

1− ksEd

)−1
+

Bdkc

1− ksEd
(14)

where ks = [kid kvs] and the matrices Bd and Ed are defined in order to obtain the closed-loop
system matrices as follows:

Ed = [C1 − C2]


iLm
iLo

vCa
vCo
iLg

+ [E1 − E2]

[
vCdc1

vg

]
(15)

Bd =

[
A1 −

Db
Db + Dc

A2 −
Dc

Db + Dc
A3

]
iLm
iLo

vCa
vCo
iLg

+

[
B1 −

Db
Db + Dc

B2 −
Dc

Db + Dc
B3

][
vCdc1

vg

]
(16)

where A1, A2, and A3 correspond to the respective state matrices for the passive ele-
ments during the operating stage Da, Db, and Dc; B1, B2, and B3 are the input matrices
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for the passive elements. The matrices C1 and C2 represent the output matrices of the
generalized switch model, while E1 and E2 are the direct transition matrices of the gen-
eralized switch model. The matrix Am is obtained by the operation stages averaging,
i.e., Am = A1Da + A2Db + A3Dc. The same procedure step is also valid for obtaining the
matrix Cm, i.e., Cm = C1Da + C2Db + C3Dc.

2.5. Components Design

To guarantee the SP-IZI operates in DCM during all grid periods, the design of the
components considers the voltage peak of the utility grid. However, the current injected
into the grid presents a low ripple, and the output inductance is calculated as:

Lo =
Vcdc1DaTs

∆ILo ILo
(17)

where ILo is the average current during the voltage peak and ∆ILo is the maximum ripple allowed.
The input inductors present a current ripple bigger than the average value and strongly

influence the operation in the DCM. A maximum inductance can be obtained as follows:

Lm1max =
2Vp

2L0
(
1− 2Da + Da

2)
4PoutLo fs −Vp2(1− 2Da + Da2)

(18)

The output capacitance is calculated following a similar procedure commonly used for
a buck converter and depends on the current and voltage ripple allowed, as obtained by:

Co =
∆ILo ILo

8 fs∆VCo VCo
(19)

The coupling capacitances are designed in a range between two resonant frequencies,
ωrmin and ωrmax. These capacitances are calculated as:

1
2ωr2

∣∣∣∣
ωr=ωrmax

< C1 <
1

2ωr2

∣∣∣∣
ωr=ωrmin

(20)

After the design of the components are combined, the modeling presented in (14) can
obtain the frequency response, as shown in Figure 5. There is a high similarity between the
model and the circuit simulated in the software PSIM.
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Figure 5. Bode diagram of the model and the SP-IZI.

2.6. Modeling of the Outer Control Loop

The outer voltage control loop is modeled considering the energy conservation be-
tween the PV array and the utility grid. Ideally, the energy extracted from the PV ar-
ray is the same as that injected into the grid. As the output of SP-IZI is sinusoidal,
the active power can be determined through the voltage and current magnitude peaks, Vp
and Ip, respectively. In this way, the power balance is defined as follows:
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vPV iCdc1 =
Vp Ip

2
(21)

Replacing iCdc1 for the ratio between the voltage across the capacitor Cdc1 and the
Laplace transform of the capacitor, applying small-signal perturbations, and posteriorly
disregarding second-order terms as well as the oscillation in the grid, it is possible to find
the transfer function that relates the PV array voltage to the grid current by (22).

Gvi(s)=
v̂PV(s)
îp(s)

=
Vp

2VPVCdc1s
(22)

2.7. MPPT and PLL Algorithm

As is well-known, the PV array presents non-linear characteristics curves (power
versus voltage and current versus voltage). In addition, the PV array depends on the
climate conditions, such as solar irradiance and temperature. Therefore, using algorithms
to perform the maximum power point tracking (MPPT) is mandatory to extract the total
available power at the PV array. Hence, this paper adopts the traditional Perturb and
Observe (P and O) to reach the maximum available capacity of the PV array [48–52].

A non-autonomous adaptative filter AF-αβ-pPLL technique is used in this paper for
determining the synchronous unit vectors coordinates [sin(θ) and cos(θ)], which is detailed
in [53]. The AF is responsible for extracting the fundamental component of the grid voltage.
The adopted AF-αβ-pPLL is designed to deal with voltage disturbances, such as voltage
sags/swells, voltage harmonics, phase-angle jumps, and frequency variations [53].

2.8. SP-IZI Control

The control of the SP-IZI is performed by a multiloop control as follows: (i) an inner
current control loop controls the injected current into the grid (iLo); (ii) an outer voltage
control loop controls the PV array (vpv); and (iii) a maximum power point tracking (MPPT)
algorithm extracts the maximum power available at the PV array measuring the PV array
voltage (vpv) and current (ipv). Initially, the MPPT algorithm generates the reference voltage
(v∗PV) for the voltage control loop to extract the maximum PV array power. The voltage
control loop’s proportional–integral (PI) controller computes the peak current reference (Ip)
needed to maintain the PV array voltage regulated at the reference provided by the MPPT.
Thus, such peak current reference (Ip) is used to generate the current control loop’s current
reference (i∗Lo), which is synchronized to the grid voltage (vg) using a phase-locked-loop
(PLL) technique, i.e., the peak current is multiplied by the sinusoidal (sin(θ)) vector. In
addition, considering possible imbalance between the voltages over the input DC-bus
capacitors (Cdc1 and Cdc2) can occur, a DC current (iunb) is associated with the sinusoidal
current reference (Ipsin(θ)) to guarantee a balanced voltage between vCdc1 and vCdc2. Finally,
the current control loop’s PI controller generates the duty cycle used in the switching logic
to control the switching devices.

The proportional and integral gains of the PI controllers are tuned based on the
procedure design proposed in [54]. The block diagram of the control diagram is presented
in Figure 6a, while the block diagram of the signal logic adopted to control the switches of
the SP-IZI is depicted in Figure 6b.



Energies 2023, 16, 3622 11 of 19Energies 2023, 16, x FOR PEER REVIEW 11 of 19 
 

 

  
(a) (b) 

Figure 6. Block diagrams: (a) control diagram; (b) switching control logic. 

3. Comparison between the SP-IZI and the MZI 
The proposed SP-IZI operates similarly to the integrated inverters called MZIs 

[39,40]. In addition, accordingly to the characteristics presented by the SP-IZI, the follow-
ing advantages are obtained when compared to the MZI: (i) the static converter gain in 
DCM is identical to the traditional DC-DC Zeta converter; (ii) it presents reduced voltage 
stress over the switches and diodes; and (iii) it can operate in an off-grid mode for a dif-
ferent type of load. 

The MZI is based on the modified Zeta converter and controlled to inject a sinusoidal 
current into the utility grid. The topology operates in DCM. Therefore, a switching period 
is divided into three operation stages referred to as ta, tb, and tc. Figure 7 presents the MZI. 

The diodes Di1 and Di2 in series with the inductors Li1 and Li2 prevent negative current 
during the third operation stage through the inductors mentioned. These diodes also pre-
vent the current through all passive elements during the first and second stages, as in the 
SP-IZI. 

 
Figure 7. The electrical circuit of the MZI. 

According to the electrical circuit of the MZI and its operation, besides considering 
the peak amplitude of the grid, the gain of the inverter is determined as: 

𝐺 =  =   =  
(23)

where Da and Db represent the respective first and second operation stages during the 
peak voltage of the grid, fs is the switching frequency, Li is the input inductance, Vp is the 
peak voltage of the grid, and Po is the output power. 

The voltage across the capacitors Ci1 and Ci2 are distinct between the MZI and the SP-
IZI or the conventional Zeta converter. In the MZI, these voltages are related to the first 
operation stage. In the SP-IZI, the voltage of the intermediate capacitor is similar to that 

KPWM

vCdc1

vCdc2

d

iLo

Ip

Sin(θ)

iunb
Kunb

MPPT
vPV
iPV

vPV*

PLL

iLo
*

vg

Kpi

Kii /s

Kpv

Kiv /s

gS1

gS2

gS3

gS4

d

>0
vg

Si1

Di1

So1

Si2

So2

Do1

Di2
Do2

Cdc1

Cdc2

Lo

Li1

Li2

Ci1

Ci2

vg...

vPV

iPV

ig

DC- Bus

Utility 
grid

Figure 6. Block diagrams: (a) control diagram; (b) switching control logic.

3. Comparison between the SP-IZI and the MZI

The proposed SP-IZI operates similarly to the integrated inverters called MZIs [39,40].
In addition, accordingly to the characteristics presented by the SP-IZI, the following ad-
vantages are obtained when compared to the MZI: (i) the static converter gain in DCM is
identical to the traditional DC-DC Zeta converter; (ii) it presents reduced voltage stress
over the switches and diodes; and (iii) it can operate in an off-grid mode for a different
type of load.

The MZI is based on the modified Zeta converter and controlled to inject a sinusoidal
current into the utility grid. The topology operates in DCM. Therefore, a switching period
is divided into three operation stages referred to as ta, tb, and tc. Figure 7 presents the MZI.
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The diodes Di1 and Di2 in series with the inductors Li1 and Li2 prevent negative
current during the third operation stage through the inductors mentioned. These diodes
also prevent the current through all passive elements during the first and second stages, as
in the SP-IZI.

According to the electrical circuit of the MZI and its operation, besides considering
the peak amplitude of the grid, the gain of the inverter is determined as:

Ge =
vg

Vpv
=

Da
2 + DaDb

2Db

Da fsLi + Da

√
Li

2 fs2 +
2LiVp2 fs

Po

4 fsLi
(23)

where Da and Db represent the respective first and second operation stages during the peak
voltage of the grid, fs is the switching frequency, Li is the input inductance, Vp is the peak
voltage of the grid, and Po is the output power.

The voltage across the capacitors Ci1 and Ci2 are distinct between the MZI and the
SP-IZI or the conventional Zeta converter. In the MZI, these voltages are related to the first
operation stage. In the SP-IZI, the voltage of the intermediate capacitor is similar to that of
the utility grid. The voltage across the intermediate capacitors to the MZI is determined as:

VCi =
Vpvda

2db
(24)
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According to (23), the first and second operation stages depend on the input induc-
tance, switching frequency, grid voltage, and output power. Maintaining the output power
and switching frequency as constant, in addition to considering the peak voltage of the
utility grid, the voltages across the coupling capacitors (24) are related to the input in-
ductance, in which lower values result in higher voltages. Conversely, high inductance
values make the topology operate in CCM. Figure 8a presents the intermediate capacitors’
average voltage dependence with the input inductance to the MZI and the voltage across
the coupling capacitors to the SP-IZI.
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Figure 8. Voltage dependence to the MZI: (a) coupling capacitor average voltage; (b) maximum
voltage switches.

Consequently, the maximum voltages across the switches Si1 and Si2 in the proposed
inverter, MZI, depend on the input inductance and the voltage across the coupling ca-
pacitors. Thus, the voltages across these switches are described as VSimax = VCi + 2VPV .
Figure 8b shows the maximum voltage across the switches Si2 and Si2 to the MZI and the
S1 and S3 to the SP-IZI.

In brief, the voltages across the semiconductors are higher in the MZI than in the SP-
IZI, which causes limitations in the operation range and power losses during commutation.
Table 1 compares the main parameters of the MZI and the SP-IZI.

Table 1. Comparison between the main parameters of MZI and SP-IZI.

Parameters MZI [39,40] SP-IZI

Maximum coupling
capacitors’ voltage VCi = 2Vg−VPV Da

2Da
VCi = VP

Maximum switches voltage Vsi = 2VPV + VCi
Vso = 0.5VPV + VCI

Vs1 = 0.5Vpv + Vp
Vs2 = 0.5VPV + VP

Maximum diodes voltage VDi = −(1.5VPV + VCi)
VDo = −(0.5VPV + VCi)

VD1 = 0.5VPV − VP
VD3 = −(0.5VPV + VP)

RMS output inductor current ILo = Po/
√

2VP ILo = Po/
√

2VP
Input inductor peak current ILmp = VPVDaTS/2Li ILmp = VPVDaTS/Lm − ILo

Based on the equations and the operational description of the SP-IZI using the MPP
power in standard test conditions (STC), the theoretical values from the RMS currents
through the semiconductors and inductors are calculated. In addition, the maximum
semiconductors’ and intermediate capacitors’ voltages are determined. The MZI is also
evaluated for the same conditions. Table 2 shows the main parameters of the adopted PV
module. The theoretical and practical implementation have assumed eight series-connected
PV array panels achieving a maximum nominal power of 432 Wp. Therefore, Table 3
compares the theoretical RMS values of the MZI and SP-IZI.
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Table 2. Main specifications of the Kyocera KC 50 module in STC.

Parameters Values

Maximum power (PMAX) 54 W
Maximum power voltage (VMPP) 17.4 V
Maximum power current (IMPP) 3.11 A

Open-circuit voltage (VOC) 21.7 V
Short-circuit current (ISC) 3.31 A

Table 3. Comparison between the main values of MZI and SP-IZI operating in STC.

Parameters MZI [39,40] SP-IZI

Maximum coupling
capacitors’ voltage 206.72 V 180 V

Maximum switches voltage Vsi = 485.12 V
VSo = 276.32 V

Vs1 = 249.2 V
Vs2 = 249.2 V

Maximum diodes voltage VDi = −415.52 V
VDo = −276.72 V

VD1 = −249.2
VD3 = −110.4 V

RMS output inductor current 3.439 A 3.394 A
Average input inductor

current 3.11 A 2.87 A

RMS input inductor current 7.14 A 6.20 A

Average switches current Isi = 3.11 A
Iso = 1.536 A

IS1 = 3.09 A
IS2 = 1.528 A

RMS switches current Isi = 7.718 A
Iso = 4.705 A

IS1 = 7.737 A
IS2 = 5.237 A

Average diodes current IDi = 3.11 A
IDo = 1.536 A

ID1 = 3.09 A
ID2 = 1.528 A

RMS diodes current IDi = 7.14 A
IDo = 4.705 A

ID1 = 7.737 A
ID2 = 5.237 A

The SP-IZI presents current through all passive elements. Therefore, the semiconduc-
tors’ currents are the sum of the inductors’ currents, resulting in not much higher RMS
values when compared to the MZI. Thus, these currents can cause conduction losses in
the semiconductors. On the other hand, the currents through the inductors present lower
values in SP-IZI.

4. Experimental Results

An experimental prototype was developed to evaluate the SP-IZI, as depicted in
Figure 9. The experimental setup employs the discrete IGBT IRGP4650D (Infineon, Neu-
biberg, Germany) and 30ETH06 diodes (International Rectifier, El Segundo, CA, USA).
The characteristics curves of the PV array were performed using a bidirectional PV array
emulator IT6012C-800-50 (Itech, New Taipei City, Taiwan) in conjunction with the software
SAS100L (Itech). The entire system was controlled using a digital signal controller (DSC),
a TMS320F28335 (Texas Instruments, Dallas, TX, USA), in which the current and voltage
quantities were measured by means of signal-conditioning boards that employ Hall-effect
transducers (LEM, Geneva, Switzerland). The system’s algorithms were embedded in
the DSC. The experimental results were obtained by digital oscilloscope, the TPS2024
(Tektronix, Beaverton, OR, USA), while the power factor (PF) and total harmonic distortion
were measured using the Power Quality Analyzer 43B (Fluke, Everett, WA, USA). Table 4
presents the main parameters employed in the experimental tests of the SP-IZI.
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Table 4. Main SP-IZI parameters.

Parameters SP-IZI

The nominal utility RMS voltage Vo = 127 V
Nominal utility frequency f = 60 Hz

Switching frequency fs = 50 kHz
Sampling frequency A/D converter fa = 60 kHz

Input DC-Bus capacitance Cdc1 = Cdc2 = 4500 µF
Nominal input DC-bus voltage vPV = 146.26 V

Input inductive filter Lm1 = Lm2 = 60 µH
Output inductive filter Lo = 1.0 mH
Coupling capacitances C1= C2 = 1.0 µF

Nominal power P = 432 W
Phase margin of the inner current control Pmi = 76.8◦

Crossover frequency of the inner current
control fci = 1220 Hz

Phase margin of the outer voltage control Pmo = 80◦

Crossover frequency of the outer voltage
control fco = 10 Hz

PWM gain KPWM = 1/2999

Voltage PI controller gains Kpv = 0.2157;
Kiv = 1.1257

Current PI controller gains
Kpi = 20.826;

Kii = 1.5412 × 106

Unbalance gain Kunb = 0.15

PLL PI controller gains KPPLL = 423.4;
KiPLL = 32234

Adaptive filter step size parameter (AF-pPLL) µAF = 0.007
Sampling time (AF-pPLL) 60 kHz

Adaptive filter gain (AF-pPLL) KAF = 420

Firstly, the SP-IZI was evaluated for three different levels of solar irradiance employing
the PV emulator, in which the PV array voltage was equal to 140 V. Hence, the peak
amplitude of the inverter currents injected into the grid is described as follows: (i) Scenario
1: 2 A; (ii) Scenario 2: 3 A; and (iii) Scenario 3: 4.8 A.

Figure 10 shows the grid voltage and the current injected into the grid for the three
evaluated scenarios. As noted, the grid-injected currents present sinusoidal waveforms in
opposite-phase to the grid voltage for all the considered scenarios.
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Figure 10. Experimental grid-injected current and grid voltage considering the three different
scenarios (100 V/div, 5 A/div, 5 ms/div): (a) Scenario 1; (b) Scenario 2; (c) Scenario 3.

Figure 11 shows the total harmonic distortion (THD) for the three inverter currents
shown in Figure 10. It can be observed that the SP-IZI currents are sinusoidal, meeting
the requirements of the standards [41,42], i.e., the injected currents presented a maxi-
mum THD of around 3.3%, validating the feasibility and theoretical development of the
proposed inverter.
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Figure 12 presents the dynamic performance of the SP-IZI considering changes in
solar irradiance. The changes are performed from half of the power rate to nominal PV
array power rate and vice versa (50% to 100% and 100% to 50%). As can be observed, the
proposed SP-IZI acts very fast when abrupt solar irradiance changes occur.

The currents through the inductors Lm1 and Lm2 are presented in Figure 13a, while the
voltages across the switches S1, S2, S3, and S4 are presented in Figure 13b. It can be noted
that the experimental results presented in Figure 12 can be compared and evaluated to the
theoretical development shown in Figure 3. These results demonstrated that the proposed
SP-IZI operates following the developed mathematical equations and that the inverter is
feasible and reliable.
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In STC, the performance of the P and O MPPT algorithm was evaluated considering the
solar irradiance change from 500 W/m2 to 1000 W/m2 and from 1000 W/m2 to 750 W/m2,
as shown in Figure 14. As observed, the P and O MPPT technique used in the SP-IZI can
reach the maximum power point and acts very fast during abrupt solar irradiance changes.
In addition, Figure 14 shows that the PV array voltage is below 160 V in all cases, while
the grid peak voltage is near 200 V [see Figure 13a]. This demonstrates that the proposed
SP-IZI can boost the input voltage and, simultaneously, injects in the grid a sinusoidal
and regulated current into the utility with low harmonic distortion, as discussed above.
Hence, all such results demonstrate that the proposed converter is useful and suitable for
PV applications.
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5. Conclusions

This paper presented the implementation of an integrated inverter topology based on
Zeta converters named SP-IZI. The proposed inverter increased the input voltage (PV array
voltage) and injected a sinusoidal current into the grid with low total harmonic distortion.

The SP-IZI presented advantages compared to the MZI when both inverters were
operating in DCM. The voltages across the semiconductors and coupling capacitors are
lower and do not depend on the input inductance or the operation stages. The operation of
the SP-IZI is similar to the conventional DC-DC Zeta converter, in which the third stage is
well-defined. The SP-IZI presents the following advantages compared to the MZI: (i) the
voltage in coupling capacitors is 13% lower; (ii) voltage stresses in switches and diodes are
40% lower; and (iii) static gain is similar to the traditional Zeta converter.

From the employed modeling technique, the SP-IZI transfer functions for the inner
and outer control loops were derived. In addition, by the analysis of frequency response, it
was possible to obtain the proportional and integral gains of the PI controllers.

Through experimental results, the effectiveness and feasibility of an SP-IZI were
evaluated and demonstrated. In addition, simulation and experimental results corroborated
the theoretical development.

As could be observed from the achieved results, the proposed SP-IZI can replace—with
advantages—the traditional PV system constructed by the cascade association of a step-up
DC-DC converter and a voltage source inverter.

6. Patents

This work resulted in a patent with the process number BR 10 2022 004213 6.
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