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Abstract: The energy group structure of a multi-group cross section library matched with a deter-
ministic method has a significant influence on shielding calculation. The complex resonance cross
section of Fe-56 has a significant influence on accuracy with different energy group structures when
processing multi-group cross section data. In this study, in order to more accurately test the influence
of the iron resonance phenomenon on shielding calculations, this group structure is modified by the
199-group with 69 points interpolated into its group boundaries at an energy range from 1.1 keV to
3.1164 MeV. The new 269-group library is then tested with selected SINBAD iron sphere benchmarks
and compared with the results of 199-group, 299-group, and 172-group libraries and measurements.
Upon analysis, it is shown that the resonance of Fe-56 has a great influence on the accuracy of the
calculated leakage. Further, it is noted that the finer the energy group division, the greater the
calculated leakage fluctuation, and the deeper the neutron passes through the iron sphere, the larger
the calculated leakage fluctuation. This study and its leakage results may provide a good reference
for the development of new multi-group structures for present and future shielding design.
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1. Introduction

The energy group structure of a multi-group cross section library matched with a
deterministic method, e.g., the discrete ordinate method (SN) [1], has a significant influence
on shielding calculation. When the number of energy groups is small, the calculation time
is less, but the accuracy may not meet the specified requirements. Finer energy group
numbers perform better in accuracy but require more calculation time. Thus, it is necessary
to find a balance between these two factors when selecting an energy group structure.

In the 1950s, because the proliferation theory was not applicable to the calculation of
small nuclear devices, the Los Alamos National Laboratory (LANL) of the United States
developed a code based on the SN method. In order to provide basic cross section data
for calculation, LANL successively used the Hansen–Roach 6-group library and Hansen–
Roach 16-group library without resonance processing [2]. With the development of nuclear
technology, some large fast reactor and thermal reactor projects were researched and
designed, and the generation and research of multi-group cross section libraries were biased
towards reactor core designs. At this time, the resonance processing of the unresolved
resonance energy region of U-235, U-238, and other nuclides was very important. The
former Soviet Union developed the Bondarenko 26-group library and the Bondarenko
method [3], which is still widely used in the generation of multi-group libraries. The
method of generating multi-group libraries for reactor core calculation was also developing
towards refining the energy group structure. For example, Santamarina, A. et al. developed
the SHEM multi-group libraries supporting the commercial program APOLLO with 281,
361, and other different energy group structures [4]. The commercial code CASMO5 [5]
had 586 groups of the matched multi-group library. The classical WIMS 69-group and
WIMS 172-group libraries [6] updated by the International Atomic Energy Agency (IAEA)
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were also for reactor design. Although refining the energy group structure can make the
influence of the weight function negligible when generating libraries, this treatment has
great limitations with respect to the shielding calculation of the SN method, especially in
considering the up-scattering effect, which greatly affects the calculation speed.

With the development of shielding design requirements, the generation of shielding
multi-group cross section libraries has gradually attracted more attention. The Oak Ridge
National Laboratory (ORNL) of the United States continued to research and develop the
VITAMIN-B and BUGLE series multi-group cross section libraries for light water reactor
shielding design for many years [7]. BUGLE is obtained by VITAMIN according to the
neutron flux in various areas of a light water reactor as a weight function, which is only
applicable to calculation for pressurized water reactors. The VITAMIN and BUGLE libraries
are now widely used. The latest VITAMIN-B7 and BUGLE-B7 are also applicable to the
shielding calculation of LWR, but they are not significantly improved compared with
VITAMIN-B6 and BUGLE-96 [8]. Alpan, F. A. et al. developed the contribution and
continuous point cross section driving method (CPXSD) for making fine energy groups and
wide groups [9]. Although the weight function is optimized by combining the continuous
point cross section to study the importance and contribution of energy groups of key
nuclides, this method still requires the users to have rich experience in shielding calculation
to analyze the relevant characteristics of key nuclides.

The focus material iron is an important shielding material which should be considered
in shielding design. The complex resonance cross section of Fe-56 has a significant influence
on accuracy with different energy group structures when processing multi-group cross
section data. The neutron-induced reaction cross sections of Fe-56 have been reevaluated
and improved in recently released evaluated nuclear data libraries. For example, JENDL5.0
was released in December, 2021 [10], ENDF/B-8.0 was released in February, 2018 [11], and
CENDL-3.2 was released in June, 2020 [12]. Thus, further analysis is needed with respect to
energy group structures.

In this study, the 199-group structure is refined according to the resonance peak of
the total cross section of Fe-56; thus, the 269-group is formed. Four group structures—269-
group, 199-group, 299-group, and 172-group—are tested and examined by performing
shielding calculations for selected SINBAD [13] benchmark problems. Section 2 briefly
explains multi-group cross section data matched with the SN method and how to generate
multi-group cross section libraries from the Evaluated Nuclear Data Library. Section 3 de-
scribes the configuration of the selected SINBAD problems for shielding analysis. Section 4
presents the results of the selected SINBAD shielding analyses calculated using the deter-
ministic method with the four energy group structures. A summary and conclusions are
given in Section 5.

2. Multi-Group Libraries
2.1. Multi-Group for SN Method

Multi-group cross sections are normally used by computer codes of the deterministic
method. The distributions of neutrons or photons in space and energy can be calculated
with the method. It can also compute the results of criticality, leakage, or dose to personnel.
The multi-group neutral particle transport equation expanded using Legendre polynomials
in each energy group g is:

µ ∂
∂x φg(x, µ) +

∞
∑

l=0
Pl(µ)σtlg(x)φlg(x)

=
∞
∑

l=0

2l+1
2 Pl(µ)∑

g′
σXlg′→g(x)φlg′(x) + Qg(x, µ)

(1)

where the flux φg is allowed to vary with direction with polar cosine µ and position x.
The Legendre expanded flux φlg and macroscopic total cross section σtlg only vary with
position. The Legendre expanded transfer cross section σXlg′→g (X includes the scattering
cross section σs and fission cross section σf ) also varies with position. Because it is normally
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assumed to depend only on µ, Qg is a fixed or external source. The multi-group cross
sections can be obtained from the equations below:

σtlg(x) =

∫
g σt(x, E)φl(x, E)dE∫

g φl(x, E)dE
, (2)

and

σXlg′→g =

∫
g dE

∫
g dE′σXl(x, E′ → E)φl(x, E)∫

g φl(x, E)dE
. (3)

In this study, the discrete ordinate method (SN) was used to analyze the neutron
leakage from the devices which was compared with the measurement value. In this case,
the multi-group cross section should match the SN method. The SN neutron transport
equation is

µ ∂
∂x φg(x, µ) + σSN

g φg(x, µ)

=
N
∑

l=0

2l+1
2 Pl(µ)∑

g′
σSN

slg′→g(x)φlg′(x) + S f g + Qg(x, µ)
, (4)

By comparing Equation (4) with (1), it is observed that the SN equations require cross
sections as:

σSN
slg′→g = σslg′→g, g′ 6= g, (5)

and
σSN

slg→g = σslg→g − σtlg + σSN
g , (6)

where σSN
g is determined as an extended transport approximation:

σSN
g = σt,N+1,g −∑

g′
σslg→g′ . (7)

Strong anisotropic scattering often occurs at the reaction of induced neutrons with
high energy that have collided with the light- or medium-mass nuclei of shielding materials.
This transport approximation could correct for anisotropy in the scattering matrix and is
especially effective for forward-peaked scattering.

In order to eliminate the deviation introduced by the approximate treatment of geo-
metric structures, benchmarks with simple geometry and composition are usually used
in the testing and analysis of multi-group cross section data. Thus, in this study, the code
ARES [14] developed by North China Electric Power University (NCEPU) was employed.
Its one-dimensional SN calculation module has the same function as code ANISN [15]
and the matching macro cross section processing code TRANSX [16]. In this study, the
parameters P7 and S16 were set to perform the leakage spectrum calculations of iron
shielding benchmarks.

2.2. Generating Multi-Group Libraries

Resonance has a great influence on the processing flow of transport approximation.
A rebalancing method was employed to attempt solving this problem by recalculating
the effective resonance integral of the total and absorption cross sections after transport
approximation. However, if the energy group structure does not match the resonance of
the important nuclides, the reaction cross section may still have a large deviation after
rebalancing. In this study, it was noted that the neutron-induced elastic and capture cross
section of Fe-56 had a significant influence on iron shielding calculation. Fe-56 is the most
important isotope of shielding materials, and its cross section has very significant resonance
in the energy range of 10.0 keV to 1.0 MeV (basically contributed by elastic scattering), as
shown in Figure 1.
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Figure 1. Radiation capture cross section (blue line), inelastic cross section (green line), and elastic
cross section (red line) of Fe-56 in energy range of 1.0 keV to 10.0 MeV (CENDL-3.2).

The weight function and energy group structure simultaneously affect the accuracy
of the generated multi-group cross sections. The weight functions of different devices or
different regions of devices may lead to unexpected results. This should be considered
when developing a multi-group cross section library. However, with the finer division
of the energy group, the influence of the weight function on the results is smaller. The
standard spectrum (Maxwell + 1/E + fission) was selected in this study; because the energy
group structure was divided to a sufficiently fine degree, the influence of different weight
functions on the calculation accuracy could be ignored. Our only focus was, therefore,
whether the energy group structure was appropriate and especially whether it matched the
resonance peaks of Fe-56.

When developing a multi-group library, the division of the energy group structure
should follow this principle. One important resonance peak of the important nuclides
should be taken as far as possible into a single energy group; that is, the boundary points
of the energy groups should not fall within the resonance peak.

2.2.1. 269-Group Structure

In order to test the influence of iron resonance on shielding calculations more accu-
rately, this group structure was modified by the 199-group with 69 points interpolated into
its group boundaries with an energy range from 1.1 keV to 3.1164 MeV. The interpolation
was based on the characteristics of the resonances of the total cross section of Fe-56 in this
energy range, as shown above. For example, there were three resolved resonance peaks
between 79.5 and 82.5 keV. While the three peaks were contained in one group for the
199-group structure, they were subdivided into three groups for the 269-group structure,
and each resonance peak belonged to one group separately. A comparison of these group
divisions can be seen in Figure 2.

In order to test whether the 269-group structure is reasonable, it was necessary to
compare it with other common energy group structures as introduced below.
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Figure 2. Four neutron group structures. (a) Comparison of four group structures in the entire energy
range. (b) Comparison of four group structures between 10.0 keV and 1.0 MeV in which significant
resonances occurred.

2.2.2. Reference Multi-Group Structures

The bottom and upper energy limits of the 199-group structure are 10−5 eV and
19.64 MeV, respectively. There are 25 groups within the thermal energy range, which is
below 1.0 eV. There are 78 groups in resonance range of Fe-56, which is from 10 keV to
2 MeV. The lethargy widths of each group are uniform, ranging from 0.025 to 0.25 above
1.0 eV.

The bottom and upper energy limits of the 299-group structure are 10−5 eV and
20 MeV, respectively. There are 48 groups within the thermal energy range, which is below
1.0 eV. There are 76 groups in resonance range of Fe-56, which is from 10 keV to 2 MeV. The
lethargy widths of each group are uniform, ranging from 0.064 to 0.08 above 1.0 eV.

The bottom and upper energy limits of the 299-group structure are 10−5 eV and
19.64 MeV, respectively. There are 80 groups within the thermal energy range, which is
below 1.0 eV. There are 30 groups in resonance range of Fe-56, which is from 10 keV to
2 MeV. The lethargy widths of each group are uniform, ranging from 0.01 to 0.4 above
1.0 eV.

Four different neutron energy group structures were employed. Only one gamma
energy group structure (VITAMIN-B7 42 gamma group) was employed to match with these
neutron groups. The gamma group structure was not tested in this study.

Four multi-group cross section libraries were generated by using NJOY [17] with
the same inputs except for group structure. All the nuclides were processed at three
temperature points (293.6 K, 600 K, and 900 K) with the standard weight function and
free gas thermal scattering law. The Legendre expansion orders of the four libraries were
all set to 8. The neutron-induced data were from the CENDL-3.2 evaluated nuclear data
library and the photo-atomic data were from ENDF/B-8.0. As shown in Figure 3, the
evaluated data were processed by the flow of RECORR, BROADR, HEATR, THERMR,
UNRESR, GROUP, and GAMINR modules in NJOY and restored in MATXS format by
MATXSR. The single MATXS files of each nuclide were then combined into one MATXS
format multi-group library by BBC [16].
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3. Selected SINBAD Benchmarks

In this study, 3 benchmarks of iron spherical shells with 12 different radii were selected
for group structure analysis.

3.1. ill_fe

The iron sphere experiment was performed at the University of Illinois at Urbana-
Champaign in 1975 [18]. This experiment calculated the neutron leakage on the surface of
an iron sphere, and the calculated results were compared with the measured values to test
the accuracy and effectiveness of the multi-group cross section libraries.

As shown in Figure 4, the 30.45 cm thick iron spherical shell had two cylindrical reen-
trant holes with plugs that provided access to the spherical central void. The flight tube of
the neutron generator was inserted through the reentrant hole. The benchmark experiment
was conducted using a DT fusion source, and its energy spectrum was calculated to be
14.08 MeV. The calculation model of the iron sphere had a radius of 38.10 cm and a wall
thickness of 30.45 cm. The iron sphere contained 0.21% carbon, 0.47% manganese, 0.013%
phosphorus, and 0.0024% sulfur.
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Figure 4. Geometry of ill_fe iron sphere benchmark. (a) Simplified geometry of experimental device.
The solid line represents the surface of the assembled parts which are combined into a spherical
device. The reentrant hole, which is used to place the DT neutron source, is represented by the dashed
line in the central void region. (b) Simplified geometry used in one-dimensional SN calculation.
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3.2. ippe_fe

This neutron transmission benchmark experiment was performed with 14 MeV neu-
trons through iron shells at the Institute of Physics and Power Engineering in the period
from 1989 to 1995 [19]. This experiment calculated the neutron leakage on the surface of
iron spheres with a 14 MeV D-T source in the center. The five spheres had radii from 4.5
to 30.0 cm and wall thicknesses from 2.5 to 28.0 cm, as shown in Figure 5. The calculated
results were compared with the measured values to test the accuracy and effectiveness of
the multi-group cross section libraries.
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Figure 5. Geometry of ippe_fe iron sphere benchmark of shells and reentrant holes with various
radii. (a) Simplified geometry of experimental device Shell 1, r = 2.0 cm, R = 4.5 cm. (b) Simplified
geometry of experimental devices Shell 2 to 5, r = 4.5, 2.0, 1.9, and 2.0 cm, R = 12.0, 12.0, 20.0, and
30.0 cm, respectively.

Due to the background effects, the measured values should be corrected and converted
to neutron leakage. The leakage was then normalized to one source neutron using a
correction calculation. Thus, the thickness of each shell could simply be calculated from
the value of R subtracted by r, and the iron sphere geometry could be simplified as shown
in Figure 6. The iron spheres’ nuclear densities were 8.385, 8.206, 8.210, 8.329, and 8.329
(atoms/(barn·cm)) for shells 1 to 5, respectively.

Energies 2023, 16, x FOR PEER REVIEW 8 of 15 
 

 

in Figure 6. The iron spheres’ nuclear densities were 8.385, 8.206, 8.210, 8.329, and 8.329 
(atoms/(barn·cm)) for shells 1 to 5, respectively. 

Iron Shell

r

R

 
Figure 6. Simplified ippe_fe geometry of shells 1 to 5 used in one-dimensional SN calculation. 

3.3. kfk_fe 
The Karlsruhe iron sphere benchmark experiment was performed at the University 

of Illinois in 1975 [20]. This experiment calculated the neutron leakage on the surface of 
iron spheres with a Cf-252 source in the center. The six spheres had radii from 7.5 to 15.0 
cm. The calculated results were compared with the measured values to test the accuracy 
and effectiveness of the multi-group cross section libraries, especially for checking the iron 
inelastic scattering cross sections. 

As shown in Figure 7, the center of the iron sphere is a cylindrical channel. A cylin-
drical container containing a Cf-252 source was inserted into the channel. In the simplified 
calculation model, the Cf-252 source was equivalent to a distributed spherical source. 

A B C D

 

A B C D

 
(a) (b) 

Figure 7. Geometry of source region of kfk_fe iron sphere benchmark. (a) Simplified geometry of 
experimental device. A, B, and C are the Cf-252 source, inner container, and outer container, respec-
tively. D is the spherical iron shell. (b) Equivalent spherical source geometry based on volume ratio. 

The measurements were integrated over the full sphere and normalized to one source 
neutron through a correction calculation. The square source areas in the benchmark were 
equivalent to spherical shells based on volume ratio, and six iron spheres with various 
radii were investigated. All the spheres had the same component materials (C 0.07%, Mn 
0.05%, P 0.009%, and S 0.007%). 

Figure 6. Simplified ippe_fe geometry of shells 1 to 5 used in one-dimensional SN calculation.

3.3. kfk_fe

The Karlsruhe iron sphere benchmark experiment was performed at the University of
Illinois in 1975 [20]. This experiment calculated the neutron leakage on the surface of iron
spheres with a Cf-252 source in the center. The six spheres had radii from 7.5 to 15.0 cm.
The calculated results were compared with the measured values to test the accuracy and
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effectiveness of the multi-group cross section libraries, especially for checking the iron
inelastic scattering cross sections.

As shown in Figure 7, the center of the iron sphere is a cylindrical channel. A cylindrical
container containing a Cf-252 source was inserted into the channel. In the simplified
calculation model, the Cf-252 source was equivalent to a distributed spherical source.

Energies 2023, 16, x FOR PEER REVIEW 8 of 15 
 

 

in Figure 6. The iron spheres’ nuclear densities were 8.385, 8.206, 8.210, 8.329, and 8.329 
(atoms/(barn·cm)) for shells 1 to 5, respectively. 

Iron Shell

r

R

 
Figure 6. Simplified ippe_fe geometry of shells 1 to 5 used in one-dimensional SN calculation. 

3.3. kfk_fe 
The Karlsruhe iron sphere benchmark experiment was performed at the University 

of Illinois in 1975 [20]. This experiment calculated the neutron leakage on the surface of 
iron spheres with a Cf-252 source in the center. The six spheres had radii from 7.5 to 15.0 
cm. The calculated results were compared with the measured values to test the accuracy 
and effectiveness of the multi-group cross section libraries, especially for checking the iron 
inelastic scattering cross sections. 

As shown in Figure 7, the center of the iron sphere is a cylindrical channel. A cylin-
drical container containing a Cf-252 source was inserted into the channel. In the simplified 
calculation model, the Cf-252 source was equivalent to a distributed spherical source. 

A B C D

 

A B C D

 
(a) (b) 

Figure 7. Geometry of source region of kfk_fe iron sphere benchmark. (a) Simplified geometry of 
experimental device. A, B, and C are the Cf-252 source, inner container, and outer container, respec-
tively. D is the spherical iron shell. (b) Equivalent spherical source geometry based on volume ratio. 

The measurements were integrated over the full sphere and normalized to one source 
neutron through a correction calculation. The square source areas in the benchmark were 
equivalent to spherical shells based on volume ratio, and six iron spheres with various 
radii were investigated. All the spheres had the same component materials (C 0.07%, Mn 
0.05%, P 0.009%, and S 0.007%). 
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volume ratio.

The measurements were integrated over the full sphere and normalized to one source
neutron through a correction calculation. The square source areas in the benchmark were
equivalent to spherical shells based on volume ratio, and six iron spheres with various radii
were investigated. All the spheres had the same component materials (C 0.07%, Mn 0.05%,
P 0.009%, and S 0.007%).

4. Results and Discussion
4.1. ill_fe

The calculated leakage spectra of the four multi-group libraries for the ill_fe iron
sphere are compared with the experimental values in this work shown in Figure 8.
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The four calculated leakages above 10.0 MeV were in good agreement with the mea-
sured values. Agreement between the four calculated leakages and the measured values
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was relatively poor in the energy range of 5.0 to 10.0 MeV. All the calculated leakages
disagreed less dramatically with the measurement values. The calculated results also
underpredicted the spectra below 5.0 MeV.

Compared with the measured values in the energy range of 1.0 to 5.0 MeV, there were
slight deficiencies in the calculated results. These were caused by a problem in representing
the inelastic scattering cross sections. The MATXS format cross sections used in the ARES
calculations were self-shielded for Fe-56. However, the self-shielding was applied to the
elastic scattering and absorption cross sections. In this case, the inelastic scattering cross
section in the vicinity of the threshold was too high. This problem produced the observed
discrepancies between the ARES calculations and the measurement values.

4.2. ippe_fe

The calculated leakage spectra of the four multi-group libraries in this work for the
ippe_fe iron spheres are compared with the experimental values in Figure 9.
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The four calculated leakages were in good agreement with the measured values in 
the energy range of 0.75 to 8.2 MeV and above 13.1 MeV. In the energy range of 8.2 to 13.1 
MeV, the calculated leakages of all four multi-group libraries deviated greatly from the 
measurements, which was due to inaccurate cross section data regarding the angular dis-
tribution of secondary neutrons in the evaluated nuclear data libraries. As the radii of the 
iron spheres increased, this deviation gradually decreased. 

Figure 9. DT source neutron leakage spectra of iron spheres with five different outer radii and
thicknesses. (a) Shell 1: radius 4.5 cm, thickness 2.5 cm. (b) Shell 2: radius 12 cm, thickness 7.5 cm.
(c) Shell 3: radius 12 cm, thickness 10 cm. (d) Shell 4: radius 20 cm, thickness 18.1 cm. (e) Shell 5:
radius 30 cm, thickness 28 cm.
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The four calculated leakages were in good agreement with the measured values in
the energy range of 0.75 to 8.2 MeV and above 13.1 MeV. In the energy range of 8.2 to
13.1 MeV, the calculated leakages of all four multi-group libraries deviated greatly from
the measurements, which was due to inaccurate cross section data regarding the angular
distribution of secondary neutrons in the evaluated nuclear data libraries. As the radii of
the iron spheres increased, this deviation gradually decreased.

The calculated leakages of the 269-group library showed more obvious fluctuations
than did the other multi-group libraries below 3.0 MeV because the 269-group structure
had more boundaries in the energy range of 40 keV to 3.0 MeV than the others. There were
142 groups with a 269-group structure, while 76 had 199-group, 60 had 299-group, and 25
had 172-group structures in this energy region. The fluctuations were more significantly
observed with the increase in the radii of the iron spheres. A larger number of energy
groups could better represent the physical resonance phenomenon of the total cross section
of Fe-56 in this energy range.

4.3. kfk_fe

The calculated leakage spectra of the four multi-group libraries in this work for the
kfk_fe iron spheres are compared with the experimental values in Figure 10.
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Figure 10. Cf-252 source neutron leakage spectra of iron spheres with six different thicknesses.
(a) Shell 1: thickness 6.476 cm. (b) Shell 2: thickness 8.976 cm. (c) Shell 3: thickness 11.476 cm.
(d) Shell 4: thickness 13.976 cm. (e) Shell 5: thickness 16.476 cm. (f) Shell 6: thickness 18.976 cm.
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The neutron leakage spectra in the energy range between 1.0 and 3.0 MeV calcu-
lated with the four multi-group libraries were in good agreement with the measurements.
However, as the radii of the iron spheres increased, the deviation between the calculated
leakages and the measurements gradually increased above 3.0 MeV.

Compared with the measurements, the calculated leakages of the four multi-group
libraries showed obvious fluctuations which increased as the radii of the iron spheres
increased; however, they basically agreed with the spectral shape for resonances below
1.0 MeV. The leakage spectra of the 269-group showed more obvious fluctuations than the
other group structures. This was the same for the benchmarks analyzed above.

4.4. Simple Fe-56 Test

The energy ranges of the three iron shielding benchmarks selected from SINBAD were
all above 10.0 keV, so the calculation results of different energy group structures in the full
energy range needed to be compared by setting simple test devices.

As shown in Figure 11, a 49.0 cm thick iron (Fe-56 only) spherical shell was obtained
with four single energy sources (10.0, 1.0, 0.1, and 0.01 MeV) distributed in the central
region with a 1.0 cm radius.
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The calculated leakage spectra of the four multi-group libraries for the iron sphere
with different sources are compared with each other in Figure 12.

It can be inferred from these results that the 172-group structure was in significant
disagreement with the other three group structures below 20 keV because it had only one
group between 16.6 and 24.8 keV, whereas the other group structures had at least five
groups to represent the very large resonance peaks in the energy range. That is to say, the
172-group structure was not suitable for iron shielding calculation but was more suitable for
core physics calculation due to its far higher number of groups in the thermal energy range.

The results of the 269-group, 199-group, and 299-group structures were in good
agreement with each other at 10.0, 1.0, and 0.01 MeV. The result of the 199-group structure
at 0.1 MeV showed some deviation from the other results. This indicates that the 199-
group structure still has problems that require improvement under specific neutron source
conditions in the future.
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Figure 12. Four different single-energy source neutron leakage spectra for iron spheres: (a) 10.0 MeV, 
(b) 1.0 MeV, (c) 0.1 MeV, and (d) 0.01 MeV. 
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5. Conclusions

In this study, 3 benchmarks of iron spherical shells with 12 different radii were selected
for neutron group structure analysis, which was performed using the discrete ordinate
method code ARES with multi-group libraries. A 269-neutron-group library was generated
by using NJOY code due to the resonance of the total cross section of Fe-56 based on
CENDL-3.2, and three other multi-group libraries (199-group, 299-group, and 172-group)
were also generated with the same parameters. With respect to the analyses, the resonance
of Fe-56 had a great influence on the accuracy of the calculated leakage. Further, it is noted
that the finer the energy group division, the greater the calculated leakage fluctuation, and
the deeper the neutron passed through the iron sphere, the larger the calculated leakage
fluctuation. The widely used energy group structures still require further analysis and
improvement to meet the higher accuracy requirements for iron shielding calculation.

The deviation of calculated leakages of different multi-group structures may impact
certain neutron shielding designs. Consequently, neutron shielding designers should
consider the differences between various multi-group structures, paying particular attention
to the resonance characteristics of important shielding materials. This study and its leakage
results may provide a good reference for the development of new multi-group structures
for present and future shielding design.
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