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Abstract: While large renewable power generation schemes, such as wind farms, are well monitored
with a wealth of data provided through a SCADA system, the only information about the behaviour
of small wind turbines is often only through the metered electricity production. Given the variability
of electricity output in response to the local wind or radiation condition, it is difficult to ascertain
whether particular electricity production in a metering period is the result of the system operating
normally or if a fault is resulting in a sub-optimal production. This paper develops two alternative
methods to determine a performance score based only on electricity production and proxy wind data
obtained from the nearest available weather measurement. One method based on partitioning the
data, consistent with a priori expectations of turbine performance, performs well in common wind
conditions but struggles to reflect the effects of different wind directions. An alternative method
based on Principal Component Analysis is less intuitive but shown to be able to incorporate wind
direction.
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1. Introduction

While industrial-scale wind energy projects using MW-scale turbines have grown
rapidly over the last two decades, smaller wind turbines have grown at a much slower
rate and somewhat stood in the shadow of utility-scale wind energy. However, they
play an important role in supplying energy to smaller and rural communities, as well
as for embedded generation in sub-urban and even urban environments [1] in highly
developed countries as well as bridge economies and developing countries [2]. However,
the operating characteristics and resulting productivity and cost-effectiveness are highly
variable, as shown by a detailed analysis of 43 turbine models available in 2011 [3] and
a detailed comparison of potential productivity across the UK [4]. In terms of their cost-
effectiveness, small wind turbines are at an inherent disadvantage over the large wind
energy market since they cannot exploit economies of scale while also operating closer to
the ground where the wind is always lower than higher in the atmosphere. Some years ago,
it was found that even in good locations in the UK, there was no financial benefit of micro
wind turbines with payback periods in excess of 25 years [5]. Since then, the economic
conditions have changed, and an analysis of the levelised cost of energy (LCoE) for a range
of settings [6] has shown that the LCoE for a small wind turbine installation can range from
only three times the typical LCoE for utility-scale onshore wind farms to a factor of almost
30 higher [7]. Therefore, it is even more important to design or select the most suitable
turbines, install them in the best location for them, and then ensure that they operate as
well as they can.

This translates into three major specific challenges for small-scale wind: the first is
related to the turbine design [8], as the smaller wind turbines need to be designed for more
turbulent and volatile wind conditions than larger turbines whose rotors are placed much
higher in the atmosphere. While the design of large turbines has largely converged to an
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industry standard of a variable-speed, pitch-controlled, three-bladed upwind horizontal-
axis wind turbine, the design of small wind turbines is still much more diverse [9]. Given
their typical placement, the turbulence characteristics, especially in urban environments,
are very different from those described by IEC standards developed for larger turbines [10].
Therefore, the capture of the turbulent component in the wind is more important than for
larger turbines [11], where tuning the response of the device to the turbulence spectrum in
its environment can increase the power conversion significantly [12] and, therefore, overall
productivity [13].

The second challenge is the optimum micro-siting of turbines, as the local wind con-
ditions vary significantly across a small area. For example, the performance of a roof-top
mounted turbine varies substantially for different points on the roof, as demonstrated
for a regular array of detached houses with a pitched roof in a staggered layout for wind
perpendicular to the roof ridge [14] and a non-staggered layout for a range of roof shapes
and wind directions [15]. While this is a challenge, identifying suitable locations in an
urban environment also opens up possibilities to exploit locations where the wind is
channelled and augmented [16]. An investigation of the performance and market poten-
tial of pole-mounted horizontal-axis turbines installed across the UK, commissioned by
the UK Government [17], illustrated that challenge but also highlighted the fact that for
most of these turbines, the only available information was the metered electricity without
information about the local wind conditions.

This is the third challenge, namely monitoring and effective maintenance of smaller
wind turbines. Large turbines are fitted with a large number of sensors to monitor envi-
ronmental and turbine conditions [18] gathering large volumes of data through a SCADA
system, e.g., [19], with much research into analysis methods, e.g., [20]. Smaller turbines, on
the other hand, are often not monitored except through the electricity meter monitoring the
electricity production accumulated over an accounting period, commonly at half-hourly
intervals or even less frequently. In response, a field trial was set up to monitor a selected set
of turbines across the UK with additional instrumentation to gather local wind speed and
turbine power output at a 5-min interval [21] and to compare the findings of the monitored
and unmonitored turbines to wind speeds from nearby meteorological weather stations.
Results were only reported as annual data, but they still show some correlation between
the local wind measurements and the weather station. That was a funded field trial using
costly anemometers, but such instrumentation is impossible for an economically viable
installation of such small wind turbines. This requires either much cheaper monitoring
equipment [22] or a way to infer performance information from other sources. Despite a
careful search of the literature, the author has not found research or guidelines on a protocol
for evaluating small wind turbines once they are installed other than site visits, be they for
planned maintenance or once a fault has been noticed.

1.1. Turbine Performance Modelling

The first step setup in monitoring turbine performance is to create an appropriate
model of the turbine’s (or turbines’) performance in their installation setting. Manufacturers
only provide a single-valued performance curve of power output for a set of reference wind
speeds. Determining even such a curve empirically has attracted much research, e.g., [23].
However, actual operating turbines show visible scatter around that curve even in simple
surroundings, such as offshore wind farms [24]. That scatter is significantly enhanced in
complex terrain, leading to a challenge in performance modelling even with dedicated
wind speed and directions measurements at the turbine site [25].

Given the nonlinear nature of a turbine’s performance curve, one immediately intuitive
approach is to partition the data into different segments. This could be used to construct a
single curve [26] or a distribution within each partition. With the surge in AI and machine
learning, artificial neural nets have also been applied to this subject [27]. Out of a range of
statistical methods, copula theory has been applied to develop a model of wind turbine
performance [28] to construct the joint probability of power output and wind speed from
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operational data. This could be applied as a benchmark to compare new measurements
again for performance monitoring. However, it is unclear how this would be extended to
incorporate other factors, such as wind direction.

Principal component analysis (PCA, see [29] for a detailed introduction and [30] for
examples) is a technique which is widely applied for the reduction of data complexity or
dimensionality by projecting the multi-variate data onto empirical orthonormal reference
basis vectors, with the leading basis vector capturing the largest contribution to the overall
variance and the following vectors successfully less variance. The data reduction is then
applied by retaining only a selected number of dimensions to be able to reconstruct a filter
data set which maximises coherent signal and minimises noise. This has been applied
for wind turbine performance modelling using a number of wind speed measurements
at different heights above ground at the turbine site together with the turbine power
output [25]. Other applications for wind energy problems include forecasting, proposed
by [31] and further developed by [32], using time-delay PCA, also known as singular
systems analysis [33].

PCA has also been shown to be a useful technique for analysis of spatially distant
measurements [34], in that case, as a measure-correlate-predict (MCP) method for wind
resource assessment. There, the PCA combined the time-aligned measurements of wind
speed from pairs of anemometers, where the distance between the anemometers varied
from about 10 km to around 100 km, and the data covered a period of 12 years. In the
MCP algorithm, the PCA predictor was trained on the pair of readings from a training
period of 1 or 2 years. That predictor was then used to infer the wind speed and direction
at one of the pairs for the remaining data period using the measurements from the other
anemometer only. That method was shown to be consistently superior to a standard MCP
using linear regression. With this, there is clear evidence that PCA can be used to extract
key information from input data combining either wind speed and wind power at the same
location [25] or spatially distant data but only using wind data (and not wind power) [34].
Based on this evidence, it can be postulated that PCA might be similarly able to extract
a useful mapping between wind power at one location and wind speed some tens of
kilometres apart. The degree to which this hypothesis holds will be given by the scale of
the weather patterns, which lead to a general spatial correlation that has a clear functional
dependence on the distance [35].

1.2. Aims and Objectives

The aim of this paper is to develop methods to monitor and evaluate the performance
of a set of small turbines using only the metered electricity production together with
wind speed and direction data from a ‘nearby’ weather station, where nearby could be
several 10s of kilometres from the turbines. To this end, the objectives of this study are
to develop turbine performance models using a training data set, to apply the model to a
later set of validation data, and to develop a monitoring metric for the judgement of the
performance. Given the lack of existing methods to provide feasible near-online monitoring
of small wind turbines, the scope of this work has to be limited to the proof-of-concept
stage to demonstrate its potential and to identify clear steps to develop the method towards
practical application.

Two complementary turbine models are here developed, one based on the a priori
expectation of the empirical performance curve being close to a typical manufacturer’s
curve by partitioning the data into wind speed bins and analysing the observations within
each bin. The second method is entirely data-driven and trains a model using principal
component analysis, as this has been proven to be a valid tool not only for co-located
multi-variate data [25] but also for spatially distant data [34].

The rationale for developing two independent methods is two-fold. First, the absence
of any available state-of-the-art method or protocol presents a major obstacle to validating
any single method developed here against an external benchmark. However, the two
methods, which in their approach are fundamentally different, can be used to provide some
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cross-validation of each method. The second reason is that the two proposed methods
have complementary advantages and disadvantages. The first method is by its nature
more intuitive as it is based on the known concept of a wind turbine performance curve,
while the other is purely data-driven and therefore not directly tied to a priori knowledge.
However, the use of the performance curve poses challenges when secondary information
such as wind direction is to be included in the algorithm, while the multi-variate PCA
method can be applied to any choice of input variable combination.

The methods will be illustrated for metered electricity production from an installation
in Scotland, together with wind data from the nearest routinely maintained UK Meteo-
rological Office weather station. The data and methods are introduced in the following
section, with the results from each section presented in Section 3, followed by a comparison
and discussion in Section 4, before a brief conclusion with some suggested further steps.

2. Materials and Methods

Given the constraints of minimal monitoring data and no extensive initial validation
of performance after installation, the method proceeds in two stages utilising a small set of
input variables only: at the very minimum, only the metered electricity production and
the wind speed from the nearest weather station, or additionally the wind direction as a
third variable. The first step is the creation of a training data set which has been carefully
screened to increase the confidence in that the training data set does not contain faulty
performance. This training data set is then used to develop a reference performance model
against which future operational data can be bench-marked. To provide a benchmark
metric, a performance score is defined.

The overall process is structured in the following distinct steps, with reference to the
sections where the method or its application is introduced:

1. Creation of a training data set and a validation data set (Section 2.1)

(a) Splitting the full data set into one full year of data for training and retaining
the remainder of the period for validation

(b) Carefully screening of the training data set for known times of turbine or grid
faults and remove those

(c) Checking the remaining training data for potential bias arising from data gaps

2. Method 1, based on the performance curve (Section 2.2)

(a) Creation of an empirical performance curve from the training data (Section 2.2.1)
(b) Definition of a performance score function with reference to the empirical

performance curve (Section 2.2.2)
(c) Application of that performance score function to the validation data to calcu-

late a score for each validation sample (Section 3.1)

3. Method 1a, incorporating wind direction (Section 2.2.3)

(a) Identification of a partition of the data using wind direction from training data
(b) Subdivision of all data into the appropriate directional data partition
(c) Creation of empirical performance curves for each directional partition from

the training data
(d) Definition of a performance score function for the empirical performance curve

in each directional partition
(e) Application of the partition-appropriate performance score function to the

validation data to calculate a score for each validation sample (Section 3.1)

4. Method 2, using PCA (Section 2.3)

(a) Creation of the reference performance in PCA space from the training data
(Section 2.3.1)

(b) Definition of a performance score function with reference to the PCA reference
(Section 2.3.2)

(c) Projection of the validation data onto the PCA space (Section 3.2)
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(d) Application of the performance score function to projected validation data to
calculate a score for each validation sample (Section 3.2)

5. Method evaluation

(a) Cross-method comparison by comparing the performance scores from each
method as an initial validation of the methods (Section 4.1)

(b) External validation (Section 4.2)
(c) Demonstration of how the methods could be used to identify potential perfor-

mance improvement (Section 4.3)

2.1. Data Availability and Quality

The data available are half-hourly-metered electricity production from an installation
complemented by hourly wind speed and direction data for the same time period from a
nearby weather station operated by the UK’s meteorological office.

2.1.1. Electricity Production Data

The wind energy data used to develop and illustrate the method were provided by
the owner of an installation on an island in the north of the UK. The installation consisted
of three 5 kW turbines with a nominal rated wind speed of 13 m/s. They were mounted on
15 m tall poles and had upwind horizontal-axis rotors, passively yawed through a vane.
Just over two years of data are available, from July 2013 to July 2015, with one extended gap
of 43 days in November and December 2013 and a shorter gap of 6 days in February 2014.

2.1.2. Weather Data

The nearest weather data are taken from a UK Meteorological Office land-based
weather station near an airport that is located 25 km to the south of the wind turbine
site. These data were obtained through the MIDAS data set [36]. This data set provides
hourly average wind speed and gusts in a 10-min measurement period leading up to
the measurement time stamp, both rounded to the nearest knot, and the wind and gust
directions rounded to±10◦ from an anemometer at a nominal height of 10 m above ground.
A preliminary analysis showed that there is a very close linear relationship between the
recorded mean wind speed and gusts such that ugust = 1.53umean with a correlation
coefficient of r2 = 0.989. A check of the wind speed distribution of these data against that
of a 12-year record for the same weather station suggests that the winds observed within
each year are consistent with the long-term climatology. Implications of either including
or excluding rare wind conditions, and how to mitigate this, will be addressed in the
Discussion in Section 4.4.

2.1.3. Data Alignment

The available installation performance data were only the metered electricity fed into
the grid with a half-hour resolution. To maintain the data resolution of the key variable,
namely the electricity production, the weather data were augmented. Since the weather
data are directly valid for the 10 min prior to the full hour, the direct weather station data
were used as the correlates for both the half-hour leading up to that full hour and the
half-hour period immediately following.

The wind speeds recorded during the gaps in the electricity data do not show any
unusual distribution and certainly do not include any extreme weather events which
might have affected the turbines’ behaviour in ways not described by the manufacturer’s
performance curve. As a result, the data gaps are inferred to be due to communications
issues and not linked to the wind resource. With a data availability of 93.5%, it can be
assumed that the gaps will not introduce a significant bias in the analysis and are simply
ignored in the analysis. This is possible since the analysis is purely based on temporally
independent samples of simultaneous measurements.

In the second step, the full data set was separated into two sets, each covering about a
year, with both sets shown as simple scatter plots of the electricity production against the
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time-aligned wind speed in Figure 1. The first year was screened for known problems, such
as recorded down times of turbines. The remaining data in the first year were then deemed
to represent only the ‘normal’ operation of the installation and were then used as the
training data set. The second year of data was taken without screening. The training period
shows a clear organisation around a typical wind turbine performance curve, reaching a
maximum output of 7.5 kWh at a wind speed as early as 10 kn but with a substantial scatter.
The later validation period, in Figure 1b, shows additional features which clearly suggest
that for a number of times, one or more of the turbines were not generating, as well as some
data which fall in between these distinct bands. This comparison of the two separate years
shows clearly that there are a number of instances in the second year which do not conform
with the established expectations from the first year, in some instances because turbines are
disconnected completely but in other, less clear, instances where all turbines are operating
but with a lower output than they could. The purpose of the methods developed here will
be to identify those instances as soon as the data become available. The score at times,
which are clear-cut, should identify a clear fault, but the score should also indicate potential
problems in the other cases.

(a) (b)
Figure 1. Scatter plot of electricity production against wind speed at a distance of 25 km, (a) Training
data for the training period, and (b) Validation data for the validation period.

For the training period, the wind rose in Figure 2a shows the pattern typical for the UK
with prevailing south-westerlies, and a wind speed distribution in Figure 2b approximating
a standard Weibull curve with a scale factor of 13.5± 0.5 kn and a shape factor of 2.0± 0.1.
While some wind speeds have been observed around 1000 times, other wind speed bins
have less than 100 samples.

(a) (b)
Figure 2. Wind climate during the training period, with (a) the wind rose at the anemometer site and
(b) the number of samples observed in each wind speed bin (wind speeds in knots) together with
the best-fit Weibull curve (red line). The horizontal dashed line indicates 1% of the total number
of samples.
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2.2. Method 1, Based on the Performance Curve
2.2.1. Creation of a Reference Performance Curve Using Data Partitioning

The first step in the creation of the reference performance curve for the installation
is to split the data from Figure 1a into wind speed bins. Since the wind speed is given in
integer knots , this is the natural binning. After this, the electricity production data in each
wind speed bin have to be separated into ‘normal’ and ‘unusual’ behaviour. In the absence
of independently gathered information on the turbine’s performance, this is necessarily
a somewhat subjective distinction and requires expert interpretation of the wind speed
distributions. For this analysis, a choice was made to consider the central core of 50% of
the observations in Figure 1a as the main reference performance curve and the shoulder
areas as acceptable, with the implication that the blank areas below this curve should be
regarded as unacceptable.

2.2.2. Definition of a Performance Score

The desired performance indicator or score, S, should result in a reference value for
standard performance, a low score for performance clearly below standard and a high
score for performance exceeding expectations. This is satisfied by a function which has
three main levels: 1 for standard behaviour, 0 for performance clearly below standard, and
2 for exceptionally good behaviour. This could either be a discrete three-level function or a
piece-wise linear function with these three levels and linear interpolations in between.

The approach taken here was to classify the two central quartiles as representing
standard performance with a score of 1. The lowest quartile was classified as a transi-
tion region where the score would drop from ‘normal’ to clearly faulty (score of 0) in a
gradual way. The top quartile was similarly regarded as a region where the turbines were
performing increasingly better than one could expect. To quantify this classification, the
quartiles for the electricity production,E, within each wind speed bin, Ui, were calculated
as Q0(E|u ∈ Ui) to Q4(E|u ∈ Ui), or Q0 to Q4 in short. The position of a data point within
the sample was then used to create a performance index as

Ss(E, u) =



2 ; E > Q4

1 + E−Q3
Q4−Q3

; Q3 < E ≤ Q4

1 ; Q1 < E ≤ Q3
E−Q1

Q1−Q0
; Q0 < E ≤ Q1

0 ; E < Q0

. (1)

The subscript s is used to indicate that this definition is for the ‘simple’ performance
score and to distinguish it from the directional score defined in Section 2.2.3 and the PCA
score definition developed in Section 2.3.2.

2.2.3. Method 1a Incorporating Wind Direction

As it is known that the wind direction will affect the relationship between the local
wind at the installation and the reference anemometer, especially in the wind speed range
from cut-in to a little above-rated wind speed [24], this can be used to refine the performance
judgement. The process outlined so far is refined by splitting the samples within the wind
speed bin into distinct wind direction sectors. To retain sufficient data within each analysis
sub-bin, it was not possible to carry this out for each wind direction bin or even a section
covering several bins. Instead, the individual wind directions were grouped into a small
set of groups according to their average productivity within the entire wind speed bin.
This would start with separating the wind speeds into two groups, one giving electricity
production above average and the other below. The next refinement would be three groups,
one additional group for the intermediate range.

The performance indicator for the directionally sub-divided data, Sd(E, u, θ), is cal-
culated in the same way as in Equation (1) but using the quartiles Q

(
E|u ∈ Ui ∧ θ ∈ Θj

)
appropriate for the wind direction group Θj in their respective wind speed bin, Ui.
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As mentioned in Section 2.1, the wind data also include gust speed and direction.
Incorporating this additional information into this method is impossible without having
many empty partitions. However, a method which does not rely on partitioning data into
pre-defined subsets might allow additional data to be incorporated without running into
this problem.

2.3. Method 2: PCA-Based Score

While the method outlined in Section 2.2 follows a clear, rational argument under-
pinned by the knowledge of the typical shape of a turbine’s performance curve, incor-
porating the directional information leads to insufficient data samples available within a
reasonable training period. To alleviate that problem, an alternative method is developed
here, which incorporates the directional information implicitly without sub-sampling the
training period.

2.3.1. Creation of the Reference in PCA Space

This method is based on a Principal Component Analysis, PCA, of the training data,
which have been combined into a matrix Y of column vectors of the three variables, each
normalised to be in the interval [0, 1],

Yi,j=1,2,3 =
(

e∗i, u∗i, θ∗i
)

with e∗ = E/Emax, u∗ = u/Umax and θ∗ = θ/360◦. The PCA is carried out by a Singular
Value Decomposition of that matrix (If the matrix is too large for a direct Singular Value
Decomposition, an alternative is to carry out an Eigenvalue Decomposition of the much
smaller covariance matrix, YYT).

Y = P Λ Σ (2)

with

P a matrix containing the column vectors of the principal components, also known as the
‘loadings’ or components in a row to reconstruct the input sample in the same row in Y;
Λ a diagonal matrix of the singular values, each measuring the contribution to the total
variance of its corresponding singular vector;
Σ a matrix containing the column vectors of the singular vectors, which form an orthonor-
mal set of basis vectors rotated with respect to the original basis vectors to maximise
variance in the leading basis vector (Note that some software packages have implemented
Singular Value Decomposition such that they return the singular vectors as row vectors,
such that the singular vector matrix is the transpose of that described here).

The principal components fill a volume within the space spanned by the singular
vectors, and new measurements can be projected onto the same space. If a measurement is
projected onto a location also occupied by some training samples, this indicates that the
new measurement is consistent with the training data. If, however, the new measurement
is in an empty part of the space, it would not be consistent with the training data. This
case would either indicate previously unseen weather conditions or previously observed
weather conditions associated with unexpected turbine productivity.

This projection of a new measurement (or set of samples) is carried out by ap-
plying the scaling using Emax and Umax from the training to the new measurements,
Ỹ =

(
Ẽ/Emax, ũ/Umax, θ̃/360◦

)
, and then inverting Equation (2) to

P̃ = Ỹ ΣT Λ−1 (3)

where Σ−1 = ΣT since it is an orthonormal matrix, and the inverse of Λ is the diagonal
matrix with elements 1/λii.



Energies 2023, 16, 3500 9 of 22

2.3.2. PCA Performance Score

To add some gradation to that distinction of within and outside , the volume delin-
eated by the training data, the space can be subdivided into volume elements, ds1, ds2, ds3,
and the number of observations within a volume element gives a measure as to whether it
is within the core of the volume or a less densely populated region. This sample density
can be used to provide a continuous measure as to how well the new observation conforms
with the expected behaviour.

One has to bear in mind that this number of observations is the result of the joint
probability of some weather conditions occurring at the anemometer site and some electric-
ity production being observed at the turbine site, p(E|u)p(u). However, the performance
measure has to be based on the conditional probability distribution of electricity production
given a particular wind condition. To construct this conditional electricity probability, the
joint probability has to be divided by the weather condition distribution. While this would
itself be a joint probability distribution of wind speed and wind direction, a reasonable
first approximation in the approach is to use the wind speed distribution alone since the
wind direction is likely to have only a secondary effect on the turbine’s productivity. This
is easily obtained from the training data, either by creating a histogram or fitting a Weibull
distribution as presented in Figure 2b.

At extremely low and high wind speeds, however, the wind speed distribution is very
low, and any uncertainty or noise in either the PCA density or the wind speed distribution
would be amplified. To avoid this, the division using the wind speed distribution has
to be capped at a minimum value, Nmin commensurate with the overall sample size
and distribution of sample densities. Hence, a measure proportional to the conditional
probability can be calculated by dividing each sample in a PCA volume element by the
probability of the wind speed associated with that sample. An equivalent option is to
divide with the direct count, N(u) of that wind speed (cf. Figure 2b), subject to replacing
low numbers by the set minimum with

n(u) =
{

N(u) ; N(u) > Nmin
Nmin ; N(u) ≤ Nmin

(4)

where N(u) is the number of observations with wind speed u. In the present work, with
15,044 samples in the training data set, the minimum was set as 1% of the total number,
that is Nmin = 150 indicated as the dashed horizontal line in Figure 2b. The wind speed
bins affected by this cap are the lowest observed wind speed of 1 kn and all high wind
speeds above 25 kn.

Given the available data volume, it was decided here to apply this principle to the
projection of the data onto a selected plane, which, with inspection, was guided to be the
PC1 − PC3 plane. This reduced the volume elements to area elements dp1 dp3 and counted
all samples within that volume for all values of PC2. Taking the set of samples within
the volume as K, the conditional probability is proportional to the count of each sample
weighted through division by n(u),

p(E|p1 ∧ p3) ∝ P̃ ≡ ∑
k∈K

1
n(uk)

(5)

This could be easily normalised into a probability density function, but its purpose is to
construct a performance score corresponding to that developed in Section 2.2.1, Equation (1).
To this end, P̃ is transformed into a piece-wise linear form, with the entire set of routinely
acceptable performance from the training data receiving a score of 1. This is achieved
by first setting a reference threshold consistent with the choice of the interquartile range
designated as core performance. Therefore, the median of P̃, denoted by PM, was chosen as
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the threshold. The value of P̃ is first divided by PM, and then all values above 1 are set to a
value of 1,

S̃PCA =

{
1 ; P̃ > PM

P̃ / PM ; P̃ ≤ PM
. (6)

This leads to the most likely electricity production volume in the PCA space having a
score of S̃PCA = 1, volumes not being part of the training data having a score of S̃PCA = 0,
and the space in between an intermediate value. As this does not distinguish between
‘better than expected’ and ‘worse than expected’, the PCA volume has to be subdivided into
the space associated with high electricity production and its complement associated with
low electricity production. The values in the high-electricity subspace are then mirrored
around the reference score of 1 by subtracting the initial score from a value of 2; those
initially with a value of 0 become 2, while those originally with a value of 1 retain that
value. This finally leads to a score equivalent to that defined in Equation (1) with

SPCA(E, u, θ) =

{
2− S̃PCA ; E > 〈E〉

S̃PCA ; E ≤ 〈E〉 . (7)

3. Results

The presentation of the results essentially follows the same structure as Section 2,
starting with the simple quartile-based performance index, followed by including the effect
of wind direction, and concluding with a demonstration of the PCA-based scoring.

3.1. Method 1: Quartile-Based Performance Index

Calculating the quartiles in each wind speed is illustrated by the set of box-and-
whisker plots in Figure 3a of electricity production within each wind speed bin of width
1 kn. Production data within the boxes will have a performance score of Ss = 1. Those in
the white space below the whiskers will have a score of zero, while those in between are
linear interpolations. Likewise, production above the whiskers will have a score of Ss = 2,
with those within the upper whiskers will have a score 1 < Ss < 2.

(a) (b)
Figure 3. (a) Empirical performance curve as a set of boxplots for each wind speed bin from the
training data; (b) scatter plot of the validation data, with colour coding for the performance score, Ss,
for each sample.

Applying the performance indexing of Equation (1) to the validation data and plotting
the data from Figure 1b using the performance index to colour-code each measurement
clearly demonstrates in Figure 3b the effectiveness of the method in identifying performance
outside expected ranges. In particular, the method reliably identifies cases which are
recognisably caused by one or more turbines not operating. In addition, it also assigns an
index of zero to a range of observations which are below expected but not consistent with a
turbine being off-line altogether. They might be cases of below-expectation performance
due to other factors such as wear and tear.
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Method 1a: Effect of Wind Direction

In this section, it is explored to what degree the inclusion of wind direction in the
performance index affects its ability to distinguish the different levels of performance.
Figure 4a illustrates how strongly the wind direction affects the turbines’ productivity in
the form of a heat map of the median productivity of each wind speed–wind direction bin.
There is a clear pattern of the installation reaching rated capacity much earlier at wind
speeds around 11 kn for wind directions around 70◦ and 240◦, and as late as 17 kn around
Northerly directions and around 140◦.

(a) (b)
Figure 4. (a) Heat map of the median electricity production by wind speed and direction. (b)
Refinement of performance expectations for distinct wind directions, showing the bands of Sd = 1
for the two directional subsets.

The number of wind speed bins observed in the year’s worth of training data, shown
in Figure 2b shows that wind speeds below 2 kn or above 25 kn have less than 100 samples
each, preventing meaningful sub-binning into directional bins for calculating Sd. Even for
most other wind speeds, the data volume is too small to complete a detailed direction-by-
direction analysis. Instead, the two-way separation introduced in Section 2.2.3 was adopted.
Within the wind speed range from 2 kn to 25 kn, the samples in each wind speed bin were
separated into one subset of all samples with an electricity production above the median
within the bin and the other subset of the remaining samples. The wind speed bins outside
the 2 to 25 kn range were not subdivided.

Applying this data splitting leads to a clear separation of the boxes and whiskers
at intermediate wind speeds. This is illustrated by showing only the interquartile range,
i.e. those electricity production values with a performance index Sd = 1, as shaded areas
for the two wind speed groups in Figure 4b. Applying these different quartiles to the
performance index calculations leads at first sight to a very similar picture to that already
seen in Figure 3b. Attempting a more refined directional sensitivity by splitting the data
into more groups or by fitting a sinusoidal modulation failed to give any more detail in
average performance but actually reduced the distinction between the different subsets.
Given this, it was deemed pointless to subdivide the data even further by considering gust
information.

3.2. Method 2: PCA

This section presents the results from the purely data-driven method. The potential
benefit of this method, in addition to eliminating the need for imposing expected behaviour
from standard turbine performance curves, is that it does not suffer from too low a data
density in less common wind speeds or directions if the directional information is to be
included.

3.2.1. PCA Training

The initial creation of the reference volume representing standard behaviour, applying
Equation (2) with electricity production, mean wind speed and its direction, is illustrated
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in Figure 5, with Figure 5a showing the training data in the 3-dimensional singular vector
space, colour-coded by the value of the third principal component. Projections of these data
onto planes, with colour-coding by the perpendicular dimension, show that the training
data cover an almost rectangular area in the first two directions, in Figure 5b, with the
highest value in the third direction near the upper left edge. Looking ‘sideways’ along
the first and third singular vector in Figure 5c, the projection of the associated principal
components results in a curve which is reminiscent of a rotated version of the empirical
performance curve from Figure 1a, together with a clear structure in the colour coding by
PC2.

Figure 5d shows a version of Figure 1a but using the value of PC3 for the colour scale.
This shows that while the first two principal components capture the typical turbine perfor-
mance curve, the third principal component identifies the turbines’ performance relative
to that typical curve, with high values of PC3 associated with below-average electricity
production and vice versa. Using this insight is used to apply the final correction for the
PCA performance curve to distinguish above-expected from below-expected performance
by mirroring the initial scores S̃PCA for all points with PC3 < 〈PC3〉 in Equation (7). The
resulting performance score map in the PC1 − PC3 projection is shown in Figure 6a with
a colour-coding of deep red indicating unacceptably low productivity, SPCA = 0, deep
blue exceedingly high productivity, SPCA = 2, the central, light green area of ‘expected’
behaviour, SPCA = 1, and a gradual transition between those main areas.

(a)
(b)

(c) (d)
Figure 5. Principal components from training data: (a) 3D scatter plot, (b) projection onto the
PC1 − PC2 plane with points colour-coded by PC3, (c) projection onto the PC1 − PC3 plane colour-
coded by PC2, (d) empirical performance curve colour-coded by PC3.
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(a) (b)
Figure 6. PCA score, SPCA, (a) SPCA score map in PC1 − PC3 projection, and (b) empirical perfor-
mance curve for the training data colour-coded by SPCA.

Calculating the score for each sample from the training data by mapping its associated
principal components onto that map results in a performance curve with each sample
colour coded according to its PCA performance score, shown in Figure 6a. As seen in
Figure 3b, the core of the area has a score of one, and the training data below the core has a
score gradually dropping from one to zero at the edge. Above the core, the score increases
gradually towards the upper edge of the training data.

3.2.2. Application to the Validation Data Set

Figure 7 shows the projection of the validation data onto the singular vectors through
Equation (3), with the projection equivalent to Figure 5c, onto the PC1 − PC3 plane in
Figure 7a. When comparing this with Figure 5, one observation is that the range of the
first and second principal components are about the same in both figures, but the range
of the third principal component is increased from an upper limit of 0.05 to 0.1. Some of
the additional regions covered form strands extending upwards from the core, similar to
the ‘hook’ at the left of Figure 5c but placed further right. These strands consist of the
three additional horizontal bars corresponding to 0, 1, or 2 turbines operating at their rated
capacity and the remaining turbine(s) offline. In addition to those clear features, the core
area is also broadened upwards. In this perspective, it is difficult to discern a clear pattern
in the value of PC3. The alternative view of the projection onto the PC2 − PC3 plane in
Figure 7b suggests that the value of the first principal component has its maximum mainly
in a region of near-zero PC3 and slightly positive PC2, while the other extreme is located at
slightly positive PC3 and negative PC2.

However, since these are projections onto empirically derived orthonormal basis
vectors, one should not expect to extract too much obvious information from these graphs
without progressing to their use to calculate the performance score. Details aside, the key
information communicated by Figure 7 is that validation data from Section 3.1, which are
known to contain a significant number of samples with performance well below expected,
explore a larger volume in the PCA space than the training data, and that this extended
range is primarily found in the higher principal components, most notably here in PC3 .

Figure 8 shows the projections of the principal components again, but this time colour-
coded with their performance score. To avoid the many samples with a score of SPCA = 1
that would obscure the other samples, Figure 8 only shows the samples with SPCA > 1 in
green and red, and those with SPCA < 1 in blue. This shows that all these data are outside
the area of SPCA = 1 in the PC1 − PC3 projection and either near the extremes of PC1 or
near the zero point of PC2.
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(a) (b)
Figure 7. (a) Principal components PC3 against PC1 for the validation data, colour-coded by PC2; (b)
the same but PC3 against PC2 colour-coded by PC1.

(a) (b)
Figure 8. Principal components of subset of validation data with a performance score SPCA 6= 1; (a)
PC3 against PC1, (b) PC3 against PC2.

Plotting, as a final step, the conventional performance curve of electricity versus wind
speed with each sample colour coded by the performance score calculated in this section,
SPCA is shown in Figure 9. The main features repeat those that were obtained using the
first method with some detailed differences. Since the PCA method is not entirely based on
wind speed and electricity production, the visual separation of the scores is not as strict
as in Figure 3b with some blue (SPCA > 1) and some red (SPCA < 1) examples within the
mainly light-green SPCA = 1 area. The separation between green and blue is more linear
here, while it is more reminiscent of a standard turbine performance curve in Figure 3b.
Furthermore, the area at moderate wind speeds and low energy productions has more
discrimination than Figure 3b, some classified as normal and some as below expectations.
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Figure 9. Performance curve for the validation period with colour coding for SPCA.

4. Discussion

Given the absence of independently verified performance quality during the second
year of operation as well as the absence of a recommended method in the industry or
literature other than confirmation of site visits to reset or repair turbines, the critical
evaluation of the methods and their usefulness will necessarily rest for the time being
mainly on a comparison of the three methods against each other.

4.1. Inter-Model Comparison

The key differences in the ability to detect sub-optimal performance can be extracted
from Figure 10, which shows a scatter plot of the directional performance score Sd in
Figure 10a and the PA score, SPCA in Figure 10b against Ss, respectively. The diagonal line
consists of all points where the performance index from both methods is identical. The
vertical line in the middle represents cases where Ss = 1 but the other method classed them
as outside that interquartile range, and the horizontal line and vice versa. There are almost
no instances where one score was above the expected and the other below the expected.
One point to notice is that the simple index almost never scored an observation higher
than expected when the directional index classed the observation as within expected. In
contrast, a number of cases were classed as ‘below expectation’ by the simple index when
the directional method accepted it as within the expected range. Reversing the perspective,
for cases identified as within expected by the simple method, the directional method could
go either way. The correlation between the interquartile methods and the PCA method is
less clear but still reasonably strong. While the Pearson’s correlation coefficient between Ss
and Sd is 0.95, it is only around 0.72 between SPCA and either Ss or Sd.

The overall distribution into the main classes using the three methods is summarised
in Table 1. While the three methods largely agree, it can be seen that the directional method
is the most ‘generous,’ awarding high scores and the simple least generous. In contrast, the
PCA method has the least instances of zero score and the highest number of S = 1. This
would indicate that the PCA method might either miss instances where maintenance could
improve productivity, but on the other hand, it is less likely to cause false alarms.

Table 1. Summary of performance identification. Number given in percent of total sample size of 17,894.

Method S = 0 0 < S < 1 S = 1 1 < S < 2 S = 2

simple 14.3 29.6 51.1 4.6 0.5
directional 15.3 20.9 52.7 10.0 1.1
PCA 5.9 27.1 58.7 8.2 0.0
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(a) (b)
Figure 10. Scatter plot of performance index from two methods, (a) directional score, Sd against the
simple score Ss, and (b) PCA score SPCA against Ss.

4.2. External Validation

The only external validation available are reports of an engineer visiting the turbines
and resetting them when they were down. It is, therefore, instructive to track the perfor-
mance index over time and compare changes in behaviour against the engineer’s reports.
As all three methods are highly correlated, the external validation will be demonstrated
against one method only, namely the PCA method. Figure 11 summarises the split of the
performance score into the four groups (zero, between zero and 1, 1, between 1 and 2, and
2). The first column gives that split for the entire training period, and each subsequent
column shows it within each week of the validation period. The weeks with significantly
increased times of SPCA < 1, as in October, December, and the period from January to
March, May, and July, have been confirmed by the engineer as times with problems with
one or more of the turbines. However, in addition to these confirmed events, Figure 11 also
shows a gradual increase in samples with below-expected performance. This suggests that
the approach is able to identify an underlying gradual trend of increasingly sub-optimal
performance due to more subtle causes such as wear and tear.

4.3. Potential Performance Improvement

Before addressing future development and validation options, the potential use of the
method will be demonstrated in this section. Supposing that this method were consistently
used to provide an active maintenance regime targeted to keep the installation’s operation
within the expected performance range, it is possible to quantify the potential benefit in
terms of additional energy production from the times when the data indicated sub-optimal
behaviour. Figure 12 summarises the potential electricity productivity expressed as the
capacity factor of the installation. The red area indicates the energy recovered if all instances
with S < 1 were brought up to the average operation within the band of S = 1. This can
therefore be classed as a realistically achievable improvement.

The orange area on top would be additional electricity operation if the installation
could be brought up to the average operation of that observed for all cases with S ≥ 1.
This means that the maintenance regime would also enable the installation to exceed
standard behaviour with the same likelihood as already observed and could therefore be
viewed as an upper limit of recoverable electricity. Given that the simple method had
the largest number of instances flagged with Ss < 1 in Table 1, the expected achievable
productivity is highest, while the margin between achievable and upper limit is highest for
the directional method. The PCA method, which has been identified as the most cautious
method, predicts an achievable improvement similar to that of the directional method and
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a margin to the upper limit similar to the simple method. Taking this as the most realistic
potential, even this improvement from a capacity factor of 36.7% to between 39.8 and 40.5%
is substantial, especially as the method does not require additional instrumentation or
expensive computing resources.

Figure 11. Weekly distribution of the performance index over time for the validation data, with the
initial column the total distribution for the training data.

Figure 12. Potential improvement in annual productivity shown as the observed and potentially
increased capacity factor, where the actual output is the blue bar, the red section the additional
production which should be achievable with responsive maintenance, and the orange section an
optimistic high expectation of the yield.

The analysis presented here has also been applied to ten other turbine installations
by the same owner, where the distance between the turbine site and the weather station
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ranged from 5 to 40 km. The findings from all confirmed the reliability of the method.
However, since they all use the same turbine model, are monitored in an identical manner,
and are located in the same region of the country, the results are not regarded as a true
external validation and, therefore, not presented in detail here. However, the method was
able to distinguish poor performance, as measured against the manufacturer’s expected
production, due to poor siting from the turbine fault. It was, therefore, able to identify sites
which would benefit significantly from a more proactive monitoring protocol and others
where additional investment in monitoring or maintenance would be futile.

Since both methods only require metered electricity production and either a regularly
monitored weather station within about 40 km or access to hourly wind speed data from
databases such as ERA5 [37], the method can be applied to any metered wind turbine
anywhere in the world without adaptation. In fact, the ERA5 database includes wind speed,
wind direction and gust with global coverage on a quarter-degree grid, providing the ideal
reference tool against which to test any wind turbine’s performance.

4.4. Validation and Sensitivity to Training Data

Section 2 acknowledged that some ad-hoc assumptions had to be made to create reliable
training data. Given the nature of the available data, this was inevitable. However, the
results presented here—identifying clear cases of turbines not working and the overall
productivity having gradually reduced over the validation period compared to the training
period—is evidence that the method works in principle. Looking forward to applying the
method to new installations, there will still be a challenge that it will never be possible to
create a gold-standard reference, partly because the scale of these installations prevents
the investment into high-resolution anemometers at the turbine sites but also because
there is never a guarantee that a reasonable training period would capture the long-term
climatology.

One solution to the second problem would be to review the training data periodically
in light of new information gathered in the following period. If previously unseen weather
conditions are being observed, it will be possible to add those to the training data as long
as one is confident that the turbine performance at the same time is consistent with normal
operation. Likewise, samples from the original training data set, which are subsequently
identified to be unreliable, can be eliminated. The training step to create the reference can
then be repeated using the revised training data.

A solution to the first problem is much more challenging. For a complete validation
of the methods, one would either have to carry out extensive field trials, continuing the
initial work presented in [21], but even that might not provide a firm reference to identify
particular types of failures. A validation process suggested here would be to model turbine
output based on the manufacturer’s data, to perturb those with typical fluctuations and
then to model a specified set of faults. Based on measured wind speed data at a site and
a reference site, or using two adjacent grid points from the ERA5 data set, one would
then simulate the output from the turbine both, operating normally and with a fault, from
one of the wind speed data and correlate that with the other wind speed measurement.
This would provide a clear method to train the methods using normally operating turbine
simulations and then to identify the signal and resulting performance score from turbines
outside their normal operating parameters.

In fact, since no new installation is routinely monitored in detail, such training using
simulation would be a standard procedure to train the performance scoring. It would also
be a valuable tool in the initial decision-making to estimate a realistic range of expected
annual electricity production.

4.5. Development Needs

Before such a validation programme should commence, one further stage in the
development of the PCA method should be completed. It has already been mentioned
that it would be straightforward—trivial, in fact—to incorporate gust information into the
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training data. Instead of the input matrix consisting of three column vectors, it would have
five column vectors with the additional gust speed and direction. It would also be possible
to include wind information at higher levels, for example, at 100 m as is provided by ERA5,
temperature and atmospheric pressure, or more than one reference grid point. This has
not been presented here as the challenge is how to construct the performance score from
a much higher-dimensional PCA space. Presenting this is a significant task which would
have obscured the main intention of this paper.

A further refinement of the method could involve the creation of likelihood indicators
for scenarios such as a particular number of turbines operating or not by rescaling the train-
ing data representing only some of the turbines operating under the observed conditions
(in this case, the rescaling would be by 1/3 and 2/3, respectively). From this, the number
of turbines could be estimated as a signal to a maintenance engineer.

5. Conclusions

This study has presented the initial development of two alternative methods of mon-
itoring the performance of small wind installations with the minimum of available data.
As far as the author is aware, this is the first published attempt to develop such methods
in contrast to the extensive literature for large wind turbines and wind farms, which are
fully instrumented and monitored through advanced SCADA systems. This minimum
requirement consists of only the electricity production at regular time intervals, ideally
hourly or half-hourly, and time-aligned wind data either from a weather station in the
region or a global database.

While the first method was based on binning data into weather condition bins to create a
performance curve aligned with that expected from the manufacturer’s performance data, the
second method was entirely data-driven using Principal Component Analysis. Considering
that the first method struggled to information beyond the wind speed alone, its future
applicability is likely to be limited. In contrast, the PCA method appears to have more
potential as it allows multiple reference data to be used. To achieve this potential, the PCA
method requires the systematic development and validation work identified in Section 4.

All methods were shown to be able to identify times of problems with the turbines’
operation, both distinct problems such as a turbine going off-line altogether and also a
gradual decrease in performance. Given the minimum data and processing requirements,
both methods, therefore, have the potential to be viable asset monitoring tools for small
installations without the need for additional instrumentation.

Given that the methods were developed and demonstrated against a specific data
set, further development and validation against other data sets are needed to build up
confidence in the approach. Once the methods are more robustly validated, they can easily
be applied to monitor any wind turbine installation anywhere in the world as long as the
electricity production is regularly recorded. An initial application to a set of installations
has illustrated that the method can distinguish between normal and sub-normal operations,
which, if routinely applied, can be used to identify faults quickly and initiate maintenance
action. In addition to identifying clear faults, the methods have also identified a gradual
decrease in performance which has been attributed to the ageing of the devices.
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Abbreviations
The following key abbreviations and mathematical symbols are used in this manuscript:

Abbreviations
LCoE Levelised Cost of Electricity
MCP Measure-Correlate-Predict
PCA Principal Component Analysis
SCADA Supervisory Control and Data Acquisition Software
Variables
E Electricity production in a half-hour period
u Wind speed (in knots)
θ Wind direction (in ◦)
e∗ non-dimensionalised electricity production in a half-hour period
u∗ non-dimensionalised wind speed
θ∗ non-dimensionalised wind direction (in ◦)
Q Quartile, with Q0 = minimum, Q2 = median,

Q4 = maximum, and the interquartile range between Q1 and Q3.
P Principal component matrix
Λ Singular value diagonal matrix
Σ Singular vector matrix
PCi Principal component i and column i of P
λii Singular value for PCi
S Performance Score
N Number of observations in a wind speed bin
Nmin minimum of N(u) for rescaling probability estimate
p likelihood
P̃ proxy for likelihood estimator
Subscripts and superscripts
.s simple performance curve
.d directionally sub-divided performance curve
.PCA PCA based method
·̃ indicates interim variables
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