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Abstract: The growing demand for electricity and the reconstruction of poor areas in Africa require
an effective and reliable energy supply system. The construction of reliable, clean, and inexpensive
microgrids, whether isolated or connected to the main grid, has great importance in solving energy
supply problems in remote desert areas. It is a complex interaction between the level of reliability,
economical operation, and reduced emissions. This paper investigates the establishment of an
efficient and cost-effective microgrid in a remote area located in the Djado Plateau, which lies in the
Sahara Ténéré desert in northeastern Niger. Three cases are presented and compared to find the best
one in terms of low costs. In case 1, the residential area is supplied by PVs and a battery energy
storage system (BESS), while in the second case, PVs, a BESS, and a diesel generator (DG) are utilized
to supply the load. In the third case, the grid will take on load-feeding responsibilities alongside PVs,
a BESS, and a DG (used only in scenario 1 during the 2 h grid outage). The central objective is to
lower the cost of the proposed microgrid. Among the three cases, case 3, scenario 2 has the lowest
LCC, but implementing it is difficult because of the nature of the site. The results show that case 2
is the best in terms of total life cycle cost (LCC) and no grid dependency, as the annual total LCC
reaches about $2,362,997. In this second case, the LCC is 11.19% lower compared to the first case and
5.664% lower compared to the third case, scenario 1.

Keywords: microgrid; mixed-integer linear programming (MILP); power scheduling; optimal sizing;
grid outage

1. Introduction
1.1. Motivations

Using the World Bank Development Indicators, it has been shown that the use of
energy is strongly related to almost every conceivable aspect of development. Wealth,
health, nutrition, water, infrastructure, education, and even life expectancy itself, are
strongly and significantly related to the consumption of energy per capita [1]. That is to
say that energy is vital for all living beings on Earth. Its availability is one of the basic
conditions for the sustainable development and social well-being of any nation. However,
this sustainable development is far from being achieved, especially for developing countries,
as a result of an energy demand that grows exponentially due to population growth. Hence,
the number of people living in energy poverty, referred to here to as non-access to electricity,
is estimated to be around 1.2 billion (16% of the world’s population), and a large number of
these people are from Sub-Saharan Africa.

Energies 2023, 16, 3471. https://doi.org/10.3390/en16083471 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16083471
https://doi.org/10.3390/en16083471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9854-9987
https://orcid.org/0000-0003-3615-3714
https://orcid.org/0000-0003-4494-6773
https://doi.org/10.3390/en16083471
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16083471?type=check_update&version=3


Energies 2023, 16, 3471 2 of 23

For the majority of their energy needs, many countries rely on fossil fuels (coal, gas,
oil, uranium, etc). These conventional power sources have been the major methods of
producing electricity. According to [2–5], 85% of the global energy supply comes from
conventional power sources. However, reliance on these fuels presents a challenge for the
future as they tend towards depletion and they also present serious threats to human lives.
In addition, supplying electricity to rural communities is not an easy task due to economic
and geographical issues. These isolated communities frequently rely on diesel generators to
obtain electricity. The cost of running these diesel generators and the huge environmental
pollution are not favorable [6–8]. To overcome the aforementioned problems, renewable
energy resources have drawn the attention of researchers to face the depletion of fossil
fuels, to prevent global warming, and especially to electrify off-grid communities or to
provide a constant electricity supply. In contrast to conventional energy sources, renewable
energy sources are inexhaustible and lasting energy sources. They are available in all
countries, and their potential is yet to be fully harnessed. According to the International
Renewable Energy Agency (IRENA), about 90 percent of the world’s electricity can and
should come from renewable energy by 2050 [9]. The world needs renewable, reliable,
sustainable, affordable, and modern energy resources for humanity because they are much
cleaner, more cost effective, and produce energy without harming the environment. There
are various renewable energy generation sources, such as hydropower, solar photovoltaics
(PVs), wind turbines (WTs), biomass energy, geothermal energy, etc. In addition to their
advantages, such as being environmental friendly and sustainable, PV energy and wind
energy have been used frequently due to the reduction in their manufacturing cost and
growing industrial and residential applications [10]. These sources can be connected
individually as a hybrid to supply power to the grid [11,12]. Further, renewable energy
sources can be used to electrify remote areas, which cannot be supplied from an accessible
grid. However, these renewable energy sources generate significant disturbances due
to their intermittent nature. Moreover, as a result of the non-reliability and excessive
sizing of using a single source like PVs, to supply power to remotely located populations,
hybrid renewable energy resources are proposed to meet these challenges [13]. Hybrid
renewable energy systems (HRES) usually comprise one or more renewable sources (e.g.,
PVs, WTs, etc.), conventional diesel generators, and sometimes storage systems (e.g.,
batteries, pumped thermal storage systems, pumped hydro-energy storage systems, fuel
cells, etc.). Storage systems play a vital role in the microgrid structure. Therefore, they
can be used to supplement the power output variation of renewable sources that work
totally erratically.

When configuring a hybrid system, the integrated sources must be appropriate to
the nature of the region, its weather, and climatic conditions. Each renewable energy
source has a different nature, so integrated systems must complement each other. Several
studies have been conducted discussing the uncertainty and global sensitivity analysis of
the output of RESs [14]. Many studies have been conducted to explore the integration of
renewable energy sources to form an ideal hybrid system for supplying isolated microgrids
or for connection to the main grid. Among the proposed configurations is the combination
of wave, solar, and wind energies [15,16]. A recent study was conducted proposing a
hybrid system that combines wave, solar, and wind energies [17]. Another approach is
focused on improving the quality of renewable energy sources through the use of artificial
intelligence [18,19]. A study was conducted to investigate hybrid renewable energy systems
and ways to develop them through artificial intelligence [20]. Therefore, in this study, a set
of configurations was studied to determine an optimal hybrid system that is suitable for
the region’s nature. Optimization techniques were used to achieve the most efficient and
cost-effective microgrid in a remote desert area in the Djado Plateau in northeastern Niger.

1.2. Related Works

Recently, the use of hybrid photovoltaic (PV) and wind energy systems has been
growing for off-grid applications. Several studies have been carried out on microgrid
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schemes operating in standalone mode to build a green climate in line with the cost
reduction of conventional diesel generators, and to electrify remote areas that cannot be
supplied from an attainable utility grid. The authors of [21] showed that PV–biomass or
PV–diesel hybrid systems provide ultimate reliability and the lowest cost for standalone
electricity. The objective to satisfy consumers by generating continuous power using
solar and wind systems at minimum cost was achieved in [22]. A cost–benefit study on a
hybrid renewable energy system was optimized to electrify a rural Ethiopian village in [23].
Compared to a diesel-only system, a hybrid PV-wind-diesel-battery system was found to
be the most cost-effective and had the lowest CO2 emissions. According to [24], a hybrid
photovoltaic/biomass/wind/pump-hydro scheme would be ideal for remote village, local
hospital, education, and industrial sites.

Extending the use of HRES to electrify rural off-grid/on-grid locations has motivated
researchers to examine more technical and economic feasibility problems. In [25,26], a
techno-economic analysis was applied using the HOMER Pro software tool. In [25], a
study was carried using the HOMER Pro software tool to redesign and refinance a remote
HRES (diesel, PVs, and batteries) on a small island in Thailand. The HRES was optimized
to reach the lowest cost of electricity. In [26], a study was developed to investigate the
electrification of a rural community in Benin. The findings of this study revealed that
the hybrid PV–diesel–battery system achieved the lowest-cost optimal system. However,
the planning and optimal design of an HRES from an economic and technical point of
view are challenging for various reasons. One is the inconsistency of renewable energy
sources and their reliance on weather conditions. HRES systems are often either oversized
or undersized to satisfy the energy demand. An oversized system will result in high system
costs, generating surplus energy. Moreover, an undersized system will result in failure of
the power supply to the targeted loads. To overcome the problems mentioned above and to
fully utilize the benefit of the renewable-energy-based microgrid, optimal sizing of an HRES
must be considered.

In recent times, great attention has been centered on studying the optimal sizing of an
HRES. According to [27], GA was used to find the optimal sizing of an integrated hybrid
PV–WT–battery system in an energy management strategy. Ref. [28] introduced a control
methodology for controlling the microgrid using FPGA. The authors of [29] presented an
improved fruit-fly optimizer technique to optimally design a hybrid PV–WT–diesel–battery
system based on total annual cost (TAC) and pollutant emission minimization. The HOMER
software tool was used to optimally size standalone hybrid systems in [30–33]. The authors
of [34] studied various configurations in respect of microgrid system design using HOMER.
In their article, different scenarios were compared in terms of the levelized cost of energy.
In [35], the HOMER software tool was utilized to investigate electricity generation for a
standalone system in Bangladesh. The capacity cost, net present cost, levelized energy cost,
and wind power production of different hybrid system configurations were examined. The
grasshopper optimization algorithm (GOA) was used in [36] to perform the optimal sizing
of a hybrid autonomous microgrid for five residential units in an off-grid location in Yobe
State, Nigeria. In their paper, the authors described the superiority of the GOA over particle
swarm optimization (PSO) and cuckoo search (CS) in terms of fulfilling the demand of the
residential housing reliably based on the deficiency of power supply probability (DPSP)
and with a low cost of energy (COE).

The authors of [37] evaluated the performance of seven (7) different evolutionary
algorithms for the optimum sizing of a PV/WT/battery hybrid system to continuously
satisfy the load demand with the minimal total annual cost. They demonstrated that
artificial bee swarm optimization (ABSO) gives more acceptable results than particle swarm
optimization (PSO), tabu search (TS), simulated annealing (SA), improved particle swarm
optimization (IPSO), improved harmony search (IHS), and improved-harmony-search-
based simulated annealing (IHSBSA) in terms of TAC. By considering a maximum allowable
loss of power supply probability (LPSPmax) set to 5%, the PV/battery is the most cost-
effective hybrid system. Multiple objectives, including minimization of the life-cycle



Energies 2023, 16, 3471 4 of 23

cost, maximization of the renewable energy source penetration, and the minimization
of pollutant emissions for solving the sizing optimization problem, combined with the
operational strategy and operational experience of a real microgrid system on Dongfushan
Island, Zhejiang Province, China, were employed for the GA-based method in [38].

In [39], the whale optimization algorithm (WOA), water cycle algorithm (WCA), moth-
flame optimizer (MFO), and hybrid particle swarm-gravitational search algorithm (PSOGSA)
were applied for the optimal design of a PV/wind/diesel/battery storage grid-independent
hybrid microgrid for minimizing the COE while maximizing the reliability and the efficiency
of the system presented by the loss of power supply probability. The optimization results
revealed that the WOA proved its superiority in solving the optimization problem in terms of
convergence, speed, and accuracy. The authors of [40] evaluated five scenarios to determine
the best possible optimal HRES in terms of minimum net present cost (NPC), COE, and CO2
emissions for Kutubdia Island in Bangladesh. A comprehensive comparison between the non-
dominated sorting genetic algorithm (NSGA)-II-based optimization and hybrid optimization
of multiple energy resources (HOMER) Pro software was presented; the NSGA-II-based
optimization gave USD 692,775 as the NPC, which was less than that of the HOMER-based
optimization (USD 711,943), for the best scenario, i.e., a PV/Wind/Battery/DG system.

In [41], a study was conducted to discuss the design and implementation of a hybrid
system to electrify Dera Ismail Khan, a rural area located in Pakistan, combining PVs, a
DG, and a BESS. Different scenarios were studied, whether connected or isolated from
the national grid. That study concluded that the best solution was a hybrid system that
combined PVs, a BESS, and a DG with a national grid. HOMER Pro was relied upon in
the implementation of the study. A brief review of the recent developments in hybrid
renewable energy systems that depend on optimization techniques was provided in [42].
The review discussed classical methods in addition to techniques that depend on artificial
intelligence. It concluded that technologies that rely on artificial intelligence are better
and achieve better results, both from a technical and economic point of view. The authors
of [43] analyzed various off-grid renewable energy schemes for an informal settlement
in Windhoek, Namibia. The study relied on HOMER Pro software for system sizing. It
presented a technical and economic comparison between individual residential PV systems
and powering the home via either a rooftop or ground-mounted hybrid microgrid from a
roof-mounted or ground-mounted renewable energy system. In [44], a study was conducted
to discuss the configuration of a hybrid system to feed some areas in India. Economic and
technical aspects were studied. A combination of PVs, a WECS, a DG, and a BESS was used.
The battery used was based on lead-acid flow technology. The residential community load
was taken to obtain the best solutions.

Implementation of a hybrid home microgrid to supply an isolated home in a remote
area was discussed in [45]. This hybrid microgrid combines PVs and a BESS. Optimization
techniques were used for system sizing and energy management within the microgrid
to reduce the total operating cost. This system succeeded in reducing operating costs by
23.13%. The system succeeded in reducing consumption by 18,161 kWh. Another study was
conducted for power scheduling and energy management within a home microgrid in [46].
This microgrid was supported by vehicle-to-grid technology to satisfy the deficit during
peak times. In [47], a power scheduling study was conducted in an isolated microgrid.
The microgrid combined PVs and a WECS as the main sources. It was also supported
by three backup sources, namely fuel cells, an electric vehicle, and a BESS. The system
was supported by vehicle-to-grid technology. It succeeded in reducing the operating cost
by 6.467%. Ref. [48] proposed a new deep-learning-based framework called Nemesyst
depending on databases and model sequentialization. This framework is suitable for
application to IoT aggregate control systems. It has been applied to demand-side response
recommendations. In [49], an intelligent model for the effective scheduling control of smart
networks depending on deep learning was presented. Another energy scheduling model
based on the PSO was presented to achieve energy savings and reduce emissions as much
as possible.
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1.3. Contributions and Paper Organization

Many studies have discussed the sizing of microgrids, whether they were connected
or isolated from the main grid. This paper proposes a detailed framework for electrifying a
remote area in the Sahara Ténéré Desert of Niger. The paper presents some contributions
that can be summarized as follows:

• A realistic power-scheduling approach is developed using highly dynamic meteoro-
logical and annual electric load data and the ability to operate the PV system in both
off-grid and on-grid systems is proposed.

• A comprehensive analysis of the technical and economic performance of the three proposed
cases is presented to illustrate the feasibility and productivity of the proposed techniques.

• Three cases of a microgrid configuration supplying a remote area in the Sahara Ténéré
desert in northeastern Niger are presented and compared to choose the most cost-
effective method, whether through an off-grid or on-grid system.

• An MILP-based framework is presented for optimal techno-economic power schedul-
ing and sizing of the microgrid, considering stochasticity in the load demand.

This paper is divided into six sections. The first section discusses motivations, related
works, and contributions. In Section 2, the problem description and proposed solutions, the
nature of the site on which the study is being conducted, and the proposed microgrid system
configurations and mathematical models of each component are discussed. The formulation
including the objective function, constraints, and the MILP description are shown in Section 3.
Section 4 describes the case study. The simulation results, analysis, and discussions are covered
in Section 5. Finally, Section 6 gives the conclusions.

2. Methodology
2.1. Problem Description and Proposed Solutions

Many areas in African countries remain without access to electricity, or if they do have
access, they still have a large deficit in this electricity. Niger is one of the countries that
suffers with electricity poverty, especially in rural/isolated areas. Niger is a vast landlocked
country in West Africa with a total land area of 1,267,000 km2, as shown in Figure 1 (the
dot marked on Niger’s map indicates Niamey, which is the capital city). In the north,
two-thirds of the country are covered by a dry tropical desert, i.e., the Sahara Desert. As
of 2021, Niger’s population was expected to be around 25 million people. Two seasons
are observed throughout the year: the dry season lasting from October to May and the
rainy season from June to September. Niger’s average temperature lies between 21.9 ◦C
and 36.4 ◦C. The country’s electrification rate was only 15.78% (82.60% in urban areas and
1.21% in rural areas) in 2020.

Most of the remotely located populations are not connected to the grids, especially
the Sahara Ténéré desert populations, who are located to almost 600 km away from the
main electric grid in the north. Due to this factor, extending the grid to all dwellings
and communities throughout Niger’s Sahara Ténéré desert is difficult and economically
unfeasible. All these communities are supplied by diesel generators, and are not covered
by a 24-h power supply. It is not favorable to run these diesel generators because of the
significant financial investment as well as the potentially hazardous environment they
create. Hence, there is a need to diversify the sources of energy to ensure continuous and
clean power supply, as well as minimal system costs, in these areas.

To overcome these problems, a techno-economic study of three cases was carried out to
electrify a remote desert area located in the northeastern part of Niger, named Djado. The
first and second cases are isolated systems. RESs are applied in the first case to cover the
load entirely. In this case, the microgrid comprises a PV system and a battery bank energy
storage system. A DG is added with PVs and a BESS in the second case. However, in the
third case, the system is connected to the grid, where the grid participates in covering the
load with PVs, the battery bank system, and a DG (used only in scenario 1 during the 2 h
grid outage). A techno-economic study and analysis of these three cases were carried out
to determine the best of them from an economic point of view to supply that remote desert



Energies 2023, 16, 3471 6 of 23

area. In this study, mixed-integer linear programming (MILP) was used as an optimization
technique for the techno-economic analysis for optimal design selection.

Figure 1. Map of Africa showing Niger.

2.2. Site Description

Djado is the area under consideration. Djado is located about 900 km northeast of
the Agadez region, Niger, in the Ténéré desert (Sahara), as shown in Figure 2. With the
geographical location of 21°0′54′′ north, 12°18′27′′ east, Djado is the northernmost and
easternmost town in Niger, bordered to the north by Algeria and Libya and to the east by
Chad. The Djado area is well-known for its salt and date production. Its population was
small until the discovery of Gold in April 2014, which caused several populations to move
there in order to extract gold in traditional ways. This resulted in significant population
growth among those who live without electricity. The climate in this region is variable
throughout the year between hot and cold weather, but what distinguishes the region is
that the weather conditions are very suitable for producing a sufficient amount of electrical
energy from solar cells. Solar radiation is available throughout the year, about 317 sunny
days per year, and is sufficient to produce a large amount of electricity.

Figure 2. Djado Plateau, Niger (21°00′54′′ N, 12°18′27′′ E).
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2.3. Proposed Microgrid System Block Diagram Configurations and Mathematical Model

The schematic diagram of the microgrid system in three configurations, i.e., PV/battery
bank, PV/battery bank/DG, and PV/battery bank/grid/DG (used only in scenario 1
during the 2 h grid outage), are given in Figure 3. This system was developed to satisfy the
load demand of Djado, which remains without any means of electrical energy supply. The
flowchart of each case’s operating mechanism is presented in Figure 4.

Figure 3. Schematic diagram of the proposed microgrid in three cases.

Figure 4. Operating mechanism of each case study.

2.3.1. Modeling of Solar PV System

The use of solar energy has become increasingly popular in recent years. In PV systems,
solar irradiation is converted into electricity directly without any environmental impact.
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Solar cells are semiconductor p-n junctions and they constitute the main component of
PV systems. A solar cell contains a photocurrent source, a single diode, and a resistor
connected in parallel (RSh). In addition, there is a resistor connected in series (RS), as shown
in Figure 5.

Figure 5. Equivalent circuit of a solar cell.

The mathematical model is represented as follows [45]:

I = IPV − I0

[
exp

(
V + IRs

αVT

)
− 1
]
−
(

V + IRs

Rsh

)
(1)

IPV = (IPV−STC + K1∆T)
G

GSTC
(2)

Io = I0−STC

(
TSTC

T

)3
exp

[
qEg

αK

(
1

TSTC
− 1

T

)]
(3)

where Boltzmann’s constant = 1.3805 × 10−23 J/K.

I = IPV Nsh − Io Nsh

exp

V + IRs

(
Ns
Nsh

)
αVT Ns

− 1

−
V + IRs

(
Ns
Nsh

)
Rsh

(
Ns
Nsh

)
 (4)

Unlike shunt resistance, the effectiveness of a cell is significantly affected by changes
in series resistance. In contrast, the change in the value of the shunt resistance does not
have a significant impact [50]. In the case of infinite shunt resistance, the equation would
be formulated as follows:

I = IPV Nsh − Io Nsh

exp

V + IRs

(
Ns
Nsh

)
αVT Ns

− 1

 (5)

The power produced from the PV can be calculated as represented by the equation
shown below:

PPV(r) =


PRS

(
r2

RSRSRCR

)
0 ≤ r < RCR

PRS
r

RSRS
RCR ≤ r ≤ RSRS

PRS RSRS ≤ r

(6)

2.3.2. Modeling of Battery Energy Storage System

When using RESs in microgrids, the existence of an energy storage system is imper-
ative and indispensable. The use of a BESS gives the electrical grid more reliability and
effectiveness due to the intermittent and unstable nature of RESs. Batteries are connected
in series and parallel to form the BESS. The battery capacity depends on many factors, such
as the days of autonomy, which represent the number of days the battery will be capable of
providing the energy required for the load without shortage. This is an essential factor that
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should be considered when sizing batteries. The following formula can be used to calculate
battery capacity [51]:

Cbatt =
AD · PL

ηinv · ηBatt · DOD
(7)

Depending on the state of charge (SOC), the battery can function as both a load and a
source. It stores energy when there is a surplus in production while acting as a source and
discharging to meet the energy deficit when there is a shortage of energy produced from
RESs. Managing the charging and discharging processes is very important to maintain the
battery’s lifespan. The following equations represent the SOC of the battery during the
charge and discharge process [11]:

• Charging process:

SOC(t + 1) = (SOC(t) · (1− σ)) +
((

Egen ,T(t)− ED(t)
)
· ηch · ηrec

)
(8)

• Discharging process:

SOC(t + 1) = (SOC(t) · (1− σ))−
[

ED(t)− Egen, T(t)
ηdch · ηinv

]
(9)

2.3.3. Modeling of Diesel Generator (DG)

For hybrid systems, DGs are commonly used to provide power over periods of low
irradiation and to feed the load demand at peak times, which can minimize the battery
bank size in addition to the PV array size. To accomplish these tasks, the DG should have
a good rating. To obtain the most suitable DG unit size, a detailed analysis is required
of day-to-day and seasonal load fluctuations, growth in annual load, and consideration
of practical constraints. In order to optimize fuel efficiency, a diesel cycling and dispatch
strategy is often used with multiple units of various sizes to optimize the loading of the
different units. The diesel generator fuel consumption, ConsD (L/h), depends on the output
power and is defined by the following equation [52,53]:

ConsD = BD · PD
N + AD · PDG (10)

where BD = 0.0845 (L/kWh) and AD = 0.246 (L/kWh) are the coefficients of the consumption
curve. The hourly cost of the fuel consumption can be expressed by Equation (11).

C f = Pf uel ·ConsD (11)

The equation below expresses the performance of the DG [54].

ηDG =
PDG

ConsD × LHVf
(12)

2.3.4. Grid Model

As mentioned previously, microgrids that rely solely on RESs suffer from unreliability
and stability problems. Therefore, a BESS is relied upon, and in the event that it is unable to
fill the deficit, the main grid is required to cover the energy shortage at peak times. In this
case, the grid is relied upon as a backup source that sells electricity to the microgrid. The
power supplied by the grid to the load can be expressed through the following equation:

Pgrid (t) = PL(t)−∑(PPV(t), PBESS(t), PDG(t)) (13)

3. Formulation of the Optimization Problem
3.1. Objective Function

Total life cycle cost is an economic parameter set throughout the project’s lifespan
by considering the cost of all components. The life cycle cost of each component of the
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hybrid microgrid system is the sum of investment, operation and maintenance costs, and
replacement costs, minus salvage costs [55].

The life cycle cost of each component is given by [56]:

LCC = Iinvst + CO&M + Crepl − Csalv (14)

Initial investment cost encompasses the cost of purchasing and installing the system.
Salvage cost is the earned cost at the end of the project’s lifetime. The present value of the
operating and maintenance cost is given by [57]:{

O&M = (O&M)0 × 1+ f
1− f

(
1−

(
1+ f
1+i

)n)
, i 6= f

O&M = (O&M)0 × n, i = f
(15)

In Niger, the inflation rate is 3.10% [58], while the interest rate is 4.75% [59].
In this paper, the total life cycle cost of the project is the objective function that is

considered to be minimized. The objective function can be expressed as:

min F = min

(
b

∑
c=1

(
Iinvst (c) + C0&M(c) + Crepl (c)− Csalv (c)

))
(16)

3.2. Design Constraints

In microgrid hybrid systems, the power system components operate under constraints.
The optimal operation of the system should satisfy the constraint function expressed in
Equation (17), which means that the power is held in balance at any time.

The optimization approach is used to ensure that the hourly DG supplied power at
any time is less than or equal to the DG rated power, as shown by Equation (20).

In order to avoid overcharging and deep discharging problems, the SOC of the battery
bank is restrained and compared with the designed constraints at any hour during the
operation period. Thus, the SOC of the battery storage system should fulfill the design
constraints defined in Equations (21) and (22). SOCmax, the maximum state of charge, is
the full capacity of the battery bank, while SOCmin, the minimum state of charge, depends
mostly on the depth of discharge.

PPV(t) + PDG(t) + a× PBESS (t) = PL(t) (17)

a =


a = 1 discharge
a = 0 charge stays constant
a = −1 charge

(18)

Under the main grid consideration, the equations below can be considered:

Pgrid (t) + PPV(t) + PDG(t) + a× PBESS (t) = PL(t) (19)

PDG(t) ≤ PDG−rated (20)

SOCmin ≤ SOC(t) ≤ SOCmax (21)

SOC(t + 1) = SOC(t)(1− σ) (22)

3.3. Mixed-Integer Linear Programming for the Microgrid Optimal Sizing

A mixed-integer linear programming (MILP) algorithm [60] is a solver for discrete
optimization problems that uses many techniques to find the optimal solution from the
objective function f Tx, where f is a linear function vector in which its elements are constant,
and x is the solution vector. Bounds and linear constraints are the conditions of the MILP,
but it has no nonlinear constraints. In particular, there are restrictions on the variables x
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to be the integer. For a given objective function f , inequality matrices Aineq and equality
matrices Aeq, inequality vector bineq and equality vector beq, lower-bound lb and upper-
bound ub, and the integer constraint “intcon”, the problem model for finding a solution
vector x from the feasible solution space is shown below:

min f Tx

x

subject to


x(intcon) are integers

Aineq · x ≤ bineq
Aeq · x = beq
lb ≤ x ≤ ub

(23)

The algorithm intlinprog uses six strategies to solve MILP and find the solution in any
step. If it can find the solution in a step, intlinprog does not precede to the later step. The
basic six strategies are shown as follows [60]:

• Reduce the problem size using linear program preprocessing;
• Solve an initial relaxed (non-integer) problem using linear programming;
• Perform mixed-integer program preprocessing to tighten the linear problem (LP)

relaxation of the mixed-integer problem;
• Try to use the cutting-plane method to further tighten the LP relaxation of the mixed-

integer problem as shown in Figure 6;
• Try to find integer-feasible solutions using heuristic;
• Use a branch and bound algorithm to search systematically for the optimum solution.

Figure 6. Cutting-plane method.

4. Case Study

The proposed methodology was used to find the optimal configuration of a hybrid
microgrid system for an area located in Djado Plateau (21°0′54′′ N, 12°18′27′′ E), Niger, and
analyze the results. This methodology is proposed to supply the residential households in
that area. Three cases will be presented. In the first case, the microgrid system supplies
the residential area through PVs and a BESS, while in the second case the load is supplied
through PVs, a BESS, and a DG. In case 3, the grid participates in covering the load in
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addition to PVs, a BESS, and a DG (used only in scenario 1 during the 2 h grid outage). The
parameters of the microgrid components are represented in Table 1. The optimal sizing of
the microgrid is implemented using MILP. The yearly load profile can be seen in Figure 7.
In this region, the year is divided into two seasons: the dry season lasting from October to
May and the rainy season from June to September. According to the load profile typically
found in the remote Saharan areas of Niger, the hourly energy distributions are almost the
same every day for each season. Therefore, the results will be presented for one week of
each season.

Table 1. Parameters of the microgrid components.

Component Parameters Value

System capital cost ($/kW-DC) 500.00
PV O&M cost ($/kW-DC per year) 2.0

Array type Ground mount, fixed
Federal percentage-based incentive (%) 26

Energy capacity cost ($/kWh) 200.00
Power capacity cost ($/kW) 400.00

Energy capacity replacement cost ($/kWh) 180.00
BESS Inverter efficiency (%) 96

Inverter replacement year 10
Battery replacement year 10

Minimum state of charge (%) 20
Power capacity replacement cost ($/kW) 350.00

Install cost ($/kW AC) 350.00
Fixed O&M cost ($/kW per year) 5.00

Diesel generator Diesel cost ($/gal) 1.00
Generator replacement year 10

Generator fuel cost escalation rate, nominal (%) 2.7

Figure 7. Hourly load profile during a year.

5. Optimization Results and Discussion

Several hybrid designs have been optimized in order to determine the most cost-
efficient and power-balanced system. The results of three configurations will be evaluated
and analyzed in this section.

5.1. Case 1

In this case, the PV system is relied upon to supply the residential loads. The BESS is
used to increase the microgrid’s reliability and overcome the intermittent nature of RESs,
specifically PVs, which are used in this study because of the availability of solar radiation.
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The suitable size of the PV system used in this case to cover the load is about 3180 kW, with
a battery bank having a capacity of 5884 kWh. This configuration’s total life-cycle cost is
approximately $2,660,793, while the levelized cost of electricity is about 0.115 $/kWh. The
annual average PV energy production is about 4,690,854 kWh. The annual operating and
maintenance cost reached $6359. As mentioned earlier, there are two seasons in this region,
i.e., dry and rainy (very short, not more than a month in a total of three months). Both
seasons are regarded as hot seasons.

Figure 8 shows the results obtained for a week during the dry season in January, where
the maximum electric load reached about 286.3 kW. Solar energy, by nature, is intermittent
and not available throughout the day, so when there is a surplus, it is directed to charge
the battery bank. The maximum value that the PVs achieved in serving the load was
about 225.7 kW, while the maximum value directed to charging the battery bank was about
554.3 kW. The energy required to charge the batteries is later used to provide power to
the loads when solar irradiation is unavailable. The highest discharge value in which the
battery bank covered the load was about 286.3 kW. The SOC of the battery during this
week is shown in Figure 9. The minimum SOC of the battery reached during this week was
about 40%.

Figure 8. Microgrid operation during a week in the dry season: Case 1.

Figure 9. Battery state of charge during a week in the dry season: Case 1.

In the rainy (also hot) season, the electrical loads rise significantly, as shown in Figure 7.
Since the results for a year cannot be presented in one figure, in addition to the need to
show the difference in the generated power between the two seasons, the results for another
week in the rainy season are presented. The load demand and the supplied energy during
the selected week are shown in Figure 10. Electrical loads increase significantly, as shown
in the considered week. The electrical load’s highest value reached during this week was
about 546.8 kW. This area is characterized by its high solar radiation, ideal for producing a
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large amount of electrical energy. The PV system covers the loads during the day at times
when solar radiation is available. The highest load covered by the PV was approximately
546.8 kW. The maximum value of power that the solar PV system supplied to charge the
battery bank was 554.3 kW. The battery bank occasionally discharges to cover the demand
when the PV power is insufficient. The highest discharged value from the battery bank was
about 479.9 kW. The SOC of the battery during this week is shown in Figure 11.

Figure 10. Microgrid operation during a week in the rainy season: Case 1.

Figure 11. Battery state of charge during a week in the rainy season: Case 1.

5.2. Case 2

In this case, not only are the PV system and BESS relied upon to cover the residential
loads, but DGs are used to cover the loads. It is estimated that the size of the PV system
used is approximately 635 kW, with a battery bank capacity of 436 kWh. The generator size
is 1174 kW.

In this configuration, the total life cycle cost is approximately $2,362,997, while the
levelized cost of electricity is about 0.102 $/kWh. On average, per year, 937,356 kWh is
the energy produced by the PV system. Approximately $7140 will be spent on operat-
ing and maintenance costs. The annual average DG production was found to be about
1,097,602 kWh, while the yearly diesel fuel used is about 83,418 gallons. PVs and the BESS
will cover about 38% of the electrical load.

The power generated and loads for a week in the dry season are depicted in Figure 12.
The peak load during that week is 286.3 kW. The highest power for which the PV system
participated in covering the load was about 168.9 kW, while the one for which the PV
system helped in charging the BESS was 142.9 kW. The BESS participated in covering the
load at the times when it was difficult to use PVs and DGs. The source that is reliable for
supplying the demand is chosen according to source availability and costs. The BESS took
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part in covering the load with a capacity of 130.3 kW. Figure 13 presents the SOC for the
considered week during the dry season.

Figure 12. Microgrid operation during a week in the dry season: Case 2.

Figure 13. Battery state of charge during a week in the dry season: Case 2.

The results for a chosen week taken in the rainy season, also known as the hot season,
are illustrated in Figure 14. The load demand increased significantly, and all three sources
participated in covering it, taking into account the energy available from each source, the
SOC of the battery, and the total cost. The PV supplied the load with 433.4 kW, while that
which charged the BESS was 162.8 kW. However, the highest power values shared by the
BESS and DG were about 131.2 kW and 448.5 kW, respectively. The SOC during this week
is depicted in Figure 15. The minimum SOC of the battery during the week was 20%.

Figure 14. Microgrid operation during a week in the rainy season: Case 2.



Energies 2023, 16, 3471 16 of 23

Figure 15. Battery state of charge during a week in the rainy season: Case 2.

5.3. Case 3

In this case, two scenarios were considered. In the first scenario, there was a power
outage sometimes (about 2 h), and the DG was relied upon to cover this outage. In the
second scenario, there was no power outage, and the DG was not used.

5.3.1. Scenario 1 (with power outage)

In this scenario, not only the PVs and BESS are required, but the grid participates in
covering the load. To meet the load, a PV system with a capacity of 952 kW and a BESS
with a capacity of 1045 kWh were utilized. A DG with a capacity of 1174 kW was used
only for the 2 h shortage. It was estimated that the total life-cycle cost in this configuration
was $2,504,862. The average annual PV energy production was about 1,403,952 kWh. The
operating and maintenance costs that will be invested in this scenario are $7773.

In this scenario, the grid participates to a large extent in covering the load, as shown
in Figure 16, which displays the results of a week in the dry season. The grid has served
the load several times, and the highest value it supplied was 194.8 kW. In some periods, it
did not participate because there was enough power generated from the PVs to supply the
load. The highest value in which the PVs participated in supplying the load was 201.2 kW.
The surplus was provided to charge the battery. The battery has partaken many times in
feeding the load according to the SOC indicated in Figure 17.

Figure 16. Microgrid operation during a week in the dry season: Case 3, Scenario 1.
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Figure 17. Battery state of charge during a week in the dry season: Case 3, Scenario 1.

The results obtained for a week in the rainy season are displayed in Figure 18. The grid
participates in meeting the load significantly, with a higher load in this season. Figure 19
portrays the SOC of the BESS. The highest load detected during this week was 546.8 kW.
The values of battery, grid, and PV participation in load coverage are 139.7 kW, 372.3 kW,
and 515 kW, respectively.

Figure 18. Microgrid operation during a week in the rainy season: Case 3, Scenario 1.

Figure 19. Battery state of charge during a week in the rainy season: Case 3, Scenario 1.

The power outage occurred for two hours only during the year in this scenario. The
outage began at 4 pm on 17 August and lasted for two hours. At that time, the DG covered
the power shortage by contributing about 183 kW.
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5.3.2. Scenario 2 (without Power Outage)

In this scenario, the DG is not called upon because no power outage occurred. The
grid supports both the PVs and the BESS in making the balance with the load demand. The
capacities of the PV system and the BESS were 954 kW and 1052 kWh, respectively.

This configuration was evaluated to have a total life-cycle cost of approximately
$2,020,446. The average annual PV energy generation was 1,407,990 kWh and the annual
operating and maintenance costs were $1909.

5.4. Economic Results Analysis and Discussion

This section analyzes and discusses the results of the three cases. Table 2 demonstrates
a comparative summary of the three proposed cases.

In the first case, the PV array and the battery bank were the only generating sources.
Therefore, the PV size and battery capacity were significantly larger in this case than in the
other two cases, while the size of the PV was the lowest in the second case, and also the lowest
battery size was observed in the third case. As a result, the total life-cycle cost in the first case
was higher than the other cases, reaching $2,660,793, while it was the lowest value in the third
case, i.e., scenario 2, at $2,020,446. The operating and maintenance costs were the lowest value
in case 3, scenario 2, reaching $1909, whereas $7773 was the highest value in scenario 1 of the
same case. The highest value, 4,690,854 kWh, was delivered by the PV system in case 1, while
in case 2, it reached 937,356 kWh. Renewable electricity participation in meeting the demand
reached 100%, 38%, and 54%, respectively, in cases 1, 2, and 3.

According to the obtained results, it is clear that the third case, scenario 2, is the most
cost-effective, but it is difficult to implement due to the nature of the site on which the
study was conducted. This case depends mainly on the grid; the studied area is remote
and difficult to connect to the main grid because of the long separation distance of more
than 600 km. Consequently, the second case is preferred due to not relying on the grid and
achieving a small LCC.

Table 2. Comparison between the three operating cases.

Parameter Case 1 Case 2 Case 3

Scenario 1 Scenario 2

Annual Site Load (kWh) 1,739,590 1,739,590 1,739,590 1,739,590
PV size (kW) 3180 635 952 954
Average Annual PV Energy
Production (kWh) 4,690,854 937,356 1,403,952 1,407,990

Battery Bank Power (kW) 554 163 140 141
Battery Bank Capacity (kWh) 5884 436 1045 1052
Diesel Generator size (kW) 0 1174 1174 0
Total Life Cycle Cost ($) 2,660,793 2,362,997 2,504,862 2,020,446
Levelized Cost of Electricity ($/kWh) 0.115 0.102 0.13 0.13
Year 1 O&M costs ($) Before Tax 6359 7140 7773 1909
Annual Renewable Electricity
(electricity consumption) (%) 100 38 54 54

Average Annual Energy Supplied from
Grid (kWh) 0 0 794,598 794,628

Total Utility Electricity Cost ($) 0 0 1,253,311 1,251,771

6. Conclusions

Residential microgrids are primarily concerned with ensuring reliability and maximiz-
ing economic benefits. These are the two major concerns that must be considered when
designing residential microgrids. In this paper we proposed three configurations for a
cost-effective microgrid for a remote area in the Djado Plateau that lies in the Sahara Ténéré
desert in northeastern Niger.

A comparative techno-economic analysis between three cases was presented and
compared to determine the best configuration in terms of costs. The first case involved
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PVs and a BESS, while the second case utilized PVs, a BESS, and a DG to supply the loads.
PVs and a BESS collaborate with the grid to provide electricity to the load in the third
case, which was subdivided into two scenarios: scenario 1 with a power outage, where a
DG was used only for the two-hour shortage, and scenario 2 without a power outage. In
order to reduce the cost of the microgrid , an optimal scheduling model was proposed. By
analyzing the results for one year, MILP was used to determine the optimal sizing of the
microgrid and grid power dispatch to reach the minimum LCC. The third case, scenario 2,
had the least LCC, but it is difficult to implement because the study area is isolated and far
from the main grid. The second case is preferred since it does not rely on grid power and
achieves a small LCC, reaching about $2,362,997 per year. It had a decrease in the value of
the LCC by about 5.664% compared to the third case, scenario 1, while the decrease reached
11.19% compared to the first case. This demonstrates the effectiveness of using a system
that combines PVs, a BESS, and a DG.

In future works, social, economic, and infrastructural aspects will be taken into account.
A comprehensive analysis of these aspects will be conducted, and their impact will be
studied in respect of the decision-making for grid extensions or relying entirely on RESs to
provide electricity to households in remote rural/desert areas.
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Nomenclature
The following abbreviations are used in this manuscript:

PV Photovoltaic
BESS Battery energy storage system
DG Diesel generator
LCC Life cycle cost
MILP Mixed integer linear programming
WT Wind turbine
WECS Wind energy conversion system
HRES Hybrid renewable energy system
HOMER Hybrid optimization of multiple energy resources
GA Genetic algorithm
TAC Total annual cost
GOA Grasshopper optimization algorithm
PSO Particle swarm optimization
CS Cuckoo search
DPSP Deficiency of power supply probability
COE Cost of energy
ABSO Artificial bee swarm optimization
TS Tabu search
SA Simulated annealing
IPSO Improved particle swarm optimization
IHS Improved harmony search
IHSBSA Improved-harmony-search-based simulated annealing
LPSPmax Maximum loss of power supply probability
WOA Whale optimization algorithm
WCA Water cycle algorithm
MFO Moth-flame optimizer
PSOGSA Hybrid particle swarm-gravitational search algorithm
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LPSP Loss of power supply probability
NPC Net present cost
NSGA Non-dominated sorting genetic algorithm
RESs Renewable energy sources
N North
E East
I Supplied current to the load
IPV PV cell current
I0 Reverse saturation current
V Voltage across the diode
α Ideality factor
VT Thermal voltage
RS Resistor connected in series
RSh Resistor connected in parallel
IPV−STC Light generated current
K1 Short circuit current temperature coefficient of the cell
∆T Temperature difference between the actual and nominal
G Solar irradiation
GSTC Nominal solar irradiation
I0−STC Nominal saturation current
TSTC Temperature at standard test condition
T Actual temperature
q Charge of electrons
Eg Energy band gap of semiconductor
Ns Number of cells in series
Nsh Number of cells in parallel
PRS PV panel rated power
r Solar irradiation factor
RSRS Solar irradiation in standard environmental condition
RCR Certain radiation point set
Cbatt Battery capacity
AD Days of autonomy
PL(t) Load demand at time t
ηinv Inverter efficiency
ηBatt Battery efficiency
DOD Battery depth of discharge
SOC(t) State of charge at time t
SOCmim Minimum state of charge
SOCmax Maximum state of charge
σ Hourly self-discharging rate
Egen ,T(t) Total energy generated at hour t
ED(t) Energy demand at hour t
ηch Charging efficiency
ηdch Discharging efficiency
ηrec Rectifier efficiency
ηinv Inverter efficiency
PD

N or PDG−rated Diesel generator rated power
PDG(t) Diesel generator output power at time t
C f Fuel consumption hourly cost
Pf uel Fuel price
ηDG DG performance
LHVf Fuel consumption heating value
Pgrid (t) Power supplied by the grid at time t
PPV(t) PV output power at time t
PBESS(t) BESS output power at time t
Iinvst Initial investment cost
CO&M Operating and maintenance cost
Crepl Replacement cost
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Csalv Salvage cost
O & M Operating and maintenance
f Inflation rate
i Interest rate
n Project lifespan
b Number of components to be purchased related to the project
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