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Abstract: This paper presents a fully-decentralized peer-to-peer (P2P) electricity and gas market
for retailers and prosumers with coupled energy units, considering the uncertainties of wholesale
electricity market price and prosumers’ demand. The goal is to improve the overall economy of the
proposed market while increasing its flexibility. In this market, the retailers are equipped with self-
generation and energy storage units and can bilaterally negotiate for electricity and gas transactions
with prosumers to maximize their profit. Furthermore, they can sell power to the upstream market
in addition to prosumers. The prosumers have access to several retailers to supply their required
electricity and gas and can freely provide their energy needs from every retailer, contributing to
dynamicity in the proposed market. Given that they have an energy hub consisting of boiler units,
combined heat and electricity (CHP) units, and electric pumps, they can switch their energy supply
source from electricity to gas and vice versa. A robust possibilistic programming approach is
applied to address the uncertainties. A fully-decentralized approach called the alternating direction
method of multipliers (ADMM) is utilized to solve the presented decentralized robust problem. The
proposed decentralized algorithm finds an optimum solution by establishing a smart balance between
the average expected value, optimality robustness, and feasibility robustness. The feasibility and
competitiveness of the proposed approach are evaluated through numerical studies on a distribution
system with two retailers and three prosumers. The data analysis of the simulation results verifies the
effectiveness of the proposed decentralized robust framework as well as the proposed decentralized
solution. According to the maximum deviation, the expected optimal value in the robust case, the
retailer’s profit has decreased by 12.1 percent, and the prosumers’ cost has increased by 27.4 percent
due to the feasibility penalty term.

Keywords: peer-to-peer electricity and gas transactions; energy hub; decentralized robust optimization;
fuzzy robust optimization; alternating direction method of multipliers

1. Introduction

The energy distribution systems have increasingly changed in recent years with the
rise of distributed energy resources and are evolving from centralized toward decentralized
management to enable the participation of prosumers in the electricity markets. The peer-
to-peer (P2P) energy transaction allows the prosumers to exchange energy needless of an
intermediary entity. They can trade their surplus energy generation with other prosumers
or even retailers. Such a system will create substantial economic, social, and environmen-
tal opportunities. From an economic perspective, it reduces operation and maintenance
costs, peak demand, and energy losses. From an environmental view, it offers a greater
opportunity to consume clean energy through renewable generation. Finally, from a social
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perspective, it can affect the lifestyle and cultural practices regarding electricity supply and
demand and encourage the cooperation of community members to gain more profit [1,2].
The high penetration of renewable energy sources in these systems may introduce sub-
stantial uncertainties in their generation. In this regard, using multi-energy systems can
help mitigate this problem. Equipped with various energy generation equipment such as
CHP units, the prosumers can switch their energy source from electricity to gas and vice
versa, which enhances the reliability and welfare of the whole system. Via an integrated
demand response program, during peak electricity price and load periods, they purchase
gas from the network instead of electricity to meet their needs. Thus, another challenge of
these systems is demand uncertainty which causes an imbalance in supply and demand
and signifies the appropriate tackling of these uncertainties [3].

1.1. Related Works

Numerous previous studies have concentrated on P2P energy trading and short-
term scheduling of retail energy management. This study reviews the literature from
three aspects: presence or absence of uncertainty, electricity trading, and electricity and
gas trading.

Ref. [4] has presented a P2P market mechanism for energy and reserve markets to com-
pensate for the uncertainties resulting from renewable generation. All agents can determine
the price and amount of traded energy and reserve through negotiations. Versatile distribu-
tion is proposed to model the renewable generation uncertainty, and chance-constrained
optimization is used to specify the reserve quantity. The proposed P2P market is then
cleared by utilizing the ADMM theory. Ref. [5] has developed a P2P energy transaction
mechanism to maximize the players’ social welfare considering the uncertainty and fairness
in players’ profits. Based on the uncertainty characteristics, the P2P energy transaction
performance is analyzed to find the optimality condition for social welfare maximization.
The results suggest that social welfare is maximized when the producer and consumer
pairs with similar demand characteristics are matched. Moreover, the results of centralized
and decentralized methods are compared. Authors in [6] described a decentralized dis-
tributed (DD) adaptive robust optimization (ARO) approach for distributed scheduling
of multi-microgrid systems. The modeling includes various uncertainties and accidental
communication failures. DD-ARO optimization based on the parallelizing-distributed (PD)
framework is applied to avoid the unavailable coordination center of the whole network.
Tie-line power coordination in the virtual center is considered for neighboring stakeholders,
and a column-and-constraint generation (CCG) algorithm is employed to solve the problem.
Ref. [7] designed a novel decentralized periodic energy trading framework for pelagic
islanded microgrids. The model has considered the limitations of energy resources, two
types of consumers (normal and strategic), and the uncertainty of renewable energy sources.
A robust optimization approach is used to address the corresponding uncertainties. The
decentralized optimization problem derived from the game theory approach is solved using
a decentralized bi-level iterative algorithm. The smart electricity exchange platform (STEP)
is introduced in [8], which serves as an interface between the wholesale electricity markets
and prosumers. The mentioned framework enables P2P energy trading among prosumers
in a local market. The objective is to minimize the costs of all market players considering the
uncertainties of prices and renewable generation. Furthermore, the contribution of battery
storage systems to demand-side flexibility is investigated. Chen et al. studied P2P energy
trading and energy conversion among multiple interconnected industrial, residential, and
commercial microgrids [9]. Due to uncertainty and high-dimensional data in this problem,
a multi-agent deep reinforcement learning approach is applied in conjunction with a multi-
agent actor-critic algorithm. Additionally, the effect of carbon tax pricing is also taken into
account. A P2P energy trading framework coordinates the demand response between the
residential houses. Authors in [10] have modeled intraday and day-ahead energy manage-
ment, considering the characteristics of energy storage systems and household appliances
with demand response capability. A double auction mechanism is used for collaborative
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demand response schemes to counteract the disturbances. Ref. [11] developed a P2P energy
trading system to increase resilience and self-sufficiency in a target community consisting
of houses with micro fuel cells and CHP units. Each player can act as a buyer or seller
at each time step. The problem objective is to minimize the costs from gas consumption
and P2P electricity trading of houses and is solved using the ADMM algorithm. The risk-
aversive P2P energy trading of small-scale producers and consumers is modeled in [12]
based on the virtual power plants. Uncertainties in renewable energy sources are com-
pensated by the diverse energy resources in virtual power plants. The physical electricity
trading approach reduces the line congestion risk and promotes local electricity consump-
tion. A two-stage stochastic game model is developed for the day-ahead energy bidding
strategies where the Cournot Nash pricing mechanism is applied to balance the supply
and demand. Ref. [13] has designed a sustainable microgrid using blockchain technology
for P2P energy trading in the microgrid. By not requiring a central regulatory system,
blockchain technology guarantees the sustainability and security of the microgrid partici-
pants. Moreover, the environmental and economic objectives along with the constraints
related to maximizing the demand satisfaction of consumers, are considered. A fuzzy
multi-objective programming model is utilized to capture the variations in the capacity of
renewable distributed generation and consumers’ demand. Uncertainties in the distributed
energy sources impose a challenge for P2P energy trading incorporating these sources. A
novel pricing strategy (uncertainty marginal price, UMP) is introduced in [14] to overcome
the existing uncertainties. The final problem, formulated as a robust model, is decomposed
into two sub-problems and solved using a column-and-constraint generation algorithm.
Ref. [15] studied the energy hub concept in networked microgrids. Each microgrid has its
specific objective function, including electricity, cooling, and heating demands. Moreover,
each microgrid must coordinate its operation with other microgrids and the distribution
network. The distributed model is solved using a robust ADMM scheme to ensure the
privacy and independence of the entities. A scheme for price generation in a decentralized
P2P energy transaction system integrated into an ADMM algorithm is developed in [16],
aiming to improve the economic performance of the interconnected energy hub system.
The configuration, inner operation strategy, and trading policy of each hub directly affect
the transactive prices of each energy hub and result in optimal energy flow among hubs to
achieve the global optimum. Ref. [17] presented a novel energy trading framework for a
system with high PV penetration in distribution networks. In [18], a stochastic agent-based
model is introduced for the coordinated scheduling of multi-vector microgrids considering
interactions between electricity, hydrogen, and gas agents. A stochastic p-robust opti-
mization algorithm is extended to tackle the uncertainties and obtain an optimal solution
for the proposed management of multi-energy microgrids (MENG) [19]. In [20], three
different modeling methods to construct the two-stage mean-risk stochastic minimum cost
consensus models (MCCMs) with asymmetric adjustment cost are investigated. Ref. [21]
proposed a supply chain consisting of a manufacturer with possible misreport behavior
and one retailer with possible fairness concerns. A bilateral energy trading mechanism
with an optimal power flow (OPF) technique is integrated to increase the economic benefits
of individual participants. The problem is modeled by Nash bargaining theory and solved
using the ADMM algorithm to guarantee privacy protection. In [22] have proposed an
approach due to the co-simulation of distribution networks and P2P electricity trading.
In addition, the technical impacts of P2P energy trading on LV network voltage, phase
imbalance, and losses have been considered. In [23], a cooperative game theory framework
has been proposed to encourage individual prosumers, which has presented different
priorities at each time slot, such as geographic location, maximum energy demand, and
pricing mechanism. Ref. [24] designed an electricity, gas, and heat market between retailers
and prosumers using game theory. The retailer’s objective is to maximize the profit from
energy selling while the prosumers aim to minimize energy costs. The equilibrium point
is achieved by simultaneously solving all MPECs. Ref. [25] developed a decentralized
short-term multi-period and multi-stage parallel auction market, which is a pool-structured
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P2P market to maximize the social welfare of prosumers. The market is cleared using a
decentralized ant-colony optimization (DACO) method. The smart contract functionality is
utilized to manage the balance of digital tokens called EuroTokens.

Authors in [26] presented the P2P energy transaction for multiple microgrids (MMGs)
and studied the grid-oriented energy bidding problem considering uncertainties of renew-
able generation, demands, and market agents. The problem is modeled using a stochastic
Cartel game-based strategy to minimize the total costs of MMGs under uncertainty. The
problem is linearized via diagonal quadratic approximation and decomposed into sub-
problems for individual microgrids. The problem is solved in an iterative and distributed
manner. An energy market is presented in [27] based on the concept of P2P negotiations to
facilitate energy transactions between agents at the distribution level. Interdependencies of
different energy carriers are studied. The linear optimization model is employed to find the
optimal strategies of the agents. Furthermore, the effects of carbon emissions from CHP
and boiler units on the optimal strategies of the market participants are discussed.

According to the reviewed studies, the following study gap is evident:

1. A fully-decentralized P2P market model and a fully-decentralized P2P market-
clearing approach: In a group of previous studies, the players do not negotiate
bilaterally in a P2P manner. Furthermore, some studies have used centralized meth-
ods or methods that do not have decentralized characteristics to clear the market.

2. A dynamic and flexible model: Many past studies lack a dynamic, flexible model
and use conventional demand response programs, including load curtailment and
shift. Nevertheless, the presence of energy coupling equipment and storage units and
the use of various energy sources have contributed to the high flexibility of this model.
Likewise, the participation of several prosumers and retailers ensures the dynamicity
of the model.

3. Considering the uncertainties of the wholesale electricity market price and pro-
sumers’ demand: One key weakness of the previous studies is their failure to address
the existing uncertainties. Considering the uncertainties has a huge implication for
realistic modeling and can cause the players to have more robustness in the face of
the uncertainties.

1.2. The Contribution of This Paper

This paper designs and models a novel market for fully decentralized P2P electricity
and gas trading, considering the uncertainties of wholesale electricity market price and
consumers’ demand. Retailers aim to maximize their profit from selling electricity and gas
to prosumers. In addition to purchasing electricity from the network, they are equipped
with self-generation and storage units to increase their profit. Using these units allows
them to exploit the price difference of the wholesale market to sell electricity to the network
and gain more profit. The retailers also consider the uncertainty of wholesale market
prices in their scheduling. More importantly, the presence of multiple retailers has led
to the dynamicity of the model and higher competition for cost reduction. Prosumers
negotiate individually over the price and quantity of their tradable electricity and gas to
minimize their costs. They are equipped with CHP, boiler, and heat pump units and can
benefit from the price difference between electricity and gas to switch the energy supply
source to cut down their costs. Given the fully decentralized nature of the model and the
use of the ADMM scheme to clear the market, the privacy and independence of players
are guaranteed as the prices and amounts of energy purchases are the only information
exchanged. Therefore, it prevents the disclosure of operational and commercial information.
The robust possibilistic programming method is applied to tackle the uncertainties of
wholesale electricity market price and prosumers’ electrical demand. In summary, the
contributions of this paper are outlined as follows:

1. A dynamic and flexible market for electricity and gas transactions among energy hub
prosumers and retailers is modeled. The retailers are equipped with electrical storage
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and self-generation units and can sell power to the upstream network in addition
to prosumers.

2. The uncertainties of wholesale electricity market price and prosumers’ electrical
demand are considered using the robust possibilistic programming (RPP) approach.

3. A fully decentralized ADMM is utilized to clear the proposed electricity and gas
market, guaranteeing the global solution for all players without needing a supervisory
node. The obtained results are compared to those of a centralized approach.

1.3. Paper Organization

The present paper is organized as follows: Section 2: The concept and mathematical
formulation of the P2P energy trading platform is described in this section. Section 3: This
section provides the numerical studies of the proposed market and analyzes the simulation
results in terms of two case studies. Section 4: This section draws conclusions.

2. Problem Definition

A decentralized P2P electricity and gas market between retailers with electrical storage
and self-generation units and energy hub prosumers is modeled to maximize the retailers’
profits while minimizing the prosumers’ costs. The overall structure of the energy hub
is shown in Figure 1. The retailers supply their required electricity and gas from the
wholesale electricity and gas market. In addition to profit from energy selling to prosumers,
the retailers gain extra profit by applying electrical storage and self-generation units, which
allow them to leverage the price difference in the wholesale electricity market at different
hours. When the electricity price is low, they purchase electricity to supply prosumers
and charge their batteries. Conversely, during peak price periods, they sell the power
they generate by self-generation units or discharge from the batteries to prosumers and
the upstream network. The prosumers are also equipped with CHP, boiler, and heat
pump units and leverage the price difference between electricity and gas to minimize their
costs by switching their energy source supply. At off-peak hours, they supply their load
by purchasing energy from retailers. Under these considerations, the presented model
has dynamicity and flexibility to maximize the retailers’ profits while minimizing the
prosumers’ costs. From a time aspect, a day-ahead market structure is considered. The
platform structure of the proposed problem is as follows:

The Overall Structure of the Energy Hub

Power 

Network

Gas Grid

Load

Electrical Load 

Thermal Load

Figure 1. The overall structure of energy hubs containing both retailer and prosumer.
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The retailers receive the demand signals of the prosumers. The retailers then determine
and announce their selling price and quantity bids to prosumers. By receiving these values,
the prosumers specify the generation level of their units and announce the amount of
electrical energy and gas to be purchased from each retailer. The retailers then re-schedule
their self-generation units and battery charge/discharge and update the amount of energy
exchange with the upstream network. This cycle continues until the stopping condition for
the proposed decentralized algorithm (reaching the convergence values) is met.

As stated, the prices and amounts of energy purchases are the only information
exchanged. Thus, privacy is fully preserved, and operational and commercial information
is not disclosed. Consequently, the proposed market is a fully decentralized electricity and
gas market for P2P interactions between retailers and prosumers.

3. Mathematical Modeling
3.1. Assumptions

1. The proposed market is assumed to comprise of Nr={1, . . . ,Nr} retailers and
NP={1, . . . ,NP} prosumers.

2. The prosumers cannot sell electricity to retailers and only have the “buyer” role. In
other words, they are only price-takers and supply their required electricity and gas
from the retailers.

3. The retailers can concurrently play the “buyer” and “seller” roles and purchase
electricity and gas from the wholesale market to sell it to the prosumers. They can act
as producers and trade energy with the upstream network and prosumers.

4. There is a bilateral P2P relationship between retailers and prosumers. All market
players behave in a free and independent manner and manage their energy sources
and loads to satisfy their objectives.

The main objective function of the proposed market is to maximize the retailers’ profits
and minimize the prosumers’ costs:

max

(
Nr

∑
i=1

Ri −
Np

∑
j=1

Cj

)
(1)

where Cj and Ri are the gas and electricity cost of prosumer j and revenue of retailer
i, respectively.

3.2. The Deterministic Model of the Retailer

Relations (2)–(10) formulate the profit maximization problem of each retailer. The first
two terms of the objective function in relation (2) indicate the profits from selling electrical
energy and gas to prosumers, respectively. The self-generation cost is given in the third
term. The last two terms describe the purchase costs of electrical energy and gas from the
wholesale market.

max Ri = ∑
t

{
∑

j

(
γe

ijt pe
ijt + γ

g
ijtP

g
ijt

)
− Ci(psg

it )− γ̃eDA
t peDA

it − γgDA pgDA
i

}
(2)

s.t.
∑

j
pe

ijt + pBSS, dch
it − peDA

it − psg
it − pBSS,ch

it = 0 (3)

pgDA
it −∑

j
pg

ijt = 0 (4)

C
(

psg
it

)
= Φi(psg

it )
2
+ πi p

sg
it + ψi (5)
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EESS
it =

(
1− LossESS

)
E,ESS

it−1 +
(

ηESS × pESS,ch
it

)
−
(

pESS,dch
it
ηESS

)
(6)

CapESS,min ≤ EESS
it ≤ CapESS,max (7)

0 ≤ PESS,ch
it ≤ pESS,max

ch × bch
it (8)

0≤pESS,dch
it ≤ pESS,max

dch × bdch
it (9)

bch
it + bdch

it ≤ 1 (10)

EESS
i0 = EESS

0 (11)

EESS
i24 ≤ EESS

0 (12)

The retailers are equipped with electrical storage systems for optimal energy manage-
ment. Given that more than one retailer exists in the market, the market is competitive, and
the prosumers can purchase their required energy from a retailer with a lower price bid.
γeDA

t and γ
gDA
i represent the wholesale market electricity and gas prices, respectively. The

electrical power balance is established in relation (3). In addition to the upstream network,
the retailers can also use their storage (qdch

jt , qch
jt ) and self-generation (psg

it ) units to fulfill
the prosumers’ energy demands. According to relation (4), the amount of gas sold to the
prosumers equals the amount purchased from the wholesale market. Relation (5) models
the self-generation cost function for each retailer Ci(psg

it ) [28]. The self-generation units are
recognized as a generation of electrical energy whose output is electrical power. These units
use fossil fuels as their input to generate power. Φi, πi, and ψi are positive pre-determined
parameters in the retailer’s cost function and contain the private information of the retailer
i. Relations (6)–(10) demonstrate the constraints on the energy storage systems [29]. The en-
ergy level of the energy storage system at each hour is obtained from relation (6), where the
stored energy level depends on the charge and discharge levels and the remaining charge
from the previous hour. Constraint (7) describes the minimum and maximum energy levels
of the storage, and constraints (8) and (9) display the minimum and maximum amount of
charge and discharge per hour. Constraint (10) states that every storage at each hour can
operate in either charge (bch

jt = 1) or discharge (bdch
jt = 1) modes.

3.3. The Deterministic Model of the Prosumer

Relations (13)–(19) present the minimization problem related to energy consumption
costs of prosumers. The objective function in relation (13) minimizes the cost of purchasing
electricity and gas from each retailer. Prosumers can purchase energy from the retailer with
the lowest price bid. The electrical power balance is satisfied in relation (14). For optimal
management of their energy consumption, the prosumers can purchase gas and produce
heat and power using their CHP units, in addition to buying energy from retailers. The
heat power supply is given in relation (15). Prosumers are equipped with CHP units [30],
boilers [31], and heat pumps [32] to satisfy their heat demand. They consume the purchased
gas in boiler and CHP units as shown in relation (16). The maximum gas input to the CHP
and boiler units is modeled in relations (17) and (18). The relation (19) exhibits the highest
electrical power of the heat pump.

max Cj = −
(

∑
i

(
γe

ijtq
e
jit + γ

g
ijtq

g
jit

))
(13)
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s.t.
∑

i
qe

jit + η
chp
e qgchp

jt − ahqe,hp
jt = q̃De

jt (14)

η
chp
h qgchp

jt + ηbq
gb
jt + qh,hp

jt = q̃Dh
jt (15)

qgchp
jt + qgb

jt = ∑
i

qg
jit (16)

qgchp
jt ≤ qgchp_max

j (17)

qgb
jt ≤ qgb_max

j (18)

qe,hp
jt ≤ qe,hp_Max

j (19)

3.4. Uncertainty Modeling

Given that the presented schedule in this paper is for 24 h ahead, a time difference ex-
ists between the schedule and its realization time. This time difference causes uncertainties
in some data. One input data of this model is power transactions with the network at the
wholesale market price. Since the market the day before is not cleared, the wholesale market
price is uncertain. Likewise, there is uncertainty in the power consumption of consumers,
which is based on the day ahead. Various methods have been proposed in the literature to
overcome these uncertainties. The current paper applies a robust possibilistic programming
(RPP) model to tackle the introduced uncertainties [20]. The developed model attempts to
achieve a trade-off between average performance, optimality robustness, and feasibility
robustness. Thus, the objective function is modeled using the expected value operator and
the uncertainty constraint using the necessity measure. As shown in Figure 2, the uncertain
parameters are also modeled using trapezoidal possibility distribution, represented by four
prominent points(γ1, γ2, γ3, γ4),(d1, d2, d3, d4). The robust possibilistic programming (RPP)
model of retailers and prosumers is described below.

D1 D2 D3 D4

1

D

m

Figure 2. The trapezoidal possibility distribution of fuzzy parameter D.

3.5. Fuzzy Robust Model of the Retailer

The relation (20) presents the objective function of each retailer considering the uncer-
tainty of wholesale market price γ̃eDA

t . The first term of this relation is the expected value
of the objective function of each retailer and demonstrates the profit maximization of each
retailer given the expected overall (average) price. The second term indicates the difference
between the average and minimum expected values. Given that a maximum deviation
below the expected optimal value is considered, this term maximizes the profit and ensures
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optimality robustness. ψ shows the significance or the weight of this term. Expected value
and minimum expected profit is calculated from relations (21) and (22), respectively.

Max E[Ri]− ψ
(

E[Ri]− Rmin
i

)
(20)

E[Ri] = ∑
t
{∑

j

(
γe

ijt pe
ijt + γ

g
ijt pg

ijt

)
− Ci(psg

it )− γgDA pgDA
i −

peDA
it (

γ̃e1DA
t + γ̃e2DA

t + γ̃e3DA
t + γ̃e4DA

t
4

)

}
(21)

Rmin
i = ∑

t
{∑

j

(
γe

ijt pe
ijt + γ

g
ijt pg

ijt

)
− Ci(psg

it )− γgDA pgDA
i − peDA

it γ̃e4DA
t } (22)

The electrical demand uncertainty in retailer’s problem constraints can be modeled
using the robust possibilistic programming:

Nec{∑
i

qe
jit + η

chp
e qgchp

jt − ahqe,hp
jt = q̃De

jt } ≥ Φ (23)

∑
i

qe
jit + η

chp
e qgchp

jt − ahqe,hp
jt ≤ q̃D3e

jt Φ/2 + (1−Φ/2)q̃D4e
jt (24)

∑
i

qe
jit + η

chp
e qgchp

jt − ahqe,hp
jt ≥ q̃D2e

jt Φ/2 + (1−Φ/2)q̃D1e
jt (25)

The relation (23) shows the necessary measure of the power balance for which the
deterministic model is formulated in relations (24) and (25). Φ relates to the confidence
level. Thus, the objective function of each prosumer can be rewritten as below:

Cj = −
(

∑
i

(
γe

ijtq
e
jit + γ

g
ijtq

g
jit

))
− δ1

(
T

∑
t=1

q̃D3e
jt Φ/2 + (1−Φ/2)q̃D4e

jt − q̃D3e
jt

)

− δ2

(
T

∑
t=1
−q̃D2e

jt Φ/2− (1−Φ/2)q̃D1e
jt + q̃D2e

jt

)
(26)

The first term in relation (26) is related to energy purchase costs. The second term de-
termines the confidence level of constraints under uncertainty. δ1 and δ2 are the penalty co-
efficients related to the possible deviation of each uncertain constraint and can be specified
based on the demand deficiency or unsatisfied demand. ∑T

t=1 q̃D3e
jt Φ/2+(1−Φ/2)q̃D4e

jt − q̃D3e
jt

indicates the difference between the worst case value of the uncertain parameter and the
value used in uncertain constraints. Therefore, this term reflects the feasibility robust-
ness. Φ shows the minimum confidence level of uncertain constraints, which is a variable
determined by the model.

Thus, the final deterministic centralized model considering the uncertainties in whole-
sale market price and prosumers’ electrical demand is obtained from relations (27)–(29).

Max E[Ri]− ψ
(

E[Ri]− Rmin
i

)
−Cj (27)

s.t.

∑
i

qe
jit + η

chp
e qgchp

jt − ahqe,hp
jt ≤ q̃D3e

jt Φ/2 + (1−Φ/2)q̃D4e
jt (28)
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∑
i

qe
jit + η

chp
e qgchp

jt − ahqe,hp
jt ≥ q̃D2e

jt Φ/2 + (1−Φ/2)q̃D1e
jt (29)

Constraints (3)–(12)

3.6. The Design of a Market Clearing Algorithm for the Proposed Decentralized Energy Trading
Coupling Constraints

Relations (30) and (31) link the optimization problems of retailers and prosumers
together and are known as coupled constraints in the optimization literature. The coupled
constraints can be viewed as market clearing conditions and ensure that the amount of
energy and gas that prosumer j buys at each time step equals the amount that retailer i
sells at this period. Moreover, the dual of these constraints (γe

ij and γ
g
ij) presents the price

of energy and gas transactions between prosumers and retailers.

pe
ijt = qe

jit : γe
ij (30)

pg
ijt = qg

jit : γ
g
ij (31)

The centralized implementation requires a central controller aware of the informa-
tion of all market players, which makes the players prone to information disclosure and
eliminates the possibility of fair competition. The present paper has tackled this issue by
applying an ADMM algorithm for market clearing.

In the proposed decentralized ADMM, the players solve their optimization problems
with minimal information exchange. Based on the dual decomposition principle [33],
the main optimization problem can be divided into several sub-problems while respect-
ing the coupling Equations (30), (31) and (24). The sub-problems are then solved in a
decentralized manner.

The augmented Lagrangian for the retailer’s optimization problem is given in Relation (32):

L =
NS

∑
i=1

E[Ri]− ψ
(

E[Ri]− Rmin
i

)
−
NB

∑
j=1

Cj + κg(p, q) + γe
ij

(
pe

ijt − qe
jit

)
+ γ

g
ij

(
pg

ijt − qg
jit

)
− ρ

∥∥∥pe
ijt − qe

jit

∥∥∥2

2
− ρ

∥∥∥pg
ijt − qg

jit

∥∥∥2

2
(32)

For simplification, a Lagrangian coefficient κ is used for the model’s g(p, q) in addition
to the coupled constraints. The retailer’s and prosumer’s problems are coupled via γe

ij and

γ
g
ij, which are the coupling duals of the electrical and gas parts, respectively. The term

− ρ
∥∥∥pe

ijt − qe
jit

∥∥∥2

2
− ρ
∥∥∥pg

ijt − qg
jit

∥∥∥2

2
(augmented Lagrangian) in the Relation (32) where ρ

is the penalty parameter and a positive number guarantees the robustness and conver-
gence [34]. In Relation (33), the optimization problem of each retailer is rewritten using the
augmented Lagrangian:

max
pe

i ,pg
i

Ri = E[Ri] − ψ
(

E[Ri]− Rmin
i

)
− ρ

∥∥∥pe
ijt − qe

jit

∥∥∥2

2
− ρ

∥∥∥pg
ijt − qg

jit

∥∥∥2

2
(33)

s.t.
Constraints (3)–(10)

Likewise, the optimization problem of prosumers is modeled in Relation (34) using
the augmented Lagrangian:

max Cj = ∑
t

(
∑

i

(
γe

ijtq
e
jit + γ

g
ijtq

g
jit

))
− δ1

(
T

∑
t=1

q̃D3e
jt Φ/2 + (1−Φ/2)q̃D4e

jt − q̃D3e
jt

)

− δ2

(
T

∑
t=1
−q̃D2e

jt Φ/2− (1−Φ/2)q̃D1e
jt + q̃D2e

jt

)
− ρ
∥∥∥pe

ijt − qe
jit

∥∥∥2

2
− ρ
∥∥∥pg

ijt − qg
jit

∥∥∥2

2
(34)
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s.t.
Constraints (14)–(22)

In the presented optimization problem, pe
ijt, pg

ijt, qe
ijt, and qg

ijt are pre-determined
parameters. All primary variables of the retailer and prosumer problems are calculated by
the gradient boosting method from the corresponding sub-problems, and the dual variable
of the problem is updated iteratively:

pie
m+1 = arg min

pe
L(pe

i , qjite
m, γm

ijte) (35)

qje
m+1 = arg min

q
L(pijte

m+1, qe
i , γm

ijte) (36)

γm+1
ijte = γm

ijte − ρ(pijte
m+1 − qjite

m+1) (37)

pig
m+1 = arg min

pg
L(pg

i , qjitg
m, γm

ijtg) (38)

qjg
m+1 = arg min

qg
L(pijtg

m+1, qg
i , γm

ijtg) (39)

γm+1
ijtg = γm

ijtg − ρ(pijtg
m+1 − qjitg

m+1) (40)

A variable update step Φm can be used instead of a constant update step (ρ) as
presented in Relations (41), (42) and (44) [34] :

κm+1 =
1 +

√
1 + 4(κm)2

2
(41)

Φm+1 =
κm − 1
κm+1 (42)

In this relation, κ0 = 1 is assumed. The stopping condition for the proposed algorithm
is presented as follows: ∣∣∣γm+1

ijte − γm
ijte

∣∣∣ ≤ ε (43)

∣∣∣γm+1
ijtg − γm

ijtg

∣∣∣ ≤ ε (44)

ε is a positive infinitesimal value and is close to zero.

4. Simulation

This section evaluates the feasibility of the proposed P2P gas and electrical energy
market using a distribution system test platform with two retailers and three prosumers.
The wholesale market price is extracted from the average New York wholesale market
price [35]. Figure 3 illustrates the predicted electrical and thermal demand of each prosumer.
The private parameters of retailers and prosumers are taken from [36]. The stopping
criterion is assumed as 0.0001. The present paper considers the following two case studies:

1. Case study 1: P2P electrical energy and gas trading between retailers and prosumers
without considering uncertainties of wholesale electricity market price and prosumers’
electrical demand (deterministic programming).

2. Case study 2: P2P electrical energy and gas trading between retailers and prosumers
considering uncertainties of wholesale electricity market price and prosumers’ electri-
cal demand (robust possibilistic programming)
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Figure 3. The predicted electrical and thermal demand of each prosumer.

4.1. Case Study 1

This case study evaluates the results of electrical energy and gas trading between
retailers and prosumers without considering the uncertainties of wholesale electricity
market price and prosumers’ power demand.

The retailers are equipped with storage and self-generation units to profit more from
electricity price fluctuations. The electrical energy transactions of retailers with the up-
stream network and prosumers, as well as the self-generation and storage units, are il-
lustrated in Figure 4. As shown in this figure, the retailers charge their batteries at low
electricity price hours, including 1:00, 2:00–6:00, and 12:00–18:00. Contrarily, they discharge
their batteries during periods of high electricity price, including 5:00–7:00, 10:00, and
18:00–23:00, to supply power to the prosumers. At 7:00–8:00. and 17:00–19:00., due to high
electricity prices, the retailers sell power to the grid. Moreover, the self-generation units
operate at higher capacities during periods of peak electricity price, such as 17:00–22:00.
This figure reveals that the storage and self-generation units have led to optimal energy
management from the grid perspective while increasing the retailers’ profit. At most hours,
the power purchased from the network is almost in a certain range. At peak hours, i.e.,
17:00–19:00, no power is purchased from the network, which reduces the pressure on
the grid.
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Figure 4. The plot of retailers’ power production from self-generation units, their transactions with
the upstream network and prosumers, and the charge and discharge of electrical storage, along with
the price variation curve in the deterministic model.

Figure 5 displays the stored energy level in the electrical energy storage system. As
already mentioned, the energy storage system increases the system’s flexibility during peak
hours and lowers the costs due to reduced power generation of the costly units.
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Figure 5. The stored energy level in the electrical energy storage system.

4.2. Case Study 2

This case study presents the P2P energy trading between retailers and prosumers, con-
sidering the uncertainties in the wholesale electricity market price and prosumers’ demand.
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A robust possibilistic programming method is applied to capture these uncertainties. In
this case study, the prosumers’ costs are expected to increase, whereas the retailers’ profits
are expected to drop. This reduction depends on ψ and δ coefficients. In the following, a
sensitivity analysis is carried out to assess how variations of these coefficients affect the total
welfare of market players. In this case study, δ and ψ are taken as 8 and 0.35, respectively.

For a simple analysis of the obtained results, the electrical energy transaction in robust
mode is shown at 14:00 between retailer 1 and prosumer 1, at 9:00 between retailer 1 and
prosumer 2, and 4:00 between retailer 1 and prosumer 3. Furthermore, gas trading in the
robust case is depicted at 20:00 between retailer 1 and prosumer 1, at 17:00 between retailer
2 and prosumer 2, and 8:00 between retailer 1 and prosumer 3. Similar to the deterministic
case, the electrical energy and gas transactions between retailer 1 and prosumers are pre-
sented at some hours. According to Figure 6, the convergence of the proposed decentralized
approach is evident in both deterministic and robust cases.

Figure 7 illustrates the electrical energy transactions of retailers with the upstream
network and prosumers, along with power production of self-generation and storage units.
As expected, the transactions are similar to the deterministic model. The storage systems
are charged at hours of low electricity prices and discharged at peak hours. During periods
of high electricity prices, the retailers supply the required power to prosumers from their
self-generation and storage units, as well as the upstream network. In contrast, low power
prices at off-peak hours encourage them to purchase power from the network for storing
and selling to the prosumers.

0 50 100 150 200 250

Iteration

0

20

40

60

80

100

E
n

er
g

y

Robust.Electricity

0 50 100 150 200 250

Iteration

0

20

40

60

80

E
n

er
g

y

Robust.gas

0 50 100 150 200 250

Iteration

0

50

100

150

E
n

er
g

y

Deterministic.Electricity

0 50 100 150 200 250

Iteration

0

50

100

150

200

250

E
n

er
g

y

Deterministic.gas

Figure 6. The prediction of electrical and thermal loads of each prosumer.

As stated before, the prosumers are equipped with CHP units and heat pumps to
manage their energy consumption and supply their thermal load optimally. Figure 8
demonstrates the electrical power supply of each prosumer and the price bid of each
retailer. At hours of peak electricity price, including 17:00–20:00, the prosumers purchase
less power from retailers compared to other hours. At 7:00–11:00 and 17:00–23:00, they
purchase gas from retailers to supply a portion of the load using CHP units. Moreover, at
1:00–6:00 and 9:00–12:00, when the electricity price is low, they use heat pumps to meet a
portion of their heat demand.
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Figure 7. The plot of retailers’ power production from self-generation units, their transactions with
the upstream network and prosumers, and charge and discharge of electrical storage, along with the
price variation curve in the robust model.
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Figure 8. The electrical power balance of prosumers along with electricity price variations.

Figure 9 exhibits the thermal load supply of each prosumer and the gas price bid of
each retailer. At hours with high electricity prices, the prosumers use CHP and boiler units
to supply heat power. For instance, prosumer 1 uses a combination of boilers, heat pumps,
and CHP units for power supply at 7:00–11:00 and 17:00–23:00 and utilizes the heat pump
at off-peak hours, including 1:00–6:00, when the electricity price is low.
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Table 1 presents the profit and cost of retailers and prosumers for both centralized
and decentralized cases. The results suggest only a 171.5 difference between the two
approaches and verify the effectiveness of the decentralized approach. Moreover, given that
the maximum deviation is considered below the expected optimal value in the robust case,
the retailer’s profit has decreased by 12.1 percent, and the prosumers’ cost has increased by
27.4 percent due to the feasibility penalty term.
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Figure 9. The thermal power balance of prosumers along with the gas price.

Table 1. A comparison of the proposed decentralized and centralized methods for deterministic and
robust cases.

Profit () Cost ()

Total Cost () Total Profit ()Retailer Prosumer

R1 R2 U1 U2 U3

Robust
Centralized 13,474.1 15,122.2 −58,763.3 −61,540.8 −66,341.9 186,646 28,596.3

Decentralized 12,726.7 15,240.9 −58,821.4 −61,623.2 −66,372.9 186,817.5 27,967.6

Deterministic
Centralized 14,655.6 17,362.8 −46,509.9 −48,192.5 −51,900.9 146,603.3 32,018.4

Decentralized 14,584.8 17,249.7 −46,472.9 −48,209.9 −51,913.3 146,596.1 3183.5

5. Conclusions

This paper implemented a flexible, dynamic, competitive, fully decentralized P2P
electricity and gas market for retailers and prosumers of an energy hub, considering the
uncertainties of the wholesale electricity market price and prosumers’ electrical demand.
The retailers supplied the electricity and gas needs of prosumers by purchasing from
the wholesale market. Additionally, they were equipped with electrical storage and self-
generation units and could leverage the wholesale electricity market price difference to sell
power to the upstream network. The prosumers could engage in electrical energy and gas
transactions with retailers while protecting their privacy. The energy hub prosumers had
CHP units, heat pumps, and boilers and exploited the price difference between electricity
and gas to minimize the costs. The presence of various players, storage systems, and
self-generation units, as well as using a multi-energy system, contributed to the dynamicity
and flexibility of the proposed model for profit maximization and cost minimization.
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The uncertainties were addressed using robust possibilistic programming, which
searches for a trade-off between the performance average, optimality robustness, and
feasibility robustness. As shown in case study 2, considering the uncertainty resulted in a
12.1 percent reduction in retailers’ profit and a 27.1 percent increase in prosumers’ costs.
Applying the ADMM approach for market clearing enabled the different market players
to reach the optimal solution with minimal information exchange and without disclosure
of their private information. A comparison of the obtained solutions to the centralized
approach suggested a 0.09 percent difference, indicating a global solution similar to the
centralized approach. The following suggestions are proposed for future studies:

1. Analyze the human factor impacts and human energy consumption on distribu-
tion networks.

2. Design a business model for P2P energy trading, which should provide proper incen-
tives to participate in a market, especially a suitable pricing mechanism.

3. Considering the electricity and gas network constraints.
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Nomenclature

Indexes Defintion Unit
t Time index h
i Retailer index -
j Prosumer index -
k Repetition index -
Parameters -
Φi, πi and ψi Cost function parameters for retailer i $/kWh2, $/kWh , $

pESS, max
ch , pESS,max

dch
Maximum of charging/discharge power of electrical
energy storage system

kW

η
chp
h Efficiency of gas consumed by the CHP unit -

ηb Efficiency of gas consumed by the boiler unit -

ah Efficiency of electrical consumed by the heat pump
unit

-

ΥgDA The gas prices of the wholesale market /m3

ηESS Efficiency of charging/discharging of storage system -
ρ the penalty parameter -
Φ the confidence level -
LossESS Losses rate of storage system %
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Variables
Cj The gas and electricity cost of prosumer j 
Ri Revenue of retailerni 
pe

ijt The quantities of electricity sold to each prosumer kW
pg

ijt The quantities of gas sold to each prosumer m3

peDA
it

Energy purchased from the wholesale market
kW

by retailer i at time t

pgDA
it

Gas purchased from the wholesale market by
m3

retailer i at time t

Υe
ijt

The electricity trading price between retailers
/kW

and prosumers
Υ̌e

ijt The constant fluctuation of wholesale market price -
Υg

ijt The gas trading price between retailers and prosumers /m3

psg
it The power of self-generation units kW

pBSS,ch
it , pBSS,dch

it
Charging/discharging power of electrical energy

kW
storage system

C(psg
it )

The cost function of a self-generator belonging


to retailer i

bch
jt , bdch

jt
Binary variable for determining the state of

-
charging/discharging of system storage

qgb
jt Gas consumed by boiler units m3

qgchp
jt Gas consumed by CHP units m3

qehp
jt Electricity consumed by the heat pump units kW
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