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Abstract: Energy storage is an important technical means to increase the consumption of renewable
energy and reduce greenhouse gas emissions. Electrochemical energy storage, represented by
lithium-ion batteries, has a promising developmental prospect. The performance of lithium-ion
batteries continues to decline in the process of application, and the differences between batteries are
increasing. Therefore, accurate estimation of the state of health (SOH) of batteries is the key to the
safe and efficient operation of energy storage systems. In this paper, the electrochemical impedance
spectroscopy (EIS) characteristics of Li-ion batteries under different states of charge and health were
studied. Three groups of Li-ion battery impedance module values under different frequencies were
selected as characteristic parameters, and the SOH estimation model of Li-ion batteries was built
by using the support vector regression (SVR) algorithm. The results show that: the model with the
second group of frequency-point combinations as characteristic parameters takes into account both
accuracy and efficiency; the cumulative time of the characteristic frequency test and SOH evaluation
of lithium-ion batteries is less than 10 s; and this technology has good engineering application value.

Keywords: lithium iron battery; state of health; electrochemical impedance spectroscopy; support
vector regression

1. Introduction

In order to achieve the goal of reducing emissions of carbon dioxide and other green-
house gases, and accelerate the active transformation of energy structures, vigorously
developing new energy has become the consensus of all circles at home and abroad. As
the focus of energy power development and construction, energy storage plays a very
important role in improving the consumption capacity of renewable energy, promoting
the optimization and complementarity of multi-energy sources, constructing a user-side
distributed energy system, realizing energy interconnection and intelligent energy use,
etc. Electrochemical energy storage, represented by lithium-ion batteries, has outstanding
comparative application advantages due to its superior performance and rapid cost reduc-
tion. In recent years, it has developed rapidly around the world. By the end of 2021, the
global cumulative installed capacity of lithium-ion battery energy storage had exceeded
22 GW, and it will maintain a rapid growth in the next few years. An electrochemical
energy storage power station consists of an energy storage battery, battery management
system (BMS), power control system (PCS), energy management system (EMS) and other
main components. At present, lithium-ion batteries are mainly used as energy storage
batteries, which are the core carrier of energy storage. Thousands of lithium-ion batteries in
series and parallel form a battery system [1]. In the process of application, the performance
of the lithium-ion batteries is declining continuously. The differences between batteries
are increasing. Meanwhile, the operating condition, service environment, life stage and
other factors of the lithium-ion battery have a significant impact on its current state [2].
In addition, the battery state of energy (SOE), state of health (SOH), state of power (SOP),
internal stress and other parameters cannot be directly measured. As a result, the real state
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of the battery cannot be accurately known in real time, suggesting that some batteries or
battery packs may be in a state of deep charge and discharge for a long time, and the service
life of some batteries may be shortened. This will not only affect the life of the entire battery
pack but will also greatly increase the security risks. Therefore, accurate evaluation of the
SOH of lithium-ion batteries is very important.

At present, time-domain characteristic parameters are the main external characteristic
parameters commonly used in SOH estimation research, including voltage and current
time series, capacity increment series, charge and discharge capacity in a specific interval,
etc. [3–6]. However, obtaining the above time-domain characteristic parameters usually
requires charging and discharging the lithium-ion battery over a longer period of time [7]. A
complete voltage-current time series takes several hours, and it usually takes more than ten
to dozens of minutes to obtain the capacity incremental parameters and charge–discharge
data of a specific voltage range. Meanwhile, these methods all require high-power charge–
discharge equipment, for which the testing cost is relatively high, so it is difficult to realize
in the field of electrochemical energy storage power stations. In addition, the charging
and discharging data of lithium-ion batteries are jointly affected by various factors, such
as external operating conditions and internal aging state. The acquisition of some time-
domain characteristic parameters requires the limitation of external operating conditions,
such as the specified charging and discharging ratio, charging and discharging depth, and
initial charging and discharging state [8]. However, the battery SOH estimation model
based on the data under specific working conditions has poor generality, and its migration
ability under different scenarios needs to be further improved. In general, the research idea
of lithium-ion battery SOH estimation based on time-domain characteristic parameters is
faced with many challenges.

Compared with current- and voltage-response curve data in the time domain, EIS
based on the frequency domain can reflect the state of health of the battery from multiple
perspectives, because it contains abundant information about material properties, interface
phenomena and electrochemical reactions inside the battery [9,10]. It is considered an
effective means to achieve SOH estimation [11]. At present, there are two main ways to
estimate SOH by using EIS. One is to establish a quantitative relationship model between
characteristic parameters and SOH by constructing an equivalent circuit model in the
frequency domain [12–16]. This method can directly simulate the dynamic behavior of the
electrode reaction process, but cannot fully reflect the physical and chemical changes in
the aging process of the battery [17], so the reliability is difficult to guarantee. Secondly,
a quantitative relationship model between EIS and SOH is constructed by using a data-
driven method [18,19]. This method can effectively avoid solving the complex nonlinear
optimization problem of frequency-domain equivalent circuit model construction and has
high feasibility for online application. However, due to the nonlinear correlation between
impedance data of different frequencies, the SOH estimation model is directly constructed
by the full frequency EIS, and the accuracy is usually limited. In addition, it takes a lot of
time to test the EIS in the full frequency band, which is difficult to apply in practice [20,21].
Therefore, how to select the optimal impedance feature set which is closely related to the
SOH from the full spectrum EIS is a key problem, which needs to be solved urgently.

The research process of this paper is mainly divided into three aspects: laboratory
testing, feature parameter extraction and modeling (shown in Figure 1). Firstly, laboratory
testing: through the extraction of the characteristics of different energy storage operating
conditions, the simulation cycle experiment of a 60 Ah lithium iron phosphate battery
was carried out in the laboratory. After each cycle within a predetermined period, the EIS
of the battery under different SOC was tested, and finally the EIS of the battery under
different SOC under different cycle periods was obtained. Secondly, feature parameter
extraction: based on the laboratory test, different characteristic frequency points were
selected as characteristic parameters by using the different characteristics of EIS in different
frequency domains. Finally, modeling: the characteristic parameters of different character-
istic frequency points were used as input parameters, and the SOH of the battery was used
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as the output parameter. Combined with SVR, the SOH evaluation model of the energy
storage battery was established. By comparing the accuracy of several models, the SOH
evaluation model of lithium-ion batteries with the highest accuracy was obtained. This
method overcomes the problem of the long test time and low precision of full-spectrum
EIS, and the method outlined in this paper can quickly and accurately estimate the SOH of
a lithium-ion battery.

Figure 1. Flow chart for lithium-ion battery SOH estimation.

2. Battery Information and Related Data
2.1. Battery Information

The lithium-ion battery sample used in this study is shown in Figure 2, and the main
technical parameters are shown in Table 1. The battery is a square-shaped metal-shell
lithium-ion battery with positive lithium iron phosphate and negative graphite. It has a
rated capacity of 60 Ah, an AC internal resistance of about 0.6 mΩ at 1000 Hz, a charging
cut-off voltage of 3.65 V and a discharge cut-off voltage of 2.5 V.

Figure 2. Battery sample.

Table 1. Technical data sheet of Li-ion battery.

Cell Technical Data Sheet

Model V0D5N0

Type LFP/C

Rated Voltage 3.2 V

Rated Capacity 60 Ah

Weight 1710 ± 30 g

Internal Resistance (1000 Hz) ~0.6 mΩ

Charge Cut-off Voltage 3.65 V

Discharge Cut-off Voltage 2.5 V
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2.2. Battery Cycle Performance Test and Capacity Calibration

The on-site photos of the battery cycle performance test and capacity calibration are
shown in Figure 3, all of which were performed using the CT-4008-5V100A-NTFA (Neware
Technology Limited) high-precision charging–discharge tester. Eight batteries with similar
initial capacity were selected and divided into four groups of two batteries. At room
temperature (25 ± 2 ◦C), the charge and discharge cycles of 100%DOD (0–100%SOC),
80%DOD (10–90%SOC), 50%DOD (25–75%SOC) and 20%DOD (40–60%SOC) were carried
out at the rate of 0.5C (30A), respectively; after each cycle period, the primary capacity was
calibrated at 1/3C. The battery cycles for 200 times at 100%DOD charge–discharge condition
were recorded as one cycle period. The battery cycles for 250 times at 80%DOD charge–
discharge condition were recorded as one cycle period. The battery cycles 400 times at
50%DOD charge–discharge condition was recorded as one cycle period. The battery cycles
for 1000 times at 20%DOD charge–discharge condition were recorded as one cycle period.

Figure 3. Battery cycle performance testing.

Lithium-ion battery capacity calibration was carried out in the following way: at
room temperature (25 ± 2 ◦C), charge to 3.65 V at 20 A constant current; rest for 10 min;
discharge to 2.5 V at 20 A constant current; rest for 10 min; this cycle was repeated three
times, recording the last discharge capacity as the current capacity of lithium-ion battery.

Figure 4 shows the capacity attenuation curve of eight batteries, and Table 2 shows
the capacity calibration data of eight batteries at the end of each cycle. With the increase
in the cycle period, the capacity of the lithium-ion battery gradually decayed, showing a
linear decay trend. Under the same cycle period, the capacity decay rate of six batteries
(100%DOD, 80%DOD and 50%DOD) was close. After 12 cycle periods, the capacity of
the batteries decayed by about 10%, and the capacity attenuation of the two lithium-ion
batteries with the lowest discharge depth (20%DOD) was the slowest. After 12 cycle
periods, the capacity attenuation of the battery was about 7%.



Energies 2023, 16, 3393 5 of 14

Figure 4. Battery capacity fading at different cycle periods.

Table 2. Discharge capacity at different cycle periods.

Cycle
Period

Discharge Capacity (Ah)

100%DOD 80%DOD 50%DOD 20%DOD

3# 4# 6# 10# 23# 24# 35# 36#

0 59.162 58.833 59.008 59.078 58.663 59.051 58.762 58.527

1 57.467 57.612 57.395 57.663 57.406 58.029 57.963 57.884

2 57.709 57.959 57.562 57.540 57.149 57.672 57.489 57.505

3 56.962 57.263 56.784 56.757 56.667 57.524 57.683 57.616

4 56.366 56.758 56.201 56.126 56.208 56.750 56.879 57.120

5 55.832 56.214 55.950 55.921 56.068 56.346 56.615 56.613

6 55.637 56.056 55.897 55.847 55.847 56.323 56.402 56.535

7 55.328 55.781 55.395 55.526 55.759 56.184 56.434 56.312

8 54.568 54.944 53.857 53.736 54.673 55.211 56.025 55.819

9 54.163 54.540 53.476 53.645 54.045 54.473 55.421 55.187

10 53.827 54.289 53.379 53.469 53.908 54.122 55.418 55.327

11 53.413 53.849 52.873 53.199 53.230 53.493 54.742 54.594

12 53.035 53.510 52.720 52.957 52.613 53.248 54.425 54.482

2.3. EIS of Batteries

At (25 ± 2) ◦C, the EIS of the battery was measured by the VMP3 electrochemical
workstation of Bio-logic. The frequency range was 10 mHz~10 kHz, and the scanning
was carried out from high frequency to low frequency. The voltage excitation mode was
adopted, and the excitation voltage was 5 mV. The EIS of the lithium-ion battery was
tested at different SOC (0%SOC, 25%SOC, 50%SOC, 75%SOC and 100%SOC) before the
cycles and after the capacity calibration per cycle. The SOC of the lithium-ion battery was
adjusted by 20 A in the constant-current mode, ensuring that the lithium-ion battery was in
a stable state during the EIS test. EIS was performed after the battery had rested for 2 h
after SOC adjustment.

2.3.1. EIS of Battery at Different SOC

Figure 5 shows the EIS of the lithium-ion battery at different SOC. As can be seen from
the figure, the EIS of eight batteries showed the same rule under different SOC. The ohm
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impedance of the battery at different SOC was not significantly different, and the charge
transfer impedance and diffusion impedance at 0%SOC were higher than other SOC. The
reason is that, at 0%SOC, lithium ions are all in the positive electrode, and the charge transfer
impedance of the battery in the positive electrode increases significantly. Meanwhile, at
0%SOC, the diffusion resistance of lithium ions in the anode material is higher than that of
other SOC, making the diffusion impedance of the SOC at 0% the maximum.

Figure 5. EIS of batteries at different SOC: (a) 3#; (b) 4#; (c) 6#; (d) 10#; (e) 23#; (f) 24#; (g) 35#; (h) 36#.
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2.3.2. EIS at Different SOH

SOH usually refers to the percentage of a lithium-ion battery’s current capacity to its
nominal capacity, as shown in Equation (1), where SOH is the state of health, expressed
in percentage; Qcc is the current capacity, and the unit of measurement is Ah; Qnc is the
nominal capacity, and the unit of measurement is Ah.

SOH = Qcc/Qnc × 100% (1)

In order to analyze the variation in the electrochemical impedance spectrum with the
change in the SOH of the lithium-ion battery, the EIS of 8 batteries at 100%SOC before
their cycle (0 Cycle Period, 0CP), 4th cycle period (4 Cycle Period, 4CP), 8th cycle period
(8 Cycle Period, 8CP) and 12th cycle period (12 Cycle Period, 12CP) were compared. As
shown in Figure 6, the EIS of eight cells showed the same change rule. With the increase in
the cycle period, EIS gradually shifted to the right and the semicircle became larger. This
indicates that the ohmic impedance, charge transfer impedance and diffusion impedance
in the low-frequency region of the battery increased gradually during the cycle. This
evidences that there is a correlation between the increase in battery impedance and capacity
attenuation, and the state of health of the battery can be estimated through the EIS of the
lithium-ion battery.

Figure 6. Cont.
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Figure 6. EIS of batteries at different SOH: (a) 3#; (b) 4#; (c) 6#; (d) 10#; (e) 23#; (f) 24#; (g) 35#; (h) 36#.

3. Characteristic Parameter Selection

Traditionally, the method of EIS is fitted with an equivalent circuit. Although the
equivalent circuit fitting can obtain the values of each equivalent element, new errors are
introduced in the fitting process. Therefore, this paper directly uses the original impedance
data, namely the directly measured real part, imaginary part, phase angle, mode value, etc.,
to study the SOH estimation of lithium-ion batteries.

Generally, the EIS is divided into a high-frequency region, medium-frequency region
and low-frequency region according to the different measured frequencies (as shown in
Figure 6). The different frequency regions represent the different stages of reaction inside
the lithium-ion battery. As shown in Figure 6, with the aging of Li-ion batteries, the EIS
gradually shifted to the right, and the semicircle of the intermediate frequency region
gradually increased. These two parts are mainly related to the ohm resistance Rs, charge
transfer resistance Rct, and constant phase Angle element Q in the equivalent circuit. These
three components are often focused on equivalent circuit fitting. The frequency point at
which the impedance spectrum intersects the real axis (Z′) is 186.7 Hz. The semicircle
vertex frequency in the intermediate frequency region is 17.9 Hz. The inflection frequency
of the semicircle intersecting the 45◦ slash is 1.4 Hz. Therefore, these frequency points were
selected as the first group of characteristic frequency points in this paper. At the same time,
in order to ensure the efficiency and accuracy of the model, the middle frequency point
57.8 Hz between 186.7 Hz and 17.9 Hz, and the middle frequency point 5.6 Hz between
17.9 Hz and 1.4 Hz, were added as the second set of characteristic frequency points. On
this basis, 1000 Hz and 0.1 Hz were added as the third group of characteristic frequency
points (shown in Table 3). Therefore, the mode values at these frequencies were selected
as characteristic parameters to characterize lithium-ion batteries in this paper. Only the
characteristic frequency points of the battery were tested, and the test time was greatly
reduced from more than ten minutes of the whole spectrum to seconds.
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Table 3. Characteristic frequency-point combination.

First Group Second Group Third Group

Characteristic
frequency-point
combination

186.7 Hz, 17.9 Hz,
1.4 Hz

186.7 Hz, 57.8 Hz,
17.9 Hz, 5.6 Hz, 1.4 Hz

1000 Hz, 186.7 Hz,
57.8 Hz, 17.9 Hz,
5.6 Hz, 1.4 Hz, 0.1 Hz

4. Evaluation Model Construction and Verification
4.1. Principle of SVR Algorithm

Support vector machine regression (SVR) was developed from support vector ma-
chine classification (SVM). The kernel function was used to map the sample space to a
high-dimensional feature space, so that the problem of nonlinear regression became an
approximate linear regression problem, and then the nonlinear relationship between input
parameters and output parameters was obtained. The training sample D = {(X1,Y1), (X2,Y2),
..., (Xn,Yn)} was selected. Through training, the team wanted to find a function f(x) that
represented the relationship between Xn and Yn.

It is assumed that f(x) can be tolerated with a deviation of maximum ε from Yn (as
shown in Figure 7), thereby solving Equation (2).

max
w,b

2
‖w‖ ,

s.t. |yi − (wxi + b)| ≤ ε, i = 1, 2, . . . , n (2)

Figure 7. Schematic diagram of SVR.

The constraint is equivalent to Equation (3).

min
w,b

1
2
‖w‖2,

s.t. |yi − (wxi + b)| ≤ ε, i = 1, 2, . . . , n (3)

In practice, ε is difficult to determine directly, so the relaxation variable ζ is added,
which allows some samples not to be within the ε interval. At this point, all samples meet
Equation (4):

min
w,b,ξi ,ξ̂i

1
2
‖w‖2 + C

n

∑
i

(
ξi, ξ̂i

)
,

s.t. f (xi)−Yi ≤ ε + ξ I ,

Yi− f (xi) ≤ ε + ξ̂i,

ξ I ≥ 0, ξ̂i ≥ 0, i = 1, 2, . . . , n (4)

where C is the regularization constant.
The process of establishing the model is the process of solving Equation (4). Equation (4)

is transformed into its dual problem through Lagrange transformation. If the function is
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not linear in the plane, the sample is mapped to a higher-dimensional space through an
appropriate kernel function, and the regression function is finally obtained as follows:

f (x) = ∑n
i=1(α̂i − αi)κ

(
xT

i x
)
+ b (5)

where κ
(

xT
i x
)

is the kernel function; αi and α̂i are the Lagrange multiplier.

4.2. Data Preprocessing

In order to solve the nonlinear relationship between the electrochemical impedance
data and health state of the lithium-ion battery, the SVR algorithm was adopted. The
characteristic parameter X = [X1, X2, . . . , Xn] (n is the number of samples) was the input
parameter (where Xn = [|Z1|; |Z2|; . . . ; |Zi|]. |Zi| is module value at characteristic
frequency), and the capacity of the lithium-ion battery Y = [Y1, Y2, . . . , Yn] was the output
parameter to build the model.

Due to the particularity of the test cycle of the electrochemical impedance spectrum,
520 sets of EIS data were measured in the study, which were randomly allocated according
to the ratio of the conventional artificial intelligence algorithm training set and test set of
8:2. In order to unify dimensions and speed up model calculation, input parameters and
output parameters were normalized using Equation (6):

xi =
x− xmin

xmax − xmin
(6)

where xi is the normalized data, xmin is the minimum value of the collected data, xmax is the
maximum value of the collected data and x is the directly collected data.

4.3. Evaluation Model Building and Validation

Taking the selected characteristic parameters as the input parameters of the model,
the Radial Basis kernel Function (RBF) was used to map the low-dimensional sample space
to the high-dimensional space, so that the nonlinear relationship between the characteristic
parameters of impedance and the SOH of lithium-ion batteries was transformed into an ap-
proximately linear relationship. Finally, the SOH evaluation model of the lithium iron phos-
phate battery was obtained. Figure 8 shows the flow chart of the SOH evaluation model.

Figure 8. SOH assessment model flow chart.
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A total of 104 sets of data were used to test the trained SOH estimation model of
lithium iron phosphate batteries. Mean absolute percentage error (MAPE) and relative
error were used to evaluate the accuracy of the model:

MAPE =
1
N ∑N

i=1

∣∣∣∣∣ypred(i) − y(i)
y(i)

∣∣∣∣∣× 100% (7)

δ =
ypred(i) − y(i)

y(i)
× 100% (8)

where ypred(i) is the predicted SOH value, y(i) is the true SOH value, N is the predicted total
sample number and δ is the relative error.

The relative errors of the test set for three groups of the SOH estimation model of
the lithium iron phosphate battery are shown in Figure 9. The relative errors of the first
group are within 3%, and the maximum relative error is 2.93%. The relative errors of the
second group are within 2%, and the maximum relative error is 1.95%. The relative errors
of the third group are within 2%, and the maximum relative error is 1.98%. The accuracy of
the state estimation model of the lithium iron phosphate battery, with the second group
of characteristic parameters (five frequency points) and the third group of characteristic
parameters (seven frequency points) as input parameters, is similar. The relative error of
the estimation model with the first group of characteristic parameters (three frequency
points) is the largest.

Figure 9. Relative errors of test set.

Furthermore, in order to verify the accuracy of the state estimation model of lithium
iron phosphate batteries, 30 batteries of the same type were selected. Seven impedance
characteristic parameters (1000 Hz, 186.7 Hz, 57.8 Hz, 17.9 Hz, 5.6 Hz, 1.4 Hz and 0.1 Hz)
of these 30 batteries were collected. The capacity of the 30 batteries was calibrated. The
30 groups of data were divided into three groups according to three frequency points, five
frequency points and seven frequency points. The collected characteristic parameters of
30 batteries were put into the model, and the comparison between the estimated value
and the measured value is shown in Figure 10. The estimated value fluctuated around the
measured value, and the estimated value of the first group of characteristic parameters
(three frequency points) was the furthest from the measured value.
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Figure 10. Comparison of measured and estimated capacities of LFP batteries.

In order to more clearly show the accuracy of the estimated capacity, the relative error
(Equation (8)) of all the verification samples was calculated. As shown in Figure 11, the
results were similar to the test set. The estimated relative errors of the model with the
first group of characteristic parameters as input parameters were all within 3%, and the
estimated relative errors of the model with the second and third group of characteristic
parameters as input parameters were all within 2%. The MAPE of the three groups is
shown in Table 4. The MAPE of the models with the first, second and third groups of
characteristic parameters as input parameters were 1.86%, 0.96% and 0.98%, respectively.
The accuracy of the model with the second and third group of characteristic parameters as
input parameters was similar, but the test time of the third group was tens of seconds, while
the test time of the second group was only a few seconds, which is extremely important for
the engineering application of the model.

Figure 11. Validation relative errors of SOH model of LFP battery.

Table 4. Three verification sets of MAPE.

First Group Second Group Third Group

MAPE 1.82% 0.96% 0.98%

5. Conclusions

In this paper, a state of health estimation method, based on the characteristic parame-
ters of electrochemical impedance spectrum and support vector regression algorithm for
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lithium-ion battery batteries, is proposed, which realizes the integration and complemen-
tarity of mechanism and data drive, avoids the error caused by equivalent circuit fitting,
reduces the testing time of the full spectrum of electrochemical impedance, and solves
the nonlinear relationship between the characteristic parameters and the health state of
lithium iron phosphate batteries. According to the difference in the meaning of different
regions of the electrochemical impedance spectrum, three combinations of characteristic fre-
quency points were selected as the characteristic parameters of the SOH estimation model
of lithium iron phosphate batteries. Considering the characteristics of a small sample of
EIS characteristic parameters, SVR was selected as the core algorithm for the model. Based
on the above, the SOH evaluation model was built. The time of the battery impedance test
and SOH evaluation is less than 10 s, which realizes the fast SOH estimation of the LFP
battery. Three groups of the model were verified by using the characteristic parameters
and calibration capacity of 30 for the same type of battery. Considering the test time and
accuracy, the impedance modulus at 86.7 Hz, 57.8 Hz, 17.9 Hz, 5.6 Hz and 1.4 Hz were
finally selected as the characteristic parameters. The MAPE of the model was 0.96%, and
the relative errors were all within 2%. The accuracy of the model estimation was high, and
it could be extended to practical application.
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